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Abstract

Spatial patterns of soil moisture cannot be adequately characterized by direct measure-

ment for most practical applications, so interpolation between observations is required.

Interpolation of soil moisture is complicated because multiple hydrologic processes can

affect soil moisture and these processes can introduce distinct modes of variation into5

the soil moisture patterns. In this paper, a new method to interpolate soil moisture data

is presented. This method accepts a dataset of soil moisture at widely-spaced locations

on multiple dates and produces fine-scale patterns of soil moisture on the same dates.

The method first uses Empirical Orthogonal Function (EOF) analysis to decompose

the dataset into a set of time-invariant patterns of covariation (EOFs) and a set of as-10

sociated time series (called expansion coefficients or ECs) that indicate the importance

of the patterns on each date. The method then uses a statistical test to retain only the

most important EOFs, and these EOFs are interpolated to the desired resolution using

a standard estimation or interpolation method. The interpolated EOFs are finally com-

bined with the spatial averages and the ECs to construct the fine-scale soil moisture15

patterns. Using the Tarrawarra dataset, the EOF-based interpolation method is shown

to outperform analogous direct interpolation methods, and this improved performance

is observed when as few as two observation dates are available. The improved per-

formance occurs because EOF analysis decomposes soil moisture roughly according

to the controlling processes and the most important EOFs exhibit distinct but more20

consistent spatial structures than soil moisture itself. Less predictable variation is also

separated into higher order EOFs, which are discarded by the method.

1 Introduction

Spatial variability of soil moisture is important because it affects agriculture (Jaynes et

al., 2003; Green and Erskine, 2004), climate (Delworth and Manabe, 1988; Liu, 2003),25

ecology (Moore et al., 1993), and hydrology (Bárdossy and Lehmann, 1998; Western et
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al., 1999b). Processes like infiltration, evapotranspiration, vegetation growth, and en-

ergy balance are non-linearly related to soil moisture. For example, Wood (1997, 1999)

showed that estimates of evapotranspiration based on spatially-averaged soil moisture

tend to be too high when atmospheric demand is low and too low when atmospheric

demand is high. Likewise, Jaynes et al. (2003) documented the complex response of5

crop yields to the spatial variations of soil moisture at the field scale. Crop growth can

cease when locations are saturated or very dry, so using spatial average soil moisture

can lead to poor estimates of crop yields for a field. Spatial organization of soil moisture

has been shown to be important in predicting runoff at the catchment scale (Fitzjohn et

al., 1998; Western et al., 1999c, 2001). Catchments have been observed to produce10

more discharge and erosion if areas of high soil moisture are well-connected to the

channels.

Unfortunately, soil moisture measurements are not typically available at the spatial

resolutions that are adequate to capture the variability that impacts these applications.

Remote sensing techniques have great potential for measuring soil moisture (Bras,15

1999; Entekhabi et al., 2004), but they typically observe the average soil moisture very

close to the ground surface and over large geographical areas. Downscaling meth-

ods have been proposed to disaggregate remote sensing observations and produce

realistic variations of soil moisture at finer spatial resolutions (Charpentier and Groff-

man, 1992; Hu et al., 1998; Kim and Barros, 2002). However, most disaggregation20

methods aim to produce realistic variability rather and accurate estimates at any given

location. Limitations are also confronted when using ground-based measurements of

soil moisture. Collection of ground-based data is labor-intensive and expensive, and

these methods typically measure average soil moisture over a horizontal radius on the

order of centimeters, making them essentially point measurements. Soil moisture can25

vary significantly between such measurements due to variations in soil, vegetation, and

topographic characteristics (Seyfried and Wilcox, 1995; Western and Grayson, 1998;

Lin et al., 2006a).
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Numerous researchers have used process-based models and interpolation meth-

ods to estimate soil moisture patterns. Downer and Ogden (2003) used a distributed

hydrologic model called GSSHA to estimate soil moisture patterns and compared the

estimated patterns to point observations. Pellenq et al. (2003) coupled a soil vege-

tation atmospheric transfer (SVAT) model with Topmodel (Beven and Kirkby, 1979) to5

estimate soil moisture patterns that result from evapotranspiration and lateral redis-

tribution of soil water within catchments. The use of numerical models to estimate

soil moisture is limited by the fact that they require knowledge of a large number of

spatially-distributed properties to realize their full potential and they require calibration

based on past soil moisture or streamflow measurements. Interpolation methods are10

typically much less data-intensive in their application. In this approach, soil moisture

values are estimated between sparse observations using spatial relationships to the

observation points and/or correlations to other properties observed at a finer resolu-

tion. Bárdossy and Lehmann (1998) interpolated soil moisture at the catchment scale

using variations of kriging. Thattai and Islam (2000) used kriging to show that remotely-15

sensed soil moisture from widely-spaced flight paths could be interpolated to produce

a full soil moisture pattern. Wilson et al. (2005) estimated soil moisture patterns using

a dynamic multiple linear regression that links the spatial variations of soil moisture to

topographic attributes.

Estimation of soil moisture has had mixed results in the past in part because20

soil moisture patterns can exhibit different statistical characteristics at different times

(Beven and Kirkby, 1979; Burt and Butcher, 1985; Western et al., 1999a; Mohanty et

al., 2000). This tendency occurs because soil moisture patterns arise from the interac-

tion of multiple hydrologic processes. At the catchment-scale, Grayson et al. (1997b)

argued that two different processes combine to control much of the variation in soil25

moisture over seasonal time scales. One process is the lateral redistribution of surface

and subsurface water, which is important when the soil is relatively wet. The other

process is evapotranspiration, which controls the soil moisture pattern when the soil

is relatively dry. These two processes tend to promote very different patterns of soil
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moisture (Seyfried and Wilcox, 1995). Kachanoski and De Jong (1988) observed dif-

ferences in soil moisture patterns at particular scales between different times. They

found differences in the spectral densities of soil moisture on dry and wet days, which

they attributed to the time varying roles of different hydrologic processes that act at dis-

tinct spatial scales. Such dynamic and multi-scale variations in soil moisture patterns5

make interpolation difficult (Western et al., 1999a; Florinsky et al., 2002).

One solution to this difficulty is the decomposition of soil moisture variation into un-

derlying, time invariant patterns, which can be done with Empirical Orthogonal Function

(EOF) analysis (Hu et al., 1998; Wilson et al., 2004). EOF analysis can decompose

space-time datasets into a series of spatial patterns of underlying orthogonal covari-10

ation and associated time series that indicate the importance of each spatial pattern

at each time. Kim and Barros (2002) and Jawson and Niemann (2007) used EOF

analysis to decompose remotely-sensed soil moisture images from the SGP97 field

campaign. Yoo and Kim (2004) used EOF analysis to decompose space-time patterns

of ground-based soil moisture measurements for agricultural fields at the same site.15

The patterns of covariation that they identified are related to both topographic and soil

properties. They identified a pattern of variation that was related to wet periods and an-

other pattern related to dry periods, and they showed the time evolution of their relative

importance. Perry and Niemann (2007) applied EOF analysis to the Tarrawarra catch-

ment in Australia, where previous studies had shown that the soil moisture patterns20

depend on different topographic properties at different times (Western and Grayson,

1998; Western et al., 1999a). Perry and Niemann (2007) found that the most important

pattern of covariation shows a clear dependence on hillslope and valley topography and

is most important during wet periods. The second most important pattern of covariation

exhibits strong aspect dependence, which is correlated with patterns of solar insola-25

tion and possibly evapotranspiration. They also developed a soil moisture forecasting

method in which an EOF analysis of past data is used to forecast spatial patterns of soil

moisture from the spatial average. Their method could also be used for downscaling of

soil moisture.
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Here, we consider the problem of interpolating a dataset of point soil moisture ob-

servations. Because previous studies have shown that EOF analysis is effective at

decomposing soil moisture into distinct and physically meaningful modes of variation,

we hypothesize that improved interpolation can be accomplished by decomposing the

space-time variability of soil moisture into the patterns of covariation, interpolating5

those patterns separately, and then reassembling the interpolated patterns to deter-

mine the fine-scale soil moisture. In Sect. 2, we describe this proposed interpolation

method in detail. In Sect. 3, we describe a dataset and study site where we test the

method. In Sect. 4, we evaluate the performance of the proposed method and compare

it to several traditional interpolation methods. In Sect. 5, we discuss the results, and in10

Sect. 6, we state our main conclusions.

2 Method

The problem we consider is outlined as follows. We assume that a set of widely-spaced

point measurements of soil moisture are available at the same locations for at least two

observation times (e.g., at least two days). This is a typical scenario when soil moisture15

is measured by permanent in-situ probes. In addition, auxiliary information such as

topographic elevations or soil characteristics may or may not be available at a higher

spatial resolution than the soil moisture measurements for the site. Our objective is to

generate fine-scale patterns of soil moisture from the widely-space measurement and

the auxiliary information, if available. We propose to estimate the fine-scale patterns20

using the following four-step procedure. First, the space-time dataset of soil moisture

will be decomposed into the spatial average at each time, a set of spatial patterns of

covariation (EOFs), and a set of time series that indicate the importance of each EOF

to the soil moisture variation at each time. The time series are called the expansion

coefficients (ECs). Second, the EOFs that identify statistically significant patterns of25

covariation based on a statistical test will be retained and the remaining EOFs will

be discarded. Third, each retained EOF will be interpolated to the desired spatial
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resolution using a standard interpolation method. Fourth, the interpolated EOFs will

be combined with the original ECs and spatial averages to construct the fine-scale

patterns of soil moisture. The remainder of this section describes these four steps in

more detail.

The first step of the proposed technique is to perform an EOF decomposition on5

the sparse soil moisture data. Detailed mathematical treatment of EOF analysis is

given in texts on the topic (Preisendorfer, 1988; Jolliffe, 2002; Jackson, 2003). Here,

we briefly summarize its application in the soil moisture interpolation method. The

analysis begins with a matrix of the space-time soil moisture observations:

S =













s11 s12 · · · s1n

s21 s22

...
...

. . .
...

sm1 · · · · · · smn













(1)10

where si j corresponds to soil moisture at location i and time j . m is the number of

sample locations, and n is the number of sample times. Each row i in matrix S cor-

responds to a particular location (xi , yi ). Note that we use capital letters to denote

matrices and lowercase letters to denote scalars. Next, the matrix of spatial anomalies

of soil moisture Z is computed from the original data by subtracting the spatial average15

for each time from all measurements at that time. Specifically,

zi j = si j −
1

m

m
∑

k=1

skj (2)

where zi j is the spatial anomaly at location i and time j . The temporal covariance

matrix V (n×n) is then computed as:

V =
1

m
ZTZ (3)20
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where T indicates the matrix transpose. In general, V is not a diagonal matrix, that is,

some covariance is observed between the soil moisture anomalies at different times.

However, V can be diagonalized using EOF or eigenanalysis. The results of this proce-

dure are the diagonal matrix L (n×n), whose diagonal components are the eigenvalues

of V , and a matrix E (n×n) that contains the eigenvectors as columns. Together these5

matrices satisfy:

V E = LE. (4)

The eigenvectors define a new basis or coordinate system for the soil moisture data.

The first eigenvector is oriented in the direction of maximum covariation, the second

eigenvector is oriented perpendicular to the first eigenvector in the direction of maxi-10

mum residual variation, and so on. The eigenvalues indicate the amount of covariation

(in the original basis) that lies in the direction of each eigenvector. The transformation

E can be applied to the soil moisture anomalies to obtain n new spatial patterns called

EOFs. Mathematically, this is:

F = ZE (5)15

where F is an m×n matrix containing the EOFs as columns. We define EOFk as the

values of the data projected onto the kth axis, so EOFk is found in the kth column

of F in Eq. (5). Notice that EOF1 is associated with the largest eigenvalue, so it is

associated with the axis that explains the most variation. One can think of the EOFs

as patterns of covariation that are imbedded in the soil moisture anomalies. We define20

the kth expansion coefficient (ECk) as the unit vector of the kth axis, which can be

found in the kth column of E in Eq. (5). The expansion coefficients are time series that

indicate the importance of the EOFs to the individual soil moisture patterns.

After the EOF decomposition is completed, the second step is to retain the subset of

EOFs that are statistically significant. It is important to note that almost any space-time25

dataset can be decomposed using EOF analysis irrespective of whether statistically

significant covariation is observed between the patterns at different observation times.
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In general, the lower order EOFs are associated with stronger patterns of covariation

and thus are more likely to be associated with true system variations. The higher order

EOFs are associated with weaker covariation and thus are often associated with in-

strument error (Jackson, 2003). Including these higher order EOFs in the soil moisture

interpolation method would introduce noise into the soil moisture patterns and likely in-5

crease the estimation errors. Numerous methods are available to judge whether EOFs

represent statistically significant patterns of covariation, and unfortunately, these differ-

ent methods can give rather different results. Because no method is clearly preferred

from a theoretical basis, we propose calculating the number of significant EOFs using

two different methods and averaging their results to determine the number of EOFs to10

retain. This approach will be evaluated later in the paper. The first of the two methods

was proposed by Bartlett (1950). It assesses whether the EOFs describe statistically

significant patterns of covariation by testing the hypothesis that the eigenvalues of the

last (n−d ) EOFs are all equal. The relevant statistic for this test is χ2
crit, which is calcu-

lated:15

χ2
crit

= −(m − 1)

n
∑

j=d+1

ln(lj ) + (m − 1)(n − d ) ln

[∑n
j=d+1 lj

(n − d )

]

. (6)

Bartlett (1950) showed that χ2
crit has a chi-squared distribution with

(1/2)(n−d−1)(n−d+2) degrees of freedom. If χ2
crit is less than or equal to the

standard tabulated χ2
variate, then the hypothesis cannot be rejected at the selected

confidence level. In this case, the last (n−d ) EOFs would be discarded, and the first20

d EOFs would be considered statistically significant (Jackson, 2003). The second test

is presented in Johnson and Wichern (2002) and is based on Gaussian confidences

limits for the eigenvalues. Assuming Gaussian random errors about the eigenvalues,
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the confidence limits for the eigenvalue ljj can be written as:

ljj

1 ± z1−α

√

2/m

(7)

where z1−α is the standard normal variate at the 1−α confidence level. If the confidence

limits of the eigenvalue ljj do not overlap with those for the next higher order eigen-

value, then ljj would be considered statistically significant. This argument is based on5

the observation that a dataset without significant covariation tends to exhibit the same

amount of variation in all directions. As a result, the EOF coordinate transformations

are not unique and the eigenvalues are expected to be nearly the same.

The third step of the proposed method is to interpolate the retained EOFs. The EOFs

are defined only at the observation points, so interpolation is used to estimate values10

between the observation points. EOFs can be interpolated using any standard inter-

polation technique. In this paper, we demonstrate three methods: (1) multiple linear

regression (MLR) against topographic attributes, (2) inverse distance weighting (IDW),

and (3) ordinary kriging. Note that multiple linear regression is more correctly described

as spatial estimation rather than interpolation because it does not use distance to de-15

termine the estimates. However, the term interpolation is used in reference to all of

three methods to simplify the discussion. The MLR approach assumes that auxiliary

data are available at the final spatial resolution for the soil moisture patterns. Such data

might include soil characteristics or topographic attributes derived from elevation data

(e.g., slope, curvature, etc.). In our application, topographic attributes are used based20

on previously-observed correlations with soil moisture data (Western et al., 1999a; Wil-

son et al., 2005). The MLR approach uses a stepwise partial correlation analysis to

build a parsimonious model for each sparse EOF in terms of the topographic attributes

(Salas et al., in development). In the partial correlation analysis, the marginal increase

in the multiple correlation is checked at each step and only variables that produce a25

statistically significant improvement are added to the MLR. The MLR then estimates
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the EOF value at an unobserved location using:

f̂ik = ak +

l
∑

j=1

Ti jbjk (8)

where f̂ik is the estimated kth order EOF at location i , ak and bjk are the parame-

ters determined from the regression of the sparse kth order EOF against topographic

attribute Tj , and l is the total number of topographic attributes included in the MLR.5

Note that the topographic attributes included in the regression and the parameter val-

ues can differ for each EOF. The second interpolation technique is the IDW method,

which assumes that the EOF values can be determined based on their proximity to

observations. This method determines f̂ik as:

f̂ik =

l
∑

j=1

wj fjk (9)10

where fjk is the value of the kth order EOF at sparse sample location j and l is the

number of neighboring observations used in the interpolation. In this paper, we use

l=5, but the results are not sensitive to this choice. wj is the weight applied to each

neighbor and is computed as:

wj =

h−2
j

l
∑

l l=1

h−2
l l

(10)15

where hj is the horizontal distance between unobserved location i and each neigh-

boring observation j . The third interpolation technique used here is ordinary kriging

(Cressie, 1991a). Kriging assumes that the soil moisture at an unobserved location is

related to observations at neighboring locations according to an autocovariance that is
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computed as a function of separation distance. Like IDW, kriging uses Eq. (9) to in-

terpolate the soil moisture, but the weights wj are determined by solving the following

system of equations:

l
∑

j=1

wjγrj (hrj ) + µ = γri (hri ) r = 1, ..., l (11)

l
∑

j=1

wj = 1 (12)5

where hrj is horizontal distance between sparse measurement locations r and j , γrj
is a model semi-variance at distance hrj , hri is the distance between sparse measure-

ment location r and the unobserved location i , and µ is a Lagrange-multiplier (Bárdossy

and Lehmann, 1998).

The fourth and final step of the proposed method is to estimate soil moisture over10

the entire spatial domain using the interpolated EOFs along with the spatial averages

and ECs from the original sparse measurements. By doing this, we assume that the

spatial average from the sparse measurements is a suitable estimate for the spatial

average at all locations, which implicitly assumes stationarity. Similarly, we assume

that the ECs estimated from the sparse measurements are suitable estimates for the15

ECs at all locations. Recall that the ECs are spatially invariant and in theory apply to

all locations within a stationary field. The soil moisture at any location of interest can

be developed based on Eq. (5). In particular:

ŝi j = s̄j +
d
∑

k=1

f̂ike
T
kj

for i=1, ...,mj=1, ..., n, (13)

where ŝi j is estimated soil moisture at location i and time j , s̄j is the spatial average of20

the sparse soil moisture measurements at time j , f̂ik is the interpolated value of the kth

order EOF at location i , d is the number of EOFs considered statistically significant,

and ekj is the kth order EC determined from the sparse measurements.
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3 Study site

The proposed EOF-based interpolation method is tested by applying it to the well-

known Tarrawarra Catchment soil moisture dataset. The Tarrawarra Catchment is lo-

cated in southeast Australia (Western and Grayson, 1998). The site consists of two

small valleys and surrounding hillslopes (Fig. 1). No channels occur within the site,5

and the land-use is pasture. Unfortunately, detailed soil information is not available

at the same sample spacing as soil moisture observations. However, soils are fairly

uniform over the site and consist of silty loam A horizon overlying a clay B horizon.

The A horizon is approximately 15–40 cm deep, and saturated conditions form in the A

horizon during wet periods. Annual precipitation is approximately 820 mm, and annual10

potential evapotranspiration (PET) is about 830 mm. A wet season occurs between

April and September (austral winter) when precipitation exceeds PET, and a dry sea-

son occurs between October and March when PET exceeds precipitation (Grayson et

al., 1997b; Western and Grayson, 1998; Kandel et al., 2004).

The soil moisture measurements were collected using time domain reflectometry15

(TDR) and are publicly available at the Global Soil Moisture Databank (Robock et al.,

2000). Observations were collected on 13 dates spanning approximately 14 months,

and they capture the normal range of seasonal soil moisture conditions (Western and

Grayson, 1998). The TDR readings were taken on a 10 m×20 m grid, where the 10 m

spacing is roughly in the north-south direction. Generally about 500 measurements20

were collected per sampling date. A typical set of sample locations are shown in Fig. 1.

The TDR measurements report the average soil moisture in volume of water per vol-

ume of soil for a cylinder of soil approximately 30 cm deep and 5 cm in diameter. Thus,

in comparison to the size of the catchment, the measurements provide essentially point

soil moisture values. The exact TDR sampling locations varied slightly from day to day,25

so we interpolated the original TDR data onto a common 20 m×10 m grid using the

cubic spline method. The purpose of this interpolation is simply to translate the original

data from different days onto a common grid, which is necessary for the application
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of the method, not to increase the spatial resolution of the data. In nearly all cases,

the original TDR measurements were taken within 0.5 m of the final grid points, so the

cubic-spline interpolation caused very little change in the patterns. Finally, the dataset

for each sampling date was clipped to include only the aerial extent common to all

sampling dates.5

A detailed topographic survey is available for the catchment with point elevations

available at approximately 10 m spacing. In order to facilitate comparisons with soil

moisture, the elevation data were interpolated to a 10 m×10 m grid where every other

column is coincident with the 20 m×10 m soil moisture grid.

4 Results10

To test the proposed method, the 10 m×20 m soil moisture measurements from Tar-

rawarra are first sampled to produce a subset of data at a 30 m×60 m spacing. These

data are considered observation points, while the remaining data are considered ver-

ification points. The observations include 52 soil moisture values on 13 dates or 11%

of the available soil moisture data. These observations will be used to estimate soil15

moisture at 407 other locations. Later in this section, we will consider observation sets

with closer and wider spacings.

The first step is to perform an EOF decomposition of the observations to determine

the sparse EOFs and associated ECs. The assumption underlying this step is that

the EOFs and ECs obtained from the sparse observations are good estimates of the20

EOFs and ECs for the full soil moisture pattern. The solid lines in Fig. 2 show the

first two EOFs and associated ECs determined from the sparse observations, and the

dashed lines show the EOF and EC values at the same locations when the EOF anal-

ysis is performed using the entire dataset. The figure shows that the EOF1 values

from the full dataset are reproduced almost exactly by an EOF analysis of the sparse25

data (correlation coefficient, r=1.00). The EC1 values from the full dataset are also

well reproduced by an EOF analysis of the sparse data (r=0.91). EOF2 and EC2 are
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reproduced fairly well (r=0.75 and r=0.69, respectively), but the pattern of covariance

identified by EOF2 is more difficult to distinguish from other variation when the obser-

vations are sparse. In general, it is expected that higher order EOFs are increasingly

difficult to determine from sparse data, which justifies their exclusion from the interpo-

lation method. However, the figure confirms that the most important EOFs and ECs5

can be identified from sparse observations.

Next, we evaluate the method to determine the number of EOFs that should be

retained. Figure 3 shows the results of the tests described by Bartlett (1950) and

Johnson and Wichern (2002). At the 95% confidence level, the Bartlett test indicates

that the first five EOFs are significant, and the Johnson and Wichern test indicates that10

only the first EOF is significant. Averaging the two numbers suggests that we retain and

interpolate 3 EOFs. To assess this element of the interpolation method, we determined

the number of EOFs that should be retained to optimize the performance of the EOF-

based interpolation method. The optimum number was determined by retaining every

possible number of EOFs from a minimum of 1 to the maximum of 13. In each case,15

the retained EOFs were interpolated to produce fine scale soil moisture patterns, which

were then compared to the observed patterns. For data at the 30 m×60 m spacing, the

optimum number of retained EOFs is three. At other spacings, the optimum number

is generally quite similar to the number of EOFs retained by the proposed method. It

should be noted that this method may not perform as well with other datasets.20

The next step is to interpolate the retained EOFs. The following topographic at-

tributes were considered: elevation, slope, slope
−1

, vertical topographic curvature (kv ),

horizontal topographic curvature (kh), specific drainage area (a), the natural log of the

specific drainage area ln(a), wetness index (WI) (Beven and Kirkby, 1979), potential

solar radiation index (PSRI) (Moore et al., 1993), and the lowness index (L) (Roberts25

et al., 1997). These particular topographic attributes were selected based on results of

previous studies relating soil moisture and topography (Western et al., 1999a; Florin-

sky et al., 2002; Lin et al., 2006b). Figure 4a–c shows the first three EOFs computed

from the full soil moisture dataset. Figure 4d–f shows the first three EOFs computed
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from the sparse observation points, and Fig. 4g–i shows the EOFs interpolated from

the sparse observation points. Notice that the EOF values at the observation points are

retained in lieu of using the MLR, which gives the speckled appearance to the interpo-

lated EOFs. While much of the local variation in the EOF patterns shown in Fig. 4a–c is

not reproduced by the interpolation, the large scale features are largely captured by the5

interpolation method. Linear correlations coefficients between the interpolated values

and observed values are 0.77, 0.25 and 0.15 for EOF1, EOF2 and EOF3, respectively.

Finally, the soil moisture patterns can be generated by combining the interpolated

EOFs with the observed ECs and spatial averages. Notice that the EOF-based inter-

polation method simultaneously generates soil moisture patterns on all 13 observation10

dates. Figure 5a–b shows the actual soil moisture patterns on two observation dates: 3

July 1996 and 20 September 1996. Comparing these two patterns, one observes that

the soil moisture pattern on 20 September 1996 exhibits a stronger dependence on the

topography. Wet locations tend to be located in the valley bottoms while dry locations

are more common on the hillsides. On 3 July, this tendency is somewhat weaker. Fig-15

ure 5c–d shows the soil moisture patterns generated by the EOF-based interpolation

technique. As expected, the generated soil moisture patterns exhibit much less local

variability than the actual observations, but the large scale features are reproduced in

the patterns. In particular, the wet locations are more consistently located in the valley

bottom on 20 September than 3 July. The differences between these dates arise from20

the time-varying weights on the EOFs (i.e., the ECs) that are estimated from the sparse

observations. Figure 5 also shows the estimation error for both dates. The associated

error patterns appear to be mainly local variations. The magnitudes of the errors are

not insignificant, which implies that a substantial portion of the soil moisture variation

is not captured by the interpolation method.25

In order to generalize these results and compare the EOF-based interpolation

method to standard interpolation methods, we developed 54 different observation sets

from the Tarrawarra data. The data were resampled at four spacings: 20 m×40 m,

30 m×60 m, 40 m×80 m, and 50 m×100 m. For each spacing, multiple observation sets

2852

http://www.hydrol-earth-syst-sci-discuss.net
http://www.hydrol-earth-syst-sci-discuss.net/4/2837/2007/hessd-4-2837-2007-print.pdf
http://www.hydrol-earth-syst-sci-discuss.net/4/2837/2007/hessd-4-2837-2007-discussion.html
http://www.egu.eu


HESSD

4, 2837–2874, 2007

Generation of soil

moisture patterns at

the catchment scale

M. A. Perry and

J. D. Niemann

Title Page

Abstract Introduction

Conclusions References

Tables Figures

◭ ◮

◭ ◮

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

EGU

were developed by translating the grid of observation points. For example, in the case

of the 20 m×40 m grid, every other data point in each cardinal direction is treated as

an observation. The 20 m×40 m grid of observations can be shifted 10 m to the right to

obtain a different set of observations. Similarly, it can be shifted down and diagonally

to obtain two more observation sets. Table 1 shows the number of possible observa-5

tion sets and other characteristics for each sample spacing. For each observation set,

the EOF-based interpolation method was performed using MLR, IDW, and Kriging to

interpolate the EOFs. We refer to these as the EOF-MLR, EOF-IDW, and EOF-Kriging

methods. For comparison, these three methods were also used to interpolate the soil

moisture patterns directly. We refer to these as the MLR, IDW, and Kriging methods.10

For each method and observation set, the interpolation performance was measured

using the average Nash Sutcliffe Coefficient of Efficiency (NSCE) for the 13 days in the

dataset, which is computed as:

NSCE=
1

n

n
∑

i=1

σ2
obs,i−σ

2
ε,i

σ2
obs,i

(14)

where σ2
obs,i is the variance of the measured soil moisture at the verification locations15

on day i and σ2
ε,i is the mean squared difference between measured and estimated

soil moisture at the verification locations on day i . The term in the summation is the

usual definition of the NSCE (Nash and Sutcliffe, 1970). The maximum possible value

of the NSCE on any particular day is one, which would imply that the interpolated

surface reproduces the unobserved values exactly. If the NSCE is zero, it indicates20

that the interpolation surface has the same error at the verification points as the spatial

average of the observations would.

Figure 6a shows the average NSCE for the generated soil moisture patterns as a

function of the spacing of the observations and the interpolation technique used. For

each spacing, the symbol indicates the average NSCE for all observation sets. The er-25

ror bars identify +/− one standard deviation to indicate the variation of the NSCE results
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between observation sets at that spacing. Figure 6a shows that the performance of all

of the interpolation methods decreases as the sample spacing increases. If the sam-

ple spacing exceeds 50 m×100 m, the interpolation methods typically do not perform

better than using the spatial average of the observations. At the 20 m×40 m sample

spacing, the EOF-IDW and EOF-Kriging interpolation methods outperform the EOF-5

MLR method. At this scale, neighboring soil moisture measurements contain more

information about soil moisture than the local topographic attributes do. However, this

behavior tends to reverse above the 30 m×60 m spacing as the information contained

in neighboring soil moisture measurements decreases. Furthermore, the assumption

that topographic data is available at high resolution means that the MLR technique can10

use more information than the IDW technique.

Figure 6b shows the difference between the NSCE computed using the EOF-based

interpolation methods and the NSCE computed using the analogous direct soil mois-

ture interpolation methods. Again, the symbols in Fig. 6b show the average difference

in NSCE over all possible observation sets at a given spacing. When the symbol15

is above zero, it suggests that the EOF-based interpolation method outperforms the

analogous direct interpolation methods on average. This is almost always the case.

The NSCE differences in Fig. 6b appear to be small, but they are significant relative

to the magnitudes of NSCE in Fig. 6a. The EOF-based method offers from around 3

percent to greater than 60 percent improvement over the direct interpolation method,20

depending on the spacing and specific interpolation method that is used. The figure

also shows error bars, which identify +/−1 standard deviation. When the lower end of

the error bar exceeds zero, it indicates that the EOF-based method outperforms the

direct method more than 80% of the time. Again, this is usually the case. A traditional

t-test cannot be used to evaluate the significance of the difference between the meth-25

ods because the samples (i.e. sparse sample grid realizations) are not independent.

However, the figure provides some confidence that the EOF-based method usually

outperforms standard interpolation methods.
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5 Discussion

In this section, we investigate why EOF-based interpolation outperforms direct soil

moisture interpolation. One key difference between the two methods is the amount

of information used. The EOF-based method uses sparse soil moisture observations

on all 13 sampling dates to compute EOFs, which are then interpolated to produce5

the fine-scale soil moisture patterns on all 13 dates simultaneously. The direct inter-

polation methods determine the soil moisture values based only on the observations

from the same day. To assess the role that the additional data plays, Fig. 7 shows

the NSCE of the generated soil moisture patterns for one sampling date (28 March)

as an increasing number of dates is included in the dataset for the direct MLR and10

EOF-MLR methods. For simplicity, successive dates are added in chronological order.

For the direct MLR method, data from each additional date were standardized by sub-

tracting the spatial average and dividing by the standard deviation and then combined

into one dataset for the regression analysis. This standardization improves the perfor-

mance of the direct MLR method. Both the direct MLR and EOF-MLR methods yield15

identical results when only one date is used because the only EOF pattern is the soil

moisture pattern itself. When two sample dates are used in each method, the NSCE

for the EOF-MLR method immediately doubles from 0.075 to about 0.15, while the

NSCE for the direct MLR method actually decreases. The NSCE in both cases does

not change significantly with the addition of more observation dates. The analysis was20

repeated numerous times by adding the successive dates in different orders, and the

same general tendency was observed. This analysis shows that the EOF-MLR method

outperforms direct interpolation even when the data requirements are forced to be the

same. These results also suggest that the EOF-based method can produce improved

results as soon as two sampling dates are used.25

One reason for the improved performance of the EOF-based method can be seen

by examining the correlations to the topographic attributes. Table 2 shows the cor-

relation coefficients between the EOFs and topographic attributes and the correlation
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coefficients between the individual soil moisture patterns and the same topographic

attributes when all of the data are included. Blank entries in Table 2 indicate correla-

tions that are not statistically significant at the 95% confidence level. Three interesting

observations can be made from Table 2. First, the correlations support previous phys-

ical interpretations of the EOFs (Perry and Niemann, 2007). EOF1 has particularly5

high correlations with kh, ln(a), WI, and L, and this collection of attributes has been

related to lateral redistribution of soil water by several authors (Burt and Butcher, 1985;

Western et al., 1999a; Florinsky et al., 2002). EOF2 has a large correlation with PSRI,

which supports its association with evapotranspiration. EOF3 exhibits a large neg-

ative correlation with elevation, which may be associated with transition times when10

the assumption of steady-state flow that underlies WI is violated (Perry and Niemann,

2007; Barling et al., 1994; Grayson et al., 1997a). Second, Table 2 shows that the

most important EOFs also tend to exhibit the strongest correlations to topographic at-

tributes. The EOFs are almost perfectly sorted according to their multiple correlation

coefficients with the topographic attributes (the far right column in the table). EOFs15

1–3 have fairly high multiple correlation coefficients, while the remaining EOFs have

lower values. Third, Table 2 shows that the most important EOFs have stronger cor-

relations to certain topographic attributes than the individual soil moisture patterns do.

For example, EOF1 is more highly correlated to kv , a, ln(a), WI, and L than any indi-

vidual soil moisture pattern is. Similarly, EOF2 is more highly correlated to PSRI than20

any individual soil moisture pattern is. The closer association between the EOFs and

the topographic attributes suggests that an EOF-based interpolation may be more ef-

ficient at using topographic information. Table 3 examines the correlation between the

estimation errors from the EOF-MLR and direct MLR methods versus the topographic

attributes. The estimation errors were computed for a single 30 m×60 m observation25

set at the verification locations on every sampling date, and the multiple correlation

coefficients between the estimation errors and the topographic attributes were calcu-

lated. On 10 out of 13 dates, the residual errors from the EOF-MLR method have

a lower correlation with the topographic attributes than do the errors from the direct
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MLR method. This result also suggests that the EOF-MLR method accounts for the

topographic influence on soil moisture better than the direct MLR method does.

The EOF-based method also performs better when coupled with distance-based

interpolation methods like IDW and kriging. This result suggests that nearby values of

the most important EOFs may provide more information about the unobserved values5

of those EOFs than nearby soil moisture values provide about unobserved soil moisture

values. To evaluate the spatial structure of the EOFs and soil moisture patterns, the

sample semivariogram γ(h) is calculated as:

γ̂(h) =
1

2m(h)

∑

m(h)

[

z(xi ) − z(xj )
]2

(15)

where z(xi ) is the value of the pattern at location xi , and xi and xj belong to the10

set of m(h) pairs separated by horizontal distance h (Cressie, 1991b). The sample

semivariogram can be fit with a theoretical or model semivariogram curve. In a previ-

ous geostatistical analysis of the Tarrawarra soil moisture data, Western and Grayson

(1998) found that an exponential model described the data well. The exponential semi-

variogram γe can be written as:15

γe(h) = a + (b − a)[1 − exp(−h/c)] (16)

where a, b, and c are model parameters. a is the so-called nugget and is interpreted

as the variance at zero separation distance. The nugget is usually viewed as the result

of instrument error or variation at a smaller scale than the sample spacing. b is the sill,

which corresponds to the semivariogram’s asymptotic upper limit, and is related to the20

sample variance. c determines the rate of increase from a to b. Western et al. (1998)

define the range or the distance to the sill as 3c for the exponential model.

Sample semivariograms were computed for the EOFs and soil moisture patterns at

the finest available resolution, and the exponential model was fit in each case. To facil-

itate comparison, all data were standardized and normalized by subtracting the mean25
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and dividing by the standard deviation prior to computing the semivariograms. The pa-

rameters of the model semivariogram are shown in Table 4. The differences in the val-

ues indicate that the EOFs exhibit distinct spatial behaviors. The EOF1 semivariogram

has a zero nugget and relatively small range, which suggest that the autocorrelation in

EOF1 occurs at relatively small spatial scales. EOF2 and EOF3 have a progressively5

larger nuggets and ranges.

Interpolating with Kriging implicitly assumes that the autocovariance can be de-

scribed as a function of separation distance. One way to test the strength of the de-

pendence of the autocovariance on separation distance is to calculate the root mean

square error (RMSE) of the data about the sample semivariogram. The RMSE mea-10

sures the spread of the original data about the average (i.e., sample) semi-variogram.

Table 4 shows that lower RMSE values are observed for the most important EOFs

than for the soil moisture patterns themselves. The more consistent spatial structure

of the EOFs explains why kriging is more effective with the EOF patterns than the soil

moisture patterns. Table 4 also suggests that much of the noise in the original soil mois-15

ture measurements is filtered into higher order EOFs. The Tarrawarra measurements

are known to contain measurement errors associated with the TDR measuring de-

vice (Western and Grayson, 1998), and such measurement errors would be expected

to produce a non-zero nugget (Bárdossy and Lehmann, 1998). The model semivari-

ogram nugget for EOF1 is zero, which suggests that measurement errors have largely20

been removed from EOF1. The nugget tends to increase as one considers EOFs 2

through 6. As one considers higher order EOFs, the amount of variation explained

by each EOF is smaller, so it becomes increasingly difficult to distinguish meaningful

system variation from random noise.

6 Conclusions25

A simple EOF-based interpolation method was proposed for generating soil moisture

patterns from widely-spaced observations available at multiple times. This method
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determines the soil moisture patterns by decomposing the dataset into EOFs, interpo-

lating the EOFs using any standard interpolation method (MLR, IDW, or kriging), and

using the interpolated EOFs to construct the fine-scale soil moisture patterns at all

times. When applied to soil moisture data from the well-known Tarrawarra catchment,

the following conclusions can be made:5

– The proposed method routinely outperforms standard interpolation methods. One

typically obtains soil moisture patterns with a closer similarity to the actual soil

moisture patterns by interpolating the EOFs than by interpolating the soil moisture

patterns directly.

– The proposed interpolation method can outperform the other methods when as10

few as two observation times are available. Repeated observations allow the

EOF-based method to identify underlying patterns of covariation, while direct in-

terpolation methods have difficulty efficiently utilizing data from multiple times.

– If the available observations are closely-space (less than 30 m×60 m), the pro-

posed method produces better results when coupled with a distance-based15

method like IDW or kriging. When the observations are more widely-space, the

method performs better using a MLR with topographic data. This general ten-

dency is expected to hold for other datasets given the limited correlation lengths

of soil moisture patterns. However, the efficiency of a MLR with topographic at-

tributes or other site characteristics is expected to vary widely.20

– The EOF-based interpolation method captures the dependence on topography

more efficiently than direct interpolation methods. In particular, the estimation

errors of soil moisture patterns generated by the EOF-MLR method typically have

lower correlations with topographic attributes than the estimation errors of the soil

moisture patterns generated directly by a MLR.25

– More of the semi-variance of the EOFs is explained as a function of separation

distance than that of the soil moisture patterns. The more consistent spatial struc-
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ture of the EOFs allows distance-based interpolation methods to perform better

on the EOFs than on the individual soil moisture patterns.

Overall, if data are available from more than one observation time, then interpolation

of soil moisture data usually appears to be improved by conducting an EOF analysis

and interpolating the most important EOFs instead of direct interpolation of the soil5

moisture observations.
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Table 1. Characteristics of the observation sets used for interpolation.

Observation

Spacing

Number of

Observations

Percent of

Catchment

Observed

Number of

Realizations

Available for

Analysis

10 m×20 m 459 100 1

20 m×40 m 113 25 4

30 m×60 m 52 11 9

40 m×80 m 30 6.5 16

50 m×100 m 19 4.1 25
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Table 2. Comparison of EOF and soil moisture correlations with various topographic attributes.

Blank entries correspond to statistically insignificant correlations at the 95% confidence level.

Simple Correlation Coefficient Multiple

Elev. slope slope
−1 kh kv a ln(a) WI PSRI L

Correlation

Coefficient

EOF1 −0.39 −0.26 0.39 −0.58 −0.36 0.40 0.67 0.67 −0.29 0.67 0.82

EOF2 −0.40 0.40 −0.13 0.20 0.12 0.56 0.63

EOF3 −0.33 −0.19 0.22 0.16 0.15 0.19 −0.17 0.50

EOF4 0.11 0.13 −0.10 0.15

EOF5 0.15 0.10 0.20

EOF6 −0.09 −0.11 −0.13 0.13

27 Sep −0.41 −0.23 0.35 −0.52 −0.33 0.36 0.65 0.64 −0.38 0.62 0.82

14 Feb −0.10 0.28 −0.23 −0.18 0.14 −0.40 0.18 0.48

23 Feb 0.20 −0.12 0.11 −0.31 0.13 0.36

28 March −0.21 −0.23 −0.23 0.27 0.21 −0.38 0.31 0.50

13 April −0.16 −0.36 −0.31 0.12 0.41 0.35 −0.38 0.43 0.58

22 April −0.22 −0.29 0.37 −0.50 −0.26 0.33 0.52 0.54 0.51 0.62

2 May −0.35 −0.30 0.40 −0.63 −0.34 0.37 0.63 0.64 −0.18 0.64 0.77

3 July −0.14 0.21 −0.39 0.22 0.31 0.32 0.32 0.51

2 Sep −0.30 −0.24 0.38 −0.35 −0.24 0.34 0.43 0.46 −0.13 0.46 0.57

20 Sep −0.33 −0.34 0.40 −0.42 −0.25 0.35 0.43 0.47 0.45 0.56

25 Oct −0.41 −0.24 0.35 −0.45 −0.30 0.40 0.63 0.63 −0.30 0.57 0.74

10 Nov −0.35 −0.18 0.29 −0.40 −0.27 0.31 0.51 0.51 −0.46 0.49 0.75

29 Nov −0.22 0.18 −0.36 −0.21 0.21 0.43 0.40 −0.32 0.46 0.60
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Table 3. Correlations between soil moisture estimation errors and topographic attributes for

the EOF-MLR and the direct MLR method. Interpolations were performed using a single ob-

servation set at the 30 m×60 m spacing. Estimation errors were computed only at verification

points.

Multiple Correlation Coefficient

between Residual Errors and

Topographic Attributes

Soil Moisture Sampling Date MLR-EOF Direct MLR of Soil Moisture

27 Sep 0.21 0.12

14 Feb 0.17 0.13

23 Feb 0.11 0.14

28 March 0.12 0.25

13 April 0.14 0.22

22 April 0.16 0.22

2 May 0.23 0.22

3 July 0.18 0.21

2 Sep 0.08 0.27

20 Sep 0.09 0.18

25 Oct 0.20 0.42

10 Nov 0.17 0.20

29 Nov 0.15 0.27
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Table 4. Estimated parameters of the exponential semivariogram model for the most important

EOFs and individual soil moisture patterns.

Spatial Pattern Nugget, a (V/V)
2

Sill, b (V/V)
2

Range, 3c (m) RMSE

EOFs

1 0.00 1.0 94 1.61

2 0.25 1.0 116 1.35

3 0.50 1.2 370 1.54

4 0.58 1.4 536 1.43

5 0.71 1.1 264 1.51

6 0.53 1.0 64 1.49

Soil Moisture

3 July 0.37 1.1 138 1.81

20 Sep 0.17 1.0 62 1.81
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Fig. 1. Tarrawarra catchment topography. The overlaid dots show the soil moisture sampling

grid for a typical observation date.
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Fig. 2. Comparison of the EOFs and ECs determined from an observation set at a 30 m×60 m

spacing and the EOFs and ECs at the same locations using the entire dataset. The lines

connecting data points are for visual clarity only and do not to represent values between data

points. The location index is an arbitrary index that identifies individual observation points.
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Fig. 3. Results from (a) the Bartlett (1950) and (b) the Johnson and Wichern (2002) tests for

determining statistically significant EOFs. In (a) significant EOFs have chi-squared statistics

that exceed the table value. In (b), significant EOFs have error bars that do not overlap with the

next higher EOF. Both tests are shown for the 95% confidence level and a 30 m×60 m sample

spacing.
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Fig. 4. (a–c) EOFs 1-3 computed from the full 10 m×20 m soil moisture dataset, (d–f) EOFs

1–3 computed from an observation set with a 30 m×60 m spacing, and (g–i) Interpolations of

EOFs 1–3 from the 30 m×60 m spacing back to the 10 m×20 m spacing using a MLR against

topographic attributes.
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Fig. 5. (a–b) Observed soil moisture patterns on 3 July 1996 and 20 September 1996, (c–d) soil

moisture patterns generated using the EOF-based interpolation method, and (e–f) differences

between the actual and estimated soil moisture patterns (estimation errors). Units are volume

of water per volume of soil.
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Fig. 6. (a) Average NSCE for estimated soil moisture patterns as a function of the observation

spacing for different interpolation methods. Error bars show +/−1 standard deviation about the

average NSCE. (b) Difference between the average NSCE from the EOF-based interpolation

patterns and the analogous direct interpolation patterns. Error bars show +/−1 standard devia-

tion about the average NSCE difference. In both (a) and (b), the numbers on the horizontal axis

refer to the short dimension of observation spacing (e.g., 20 m corresponds to a 20 m×40 m

spacing). In all cases, spacings are exact multiples of 10 (the symbols have been slightly offset

horizontally for visual clarity).
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Fig. 7. The NSCE of the interpolated soil moisture patterns for 28 March as a function of the

number of sample dates included. The plot compares EOF-MLR interpolation and direct MLR.

In the latter case, the data from each date were standardized by removing the spatial average

and dividing by the standard deviation before adding them to the regression dataset.
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