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Abstract

The spatial distribution of saturated areas is an important consideration in numerous

applications, such as water resource planning or sighting of management practices.

However, in humid well vegetated climates where runoff is produced by saturation ex-

cess processes on hydrologically active areas (HAA) the delineation of these areas can5

be difficult and time consuming. Much of the non-point source pollution in these wa-

tersheds originates from these HAAs. Thus, a technique that can simply and reliably

predict these areas would be a powerful tool for scientists and watershed managers

tasked with implementing practices to improve water quality. Remotely sensed data is

a source of spatial information and could be used to identify HAAs, should a proper10

technique be developed. The objective of this study is to develop a methodology to

determine the spatial variability of saturated areas using a temporal sequence of re-

motely sensed images. The Normalized Difference Water Index (NDWI) was derived

from medium resolution LANDSAT 7 ETM+ imagery collected over seven months in

the Town Brook watershed in the Catskill Mountains of New York State and used to15

characterize the areas that were susceptible to saturation. We found that within a sin-

gle landcover type, saturated areas were characterized by the soil surface water con-

tent when the vegetation was dormant and leaf water content of vegetation during the

growing season. The resulting HAA map agreed well with both observed and spatially

distributed computer simulated saturated areas. This methodology appears promising20

for delineating saturated areas in the landscape.

1 Introduction

Information on the spatial and temporal distribution of soil moisture is an important pa-

rameter to correctly characterize. Numerous applications rely on information about soil

moisture levels, from hydrologic and climate models to techniques aimed at optimizing25

best management practices in agricultural watersheds. Remote sensing techniques
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can be used to obtain the spatial distribution of the soil moisture content over large

areas, thus reducing expensive and time consuming field measurements.

In the Northeast United States there is great interest in delineating saturated areas

that contribute surface runoff and non point source pollutant loads to surface waters.

Once these areas are identified, management practices can be developed and imple-5

mented to control pollution. The highly permeable surface soils underlain by a dense

layer of glacial till cause the majority of the runoff to be produced in areas of the land-

scape that become saturated either when rainfall exceeds potential evaporation over

an extended time or when the groundwater table intersects the soil surface. These

saturated or Hydrologically Active Areas (HAA) expand and contract during the course10

of the year (Dunne and Black, 1970; Dunne and Leopold, 1978; Beven, 2001; Needle-

man et al., 2004). Thus, remotely sensed observations have the potential of defining

the saturated areas in the landscape.

One way of determining soil moisture contents from remotely sensed data is by us-

ing the thermal emissions from soils in the microwave range, generally sensitive to15

moisture variations in the top five cm of the soil (Guha and Lakshmi, 2002). Saturated

surfaces emit low levels of microwave radiation, whereas dry soils emit much higher

levels of microwave radiation (Wang and Schmugge, 1980). However, in many applica-

tions it is difficult to separate the microwave signal from saturated and unsaturated soil

due to competing effects of moisture content, surface roughness, vegetation, liquid pre-20

cipitation, and complex topography unless the variables are known a priori (Schmugge,

1985; Bindlish et al., 2003). Hence, an extensive amount of calibration is necessary to

fit the parameters and prior knowledge of the surface cover and state must be known

(Kerr, 2007). Indeed, Wagner et al. (2007) state that microwave remote sensing sys-

tems can capture the general trends in surface soil moisture conditions, but cannot be25

used to estimate absolute soil moisture values.

A more promising approach to obtain soil moisture variability is to remotely sense

the greenness variations of biomass within an otherwise homogeneous canopy (Yang

et al., 2006), because variations in soil water directly affect the growth patterns of
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the overlying vegetation. For example, in Kansas, Wang et al. (2001) observed that

soil moisture affected remotely sensed Normalized Difference Vegetation Index (NDVI)

greenness patterns in the Konza Prairie. Vegetation indices such as the NDVI make

use of the contrast between the strong reflection of vegetation in the near infra-red

(NIR) and the strong absorption by chlorophyll in the red (R) (Gates et al., 1965). How-5

ever, one of the disadvantages of the vegetation indices is that they are only sensitive

to biomass in the early growth stages when the leaf area index is less than three (Co-

hen et al., 2003; Friedl et al., 1994; Law and Waring, 1994; Chen and Chilar; Cohen

et al., 2003; Fassnacht et al., 1997). Above three, there is no clear relationship be-

tween biomass and vegetation indices (Fassnacht et al., 1997; Killelea, 2005). Another10

potential disadvantage when relating moisture content and vegetation indices is that

vegetation growth is dependent upon a number of environmental factors, such as nu-

trient availability, disease pressure, insect infestation, temperature, wind, soil moisture

content, and relative humidity among others. Thus, it is important not to misinterpret

changes in vegetation growth patterns as related solely to soil wetness. Nonetheless,15

there is clear evidence that hydrologic properties can have a strong effect on vegetation

growth (De Jong et al., 1984; Farrar et al., 1994; Nicholson and Farrar, 1994; Timlin et

al., 2001).

Similar to vegetation indices but more sensitive to moisture contents at the near sur-

face are indices using measurements in the short-wave infrared (SWIR) band, where20

strong water absorption bands are centered around 1450, 1500 and 1950 nm (Karnieli

et al., 2001). Since virtually no light penetrates the atmosphere near the center of

these bands, the bands selected for satellite sensors are typically chosen to avoid

them. However, the absorption bands are quite broad, and still have an effect well

away from the center wavelengths. The feasibility of using the SWIR bands was first25

suggested by Tucker (1980) who noted that LANDSAT 7 ETM+ Band 5, and the SWIR

band of MODIS (1550 to 1750 nm) would be well suited for remote sensing of the plant

canopy water content. While this band will also be sensitive to variations in atmospheric

water vapor, over relatively small areas and on clear days, the atmospheric variability
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will generally be negligible and the local variations will be related to the presence of

water on the land surface. In vegetated areas, absorption by leaf water occurs in the

SWIR and the reflectance from plants thereby is negatively related to the leaf water

content (Bowman, 1989; Ceccato, et al., 2001; Hunt, et al., 1987; Tucker, 1980). In

the absence of vegetative cover, the local variations in LANDSAT 7 ETM+ Band 5 re-5

flectance will be sensitive to changes in the surface (near surface) soil moisture content

(Whiting et al., 2004; Xiao et al., 2002), while for plants it will sense the water content

in the vegetation.

Variations in reflectance may also occur due to variations in internal leaf structure,

leaf dry matter content (Fensholt, 2004), soil mineral composition, and organic matter10

content (Whiting et al., 2004). Consequently, LANDSAT 7 ETM+ Band 5 reflectance

values alone are not suitable for retrieving vegetation water content. In the NIR (LAND-

SAT 7 ETM+ Band 4, 780 - 900 nm), well away from the water absorption band, re-

flectance is influenced most by the same factors affecting the LANDSAT 7 ETM+ Band

5 or SWIR band (e.g. leaf internal structure and leaf dry matter content), but not by15

water content (Fensholt, 2004). By considering information from both the LANDSAT 7

ETM+ Bands 4 and 5 we can obtain a better estimate of the true moisture status. The

Normalized Difference Water Index, NDWI, (Gao, 1996) has been proposed to exploit

this characteristic of Bands 4 and 5. Another advantage of using NDWI, as opposed to

the NDVI, is that saturation does not occur until LAI six or greater (Fensholt, 2004).20

Once the values for NDWI are obtained, there are two approaches to aggregating

pixels into homogeneous regions of wetness behavior: supervised and unsupervised

classification. Supervised classification relies on the expertise of the analyst to define

training sites using prior knowledge of the site but can be labor intensive (Foody and

Arora, 1996). In unsupervised classification, pixels that exhibit similar characteristics25

are subdivided into homogeneous spectral regions based on a set of boundary condi-

tions specified by the user (Le Hgarat-Mascle et al., 1997). Once the homogeneous

regions are classified, knowledge of the area under study is needed to assign the

correct wetness index to each region. Thus, both supervised and unsupervised classi-
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fications require the user to possess knowledge of the study area in order to complete

the classification. However, the clustering portion of unsupervised classification oper-

ates without a priori information of the wetness index classification and groups samples

based on the inherent similarity of individual spectral signals.

The objective of this study is to test the ability of remote sensing techniques, specifi-5

cally the NDWI derived from LANDSAT 7 ETM+ measurements for obtaining the spatial

distribution of frequently saturated areas in the landscape that contribute the majority

of the runoff and thus pollutants during storm events. We first separate the landscape

into different land cover types and then relate the temporal NDWI pattern within each

landcover type to the soil moisture status. We hypothesize that areas of the landscape10

prone to saturated conditions will exhibit higher NDWI in the spring, particularly follow-

ing snowmelt. These areas typically have less soil storage capacity, and drain large

areas making them saturate more frequently. Thus during the typically drier summer

months we expect these areas to dry out more rapidly due to the lower soil storage

capacity, and maintain a lower NDWI than areas of the landscape more conducive to15

plant growth (i.e., areas with greater soil storage capacity and more plant available wa-

ter). We then assess the accuracy of the NDWI predictions using several techniques,

including ground truth data collected in the watershed, as well as by comparison with

two distributed hydrologic models.

2 Methods20

2.1 Study site

The site for this study was the Town Brook watershed (Fig. 1), in the Catskill Mountain

region in New York State. The Town Brook watershed has an area of 37 km
2

and an

elevation range of 493 to 989 m (Fig. 2). The underlying geology of the watershed

was formed during the glacial period, the north facing slopes are generally steep with25

shallow soils overlaying a dense glacial till and fractured bedrock covered mostly in
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deciduous and evergreen forests. The south facing slopes are gentler with deeper soils

particularly in the lower slope regions and are covered by shrubs, pastures, alfalfa, and

corn grown in rotation. As mentioned above the hydrology is such that in late fall, winter,

and early spring saturated areas develop mostly in the lower areas of the watershed

on concave slopes and at locations where the slope flattens and thus the hydraulic5

gradient is reduced.

2.2 Satellite images

A time sequence of multi-spectral LANDSAT 7 ETM+ images was used to identify spa-

tial/temporal changes in the vegetative cover of Town Brook. The LANDSAT 7 ETM+

creates images with 30 m×30 m pixel size. The satellite orbital profile operates on a 16-10

day cycle, thus providing imagery every 16 days, each image covering a swath 183 km

wide. The spectral range of Band 4 is 780–900µ, and is primarily used to estimate

biomass, although it can also discriminate water bodies, and soil moisture from veg-

etation. Band 5 has a spectral range of 1550–1750µ, and is particularly responsive

variations in biomass and moisture. Seven cloud-free images were obtained on the15

following dates: 27 January 2000, 5 April 2001, 7 May 2001, 8 June 2001, 10 July

2001, 12September 2001 and 30 October 2001. The vegetation and water indices

calculated from these images are dependent on precipitation and snow cover on the

ground. When the January 2000 image was taken there was snow on the ground. Dur-

ing the rest of the acquisition period in 2001 there was 85 cm of precipitation, which20

is below the thirty year average of 102 cm measured at Delhi, NY, located 20 km west

of Town Brook watershed. Only March 2001 and October 2001 had precipitation in

excess of the 30 year average. The snow that fell in March 2001 had almost melted by

5 April 2001 when the satellite image was taken, and the May image was taken after

a two-week period without precipitation. These images were used to create the NDWI25

for the analysis.
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2.3 Calculation of NDWI and NDVI

In analogy to the procedure proposed for the MODIS system by Fensholt (2004), the

NDWI based on LANDSAT 7 ETM+ Bands 4 and 5 is defined as follows for each of the

seven images:

NDW I =
ρ(780−900 nm) − ρ(1550−1750)

ρ(780−900 nm) + ρ(1550−1750)

(1)5

where ρ(780−900 nm) is the reflectance in Band 4 of LANDSAT 7 ETM+ and ρ(1550−1750 nm)

is the reflectance in Band 5 of LANDSAT 7 ETM+.

Similarly the normalized difference vegetation index (NDVI) that employs the re-

flectance in Band 4, is defined for the seven images as (Richardson et al., 1992):

NDV I =
ρ(780−900 nm) − ρ(630−690)

ρ(780−900 nm) + ρ(630−690)

(2)10

where ρ(630−690 nm) is the reflectance in the red band (wavelength between 630 nm and

690 nm) and ρ(780−900 nm) is the reflectance in the infrared band (wavelength between

780 nm and 900 nm) in LANDSAT 7 ETM+.

The NDWI and NDVI are defined in terms of reflectance at the surface while LAND-

SAT 7 ETM+ measurements are in terms of radiance measured at the satellite, a value15

that includes the radiance from the atmosphere including light reaching the sensor,

scattering and absorption by gasses, water vapor, and aerosols (Song et al., 2001).

Because of the difficulty of performing an atmospheric correction, it is common prac-

tice to use radiance at the detector (after correction for path radiance) instead of re-

flectance of the target at the surface (Lu et al., 2002; Song et al., 2001). We corrected20

for path radiance using a dark object subtraction (DOS) correction by calculating the

average signal over water bodies for the red and infrared bands and subtracting it from

the respective red and infrared bands of the entire scene in order to adjust for the at-

mospheric path radiance. The DOS is the single most important adjustment needed to

make the NDWI and NDVI usable when comparing a temporal sequence of images.25
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2.4 Unsupervised clustering of NDWI

The three main unsupervised clustering algorithms are K means, Iterative Self Orga-

nized Data Analysis Technique A (ISODATA) and the Automatic Classification of Time

Series (ACTS) (Tou and Gonzalez, 1974; Viovy, 2000; DeAlwis et al., 2007). The ISO-

DATA (ENVI, Research Systems Inc. 2002) technique allows the user to specify the5

number of classes the data is separated into for clustering within each landcover. Thus,

since we assume to know the number of classes, a priori, we have chosen to use the

ISODATA technique for the clustering. The statistical thresholds used to separate the

classes in the ISODATA analysis are shown in Table 1.

To obtain the data sets for each landcover, masks were created to isolate individual10

landcover types in the image data using a landcover map. The landcover map used for

this study was obtained by analyzing the temporal behavior of vegetation greenness

from vegetation indices (NDVI) derived from the same seven images to segregate and

identify vegetation with no prior information about the area (DeAlwis et al., 2007). Land

cover types were row crop, grass/pasture, shrub, deciduous forest, evergreen forest,15

and mixed forest (Fig. 1). Using the masks of each of the landcover types, an image

cube or stack was then created for the seven DOS corrected NDWI images. The initial

NDWI values that varied from –1 to +1 were linearly stretched between zero and 255 by

assigning the least NDWI value in each image cube a value of zero and the maximum

NDWI a value of 255. The stretch was necessary because the ISODATA clustering20

algorithm operates only on integer values. The ISODATA technique divided the NDWI

values of the image cubes for each land cover type into two or three NDWI regions

with significantly different temporal patterns based on the parameter thresholds for

clustering shown in Table 1. The pattern in NDWI values for the regions represents

the temporal variation of surface soil moisture (before leaf on) and leaf water content25

during the growing season.
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2.5 Identification of hydrologically active areas (HAA)

Next we related the NDWI patterns within each land cover to the HAAs in the Town

Brook watershed. Town Brook has shallow, highly conductive soils with depths of 30

to 140 cm over a restrictive hardpan. Lateral flow in the shallow surface soil occurs

during periods when the precipitation exceeds the potential evaporation and tends to5

form a saturated area at the bottom of slopes or areas with shallow soils where the

storage is exceeded. These HAAs saturate during rainfall events and produce runoff.

During the period when potential evapotranspiration exceeds rainfall, the soils dry; in-

terflow drains the water from the soil profile and most of the HAAs dry up and can, in

fact, dry out more than other soils in the watershed that are deeper and have a greater10

storage capacity. During the period when precipitation exceeds evapotranspiration we

hypothesize that HAA will be detectable on these low storage, shallow soils underlain

by a restricting layer. The relatively dry fall and winter period observed in 2000–2001

will further cause the HAAs to be detectable in saturation prone areas when compared

to other areas within the same land cover because of the lower storage capacity. Intu-15

itively, these same areas that saturate during the period when precipitation is greater

than evapotranspiration will be drier during the period where evapotranspiration ex-

ceeds precipitation (and have lower NDWI values) (Fig. 3). Similarly, regions that had

low NDWI during early growing season and high NDWI due to high leaf water content

during the growing season are regions with a low propensity to saturate for prolonged20

periods as indicated by the better vegetative growth conditions (Fig. 3).

2.6 Accuracy assessment

The remotely sensed HAAs were compared with the distributed output of two simula-

tion models developed for watersheds such as Town Brook, specifically, the Soil Mois-

ture Distribution and Routing (SMDR) model (Frankenberger et al., 1999) and Variable25

Source Loading Function (VSLF) model (Schneiderman et al., 2007). We also used

field measurements of soil moisture levels taken in 2001 (Mehta et al., 2004) and field
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survey in the upper reaches of the watershed conducted in 2006 to identify frequently

saturated areas. Little spatially distributed data on the soil moisture content is readily

available, thus, we propose several ways of testing the results: corroboration with ex-

isting hydrologic models, direct soil moisture measurements, and field surveys in the

watershed. While the simulation model results by no means represent the absolute5

ground truth we have selected two models that both capture the evolution of HAAs in

the landscape, and thus should provide an adequate representation of saturated ar-

eas. Models based on topographic indices, such as TOPMODEL (Beven and Kirkby,

1979) with its copious variations and the Soil Moisture Distribution and Routing model

(SMDR) (Zollweg et al., 1996; Frankenberger et al., 1999) are two modeling concepts10

with modest input requirements capable of capturing the spatial distribution of soil mois-

ture levels at the watershed scale. Both models have been shown to identify saturated

areas, albeit for different types of systems. Topographic index based models generally

assume that a watershed wide water table intersects the landscape to produce satu-

rated runoff generating areas and SMDR assumes that these areas are controlled by15

transient inter-flow perched on a shallow restricting layer.

The Soil Moisture Distribution and Routing (SMDR) model is a physically-based,

fully-distributed model that simulates the hydrology for watersheds with shallow sloping

soils. The model was developed specifically for regions such as Town Brook (Franken-

berger et al., 1999). The model combines elevation, soil, and land use data, to predict20

the spatial distribution of soil moisture, evapotranspiration, saturation-excess overland

flow (i.e., surface runoff), and interflow throughout a watershed on a daily time step.

Soil moisture content is predicted for each cell, typically of dimension 10 m. SMDR has

been extensively validated in Town Brook (Mehta et al., 2004), and other basins in the

region (e.g. Frankenberger et al., 1999; Hively et al., 2005; Johnson et al 2004; Easton25

et al., 2007, more information at http://soilandwater.bee.cornell.edu/).

The Variable Source Loading Function (VSLF) model (Schneiderman et al., 2007), a

derivative of the Generalized Watershed Loading Function (GWLF) model (Haith and

Shoemaker, 1987), uses the Soil Conservation Curve Number (SCS-CN) (USDA-SCS,
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1972) method to predict runoff. The main difference between the VSLF and GWLF

approaches to using the SCS runoff equation is that runoff is explicitly attributable to

source areas according to a soil topographic index distribution rather than by land use

and soil type as in original GWLF. Runoff and soil moisture are then distributed through-

out the watershed according to a spatially weighted soil topographic index (Lyon et al.,5

2004) VSLF has been used in the Catskill Mountains to predict hydrology and water

quality, and has been validated spatially to predict saturated areas (Schneiderman et

al., 2007).

The remotely sensed saturated areas were also compared with a field survey (Fig. 6)

of saturated areas as well as measured soil moisture content from three transects10

(Figs. 2 and 7) in Town Brook (Mehta et al., 2004) The field survey was conducted in

spring 2006 during the period when HAAs would be most saturated, and should thus

compare well with HAAs derived by the NDWI. Figure 2 shows the layout of the three

soil moisture sampling transects: T1, T2 and T3. Soil samples from 3–8 cm depth

were collected at 10 m intervals along each of the transects (Mehta et al. 2004). The15

transects covered grass and shrub landcover types. Transect T1 was 210 m long and

predominately shrub ending in a grass landcover, sampled on 3 November 2000 after

a 15 day dry period following a 1.5 cm rain event. Transect T2, was 230 m long shrub

landcover and was sampled on 4 May 2001 after 0.1 cm of rain on the previous day.

Transect T3, was 90 m with a grass landcover and was collected on 28 November 2000.20

3 Results

An average value of NDWI, for each of the seven LANDSAT 7 ETM+ images for the

different months was obtained for each of the temporally homogeneous NDWI regions

that were identified by the ISODATA clustering method within each of the six landcover

types (Table 1). These average NDWI values for the wetness classes are depicted in25

Fig. 3.

The NDWI time series plots (Fig. 3) show the seasonal dynamics within and between
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landcover types. The NDWI for all landcovers is elevated in January and April when

the soil is wet. The lowest NDWI occurred in May after a 15 day dry period reduced

the moisture content of the soil surface. The NDWI values increase subsequently for

June and July due to the increase in leaf water content. The NDWI values for the

deciduous and mixed forest decrease at the end in October (due to leaf senescence).5

The NDWI for the shrub, evergreen forest, and crop land covers remain stable through

the fall, while grass/pasture increase marginally. The slight increase in the NDWI for the

grass/pasture is likely due to continued biomass accumulation into the fall, presumably

increasing the leaf water content.

Comparing the NDWI curves of deciduous forests, grass, shrub, mixed forests, crop10

and evergreen forests the landcover types in Fig. 3 it is evident that there is a region

among all landcover types that is more wet (high NDWI) in the spring than the other

homogeneous regions and drier (low NDWI) late in the growing season. This char-

acteristic is consistent among all the landcover types. This region is shown in blue

in Fig. 3 and, according to our hypothesis, is identified as the wet region in the land-15

cover type. Regions within a landcover type having low surface water content during

the early growing season and more leaf water content during the late growing season

were identified as dry areas that were favorable for plant growth (due to high leaf water

content during the late growing season).

Figure 3 shows the greatest variation in NDWI values between March and April 2001,20

where snow cover went from 20 cm in March to essentially zero in April. The NDWI

is high due to the snow cover and the increase in surface soil moisture from snow

melt. At the same time the evapotranspiration loss was small and we expected that

the HAAs were fully saturated. Thus, during the early growing season the areas with

shallow soils, high water table, or a large contributing area tended to saturate and were25

captured in the NDWI images. During the summer when evapotranspiration exceeds

the rainfall and the interflow supplying water from upslope to the HAAs ceases the

differences in NDWI values become much less (Fig. 3). During May and June it is

reasonable to assume that the increase in the NDWI in most land covers is due to the
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increase in the biomass, and subsequent leaf water content from maturing vegetation.

During the summer, it is of interest to note that the moisture content in the HAAs that

were saturated during the spring snowmelt decreases below that of the remaining land

cover types (Fig. 3) because the HAA soils are shallower and thus have less storage.

As a matter of interest, the NDVI values are also calculated for the NDWI wetness5

classes and show the opposite behavior from that of the NDWI. The NDVI values are

low in January and March when there is little biomass and then increase during the

rest of the year when plant growth resumes. Detailed information on the differences

in NDVI values between land cover types can be found in DeAlwis et al. (2007). What

is important here is that the different wetness index classes showed few differences in10

NDVI values. During January and April when there is little biomass (except for ever-

greens), the NDVI values should be the same. During the summer the leaf area index

for all land covers is greater than three and thus it is difficult to discriminate among

differences in the NDVI signal. The insensitivity to moisture content makes the NDVI

signal a good proxy to distinguish land cover types but a poor predictor of moisture15

status.

3.1 Validation

The main difficulty in comparing the NDWI predicted HAAs is that the remotely sensed

saturated areas are static in time and represent an average saturation risk for the year

of observation while the saturated areas predicted by SMDR and VSLF are continu-20

ous, and dynamic in time. That being said, the NDWI saturated areas should represent

areas of the landscape most prone to frequent saturation. Thus, to compare the tempo-

rally dynamic prediction made by SMDR and VSLF we aggregated predictions during

the spring for SMDR and VSLF (March–June 2001), which represents the most prob-

able saturated period in this region. The simulated saturation degree maps for SMDR25

and VSLF were stacked and an average saturation degree was calculated for each of

the 10 m×10 m pixels. We resampled the 30 m×30 m NDWI pixels to 10 m×10 m pixel

size to compare among models. The area of each specific land cover in Town Brook
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was calculated and a ratio of total landcover to NDWI saturated area was derived. For

example, deciduous forest covers 21 677 pixels of Town Brook, of which 3183 are pre-

dicted as saturated by the NDWI, that is, 17.5% of the deciduous forest in Town Brook

is predicted as an HAA. Then these areas were extracted independently for each land-

cover from the SMDR or VSLF saturation degree maps. We assume that the pixels5

from the SMDR and VSLF maps with the highest saturation degree corresponding to

the fraction of the remotely sensed landcover that was saturated should theoretically

correspond with the remotely sensed data (the 17.5% of cells with the highest satura-

tion degree for deciduous forest from SMDR and VSLF). This allowed comparison of

the potentially saturated areas on an areal basis.10

The region maps representing the temporally homogeneous NDWI regions for each

landcover type were overlaid on the saturation degree map and the mean saturation

degree value within each of the regions was calculated. Results of this comparison are

shown in Table 2. In all of the landcover types (except evergreen forests) it seems that

the common characteristic of the homogeneous regions that are wet (represented by15

the blue curves in Fig. 3) in the early growing season and dry in the late growing sea-

son have higher saturation degrees than those areas predicted as dry. The remotely

sensed saturated areas are shown in Fig. 4. The intersection of the NDWI saturated

areas and the SMDR and VSLF saturated areas are shown in Fig. 5. The extent of the

remotely sensed NDWI based saturated area predictions for the crop, deciduous forest,20

mixed forest, and shrub were extracted from the GIS and the producer and users ac-

curacy were tabulated. Thus we have a measure of where the remotely sensed NDWI

saturated areas agree with the SMDR or VSLF saturated areas (producers’ accuracy

Table 2). NDWI based predictions not coinciding with an SMDR or VSLF prediction are

not shown, but may be abstracted from the user’s accuracy in Table 2. The remotely25

sensed saturated areas generally agree well with the model predictions with overall

accuracies of 0.78 and 0.77 for SMDR and VSLF, respectively. However, saturated

areas in the deciduous forest landcover predicted by the remote sensing method do

not agree as well with SMDR and VSLF (Table 2). The positions of the NDWI satu-
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rated areas within the deciduous forests were accurately predicted but their extent was

small compared to the modeled saturated areas. The main discrepancy between the

NDWI saturated areas and the modeled saturated areas is likely that the LAI is greater

than six in the forest and thus the NDWI becomes saturated and unable to discriminate

saturated areas. Additionally, the moisture status of the soil surface likely has limited5

influence on the water content of the deciduous trees, as they can derive water from

deeper in the soil, and thus the leaf water status may be more affected by regional

groundwater dynamics then surface phenomena.

Due to the disagreement between the remotely sensed saturated areas and the

SMDR and VSLF predicted saturated areas we used field surveying techniques to10

determine the model accuracy. Results from the field mapping survey conducted in

an upland portion (deciduous forest) of the Town Brook watershed are shown in Fig. 6.

The area was surveyed during spring (most frequently saturated time) 2006 with a GPS

unit and saturated areas were mapped (Fig. 6). The mapped extents of the saturated

areas generally agree well with the NDWI predicted saturated areas, with an overall15

accuracy of 75%, better agreement than was calculated for the accuracy between the

distributed models (SMDR and VSLF) for the deciduous forest. This provides some

evidence that the remotely sensed saturated areas may better capture the true extent

of HAAs in forested areas. It should be noted that neither SMDR nor VSLF were

intended for application to strictly forested areas and have never really been validated20

for them, thus the comparison may not be warranted.

Figure 7 shows the distribution of the measured and the simulated soil moisture

content along the transects T1–T3. Figure 7 also shows the wet (blue) and dry (red)

areas derived from remotely sensed data along the same transects. The simulated

soil moisture content showed a good correlation with the measured soil water content.25

The soil moisture content is seen to decrease in the middle of transact T2 indicating a

dry area (Fig. 7b). The remotely sensed data were able to correctly identify a dry area

among the wet shrub land along the transact T2. The wet grass and shrub land along

transacts T1 (Fig. 7a) and T3 (Fig. 7c) were also correctly identified as wet areas by
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the remotely sensed NDWI based method. To test the above hypothesis further the

SMDR and VSLF predicted saturation degree was compared to the remotely sensed

homogeneous regions (Table 3). According to the hypothesis within a landcover type

a higher surface water content during the early growing season and lower leaf water

content during the late growing season indicates a hydrologically sensitive (saturated)5

area, that are not favorable for plant growth (represented by the blue curve in Fig. 3).

4 Discussion

In theory, areas within a landcover type situated on a steep slope, deep soils, a high

permeability, and a low contributing area should remain drier than those areas with

shallow slopes and soils, low permeability, and a large contributing area. In such steep-10

sloped areas within each landcover type, NDWI is lower during early spring. The depth

of the soil, a proxy for soil storage capacity, directly influences the leaf water content in

late summer, while the depth of the soil is inversely proportional to the wetness of the

soil in early spring.

Analysis of the NDWI data during a complete phenological cycle within a landcover15

type highlights significant hydrological characteristics within the landcover. While the

NDWI varies proportionally with the surface water content before leaf on (early spring)

and leaf water content during leaf on (summer), the largest differences were consis-

tently detected during the spring (Fig. 3), consistent with the other measurements and

model analysis from the region. There were few differences detected during the sum-20

mer and early fall periods, as watersheds in this region tend to dry out during the period

from June to October when evapotranspiration is greater than precipitation. However,

there were differences in the NDWI for the crop and pasture land covers during the

summer. Specifically, the areas with a higher NDWI in the spring had considerably

lower values than other areas in the summer (Fig. 3). There are likely numerous ex-25

planations for this observation, but several appear more probable. First in these HAAs,

the shallow, low storage soils are prone to drying out thus providing inadequate plant

1679

http://www.hydrol-earth-syst-sci-discuss.net
http://www.hydrol-earth-syst-sci-discuss.net/4/1663/2007/hessd-4-1663-2007-print.pdf
http://www.hydrol-earth-syst-sci-discuss.net/4/1663/2007/hessd-4-1663-2007-discussion.html
http://www.egu.eu


HESSD

4, 1663–1696, 2007

Using and NDWI to

delineate saturated

areas

D. A. DeAlwis et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

◭ ◮

◭ ◮

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

EGU

available water to produce similar biomass as the non saturation prone areas. Second,

and related to the first, the crop and pasture land covers typically have less developed

root systems and probe the soil less aggressively for moisture than the forest or shrub

type land covers, making them more susceptible to moisture stress.

The time series of the NDWI images exhibit characteristics consistent with the hy-5

drologic setting of the landcovers considered. Interestingly evergreen forest behaved

differently than the other landcover types. The region that had high NDWI during the

early growing season and low NDWI during the late growing season that was hypothe-

sized as the wet area (HAA) was predicted as dry according to the hydrological models.

The high NDWI measured during the spring was clearly not due to the soil surface wa-10

ter content as the satellite would not sense the soil surface as the LAI would be well

above six. Another reason could be due to the fact that NDWI responds differently to

evergreen needles. Further study needs to be done to explain this atypical behavior

among the evergreen forests.

A significant issue in using this approach is the availability of the imagery for a sin-15

gle year. The LANDSAT 7 ETM+ satellite collects imagery over the study area once

every 16 days or about 23 times per year. The maximum amount of data that would be

available to create a one-year time series would be 23 images. In practice, getting a

sequence of six to eight images that are roughly equally-spaced through the year could

be difficult with LANDSAT 7 ETM+ data. However, the LANDSAT 7 ETM+ data were20

selected because its spatial resolution matched the need to identify relatively small re-

gions of uniform landcover classes. Where spatial resolution is not so critical, there

are satellite-based instruments (e.g. MODIS with 1 km pixels and appropriate spectral

bands) that provide coverage every one to two days, and should be capable of provid-

ing much more detailed time series. However, the resolution is such that delineating25

saturated areas can be difficult (only 37 pixels for Town Brook). This invites the ques-

tion of how many images are actually required and what the critical time periods are.

It is clear that the April image was imperative to capture the saturated areas in the

watershed (Fig. 3). It is not clear that both the June and July images were needed

1680

http://www.hydrol-earth-syst-sci-discuss.net
http://www.hydrol-earth-syst-sci-discuss.net/4/1663/2007/hessd-4-1663-2007-print.pdf
http://www.hydrol-earth-syst-sci-discuss.net/4/1663/2007/hessd-4-1663-2007-discussion.html
http://www.egu.eu


HESSD

4, 1663–1696, 2007

Using and NDWI to

delineate saturated

areas

D. A. DeAlwis et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

◭ ◮

◭ ◮

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

EGU

as there were only differences detected between classes in the crop and pasture land

covers (Fig. 3). These difficulties aside, it appears that the time-series examined here

contain unique and useful information, and that the procedure holds significant promise

for hydrologic applications.

This series analysis of remotely sensed spectral data has never been used for the5

identification of HAAs but holds great potential, particularly at large scale since the

derivation is independent of field measurements and hydrological parameters. How-

ever since this study was conducted in a temperate humid region of the country this

method is based specifically on vegetation and likely cannot be used to predict satu-

rated areas in semi arid and arid areas, or areas where runoff is generated by infiltration10

excess processes and not from saturated areas of the landscape. The method might

successfully be applied to determine relative differences in moisture contents in many

areas, VSA or otherwise. Further work is necessary to investigate application of this

method to other regions

5 Conclusions15

Based on the temporal pattern of a wetness index derived from remotely sensed satel-

lite imagery we were able to identify HAAs using an unsupervised classification tech-

nique. This method is advantageous because it allows identification of HAAs indepen-

dent of field measurements at a high spatial resolution. The two images in the early

and late growing season contributed substantially to the accuracy of the results and20

were critical in the sequence, since during these periods plant growth is rapid and re-

flective of the stresses to which they are subjugated. The April image collected when

there was four cm of snow on the ground, and the May image that was taken after 15

days of drought contributed substantially to the analysis. The largest variation among

each homogeneous landcover type was seen on the April image with snow cover. The25

May image showed the NDWI to decrease due to the 15 precipitation free days prior

to the image; the increase in NDWI thereafter was due to increases in the leaf water
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content, particularly for the crop and pasture landcovers.

The derived maps of saturated areas were validated by comparison with two dis-

tributed hydrologic models; physical data collected in the watershed and mapped sat-

urated areas. The results of the validation have shown the remotely sensed data to

adequately represent the spatial distribution of saturated areas for most landcovers in5

the watershed. This technique of delineating saturated areas shows promise for many

applications requiring knowledge of HAAs, such as hydrologic modeling, landuse plan-

ning, zoning, or implementing management practices to reduce pollution.
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Table 1. Parameter set used in the ISODATA analysis.

Number of Classes 2 to 3

Maximum Iterations 1000

Change Threshold 1%

Minimum Pixels in Class 5

Maximum Standard deviation in Digital Counts 15

Minimum Class Distance in Digital Counts 25

Maximum Distance Error in Digital Counts 160
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Table 2. Producers (PA) and Users Accuracy (UA) assessment of remotely sensed saturated

areas compared to the equivalent areal extent by landcover of saturated areas predicted using

the Soil Moisture Distribution and Routing (SMDR) model and the Variable Source Loading

Function (VSLF) model. The SMDR and VSLF areas are considered ground truth for the clas-

sification comparison.

Landcover SMDR wet NDWI wet Overlap PA UA

Deciduous forest 1111 3783 834 0.75 0.22

Grass 5150 4170 3626 0.70 0.87

Shrub 7196 6139 5758 0.80 0.94

Mixed forest 2796 2378 2349 0.84 0.99

Row crop 1378 1255 1240 0.90 0.99

Total 17631 17725 13807

Overall Accuracy 0.78

VSLF wet NDWI wet Overlap PA UA

Deciduous forest 1723 3783 1522 0.88 0.40

Grass 3889 4170 2632 0.68 0.63

Shrub 7320 6139 5883 0.80 0.96

Mixed forest 2776 2378 2337 0.84 0.98

Row crop 1365 1255 1244 0.91 0.99

Total 17073 17725 13618

Overall Accuracy 0.77

1688

http://www.hydrol-earth-syst-sci-discuss.net
http://www.hydrol-earth-syst-sci-discuss.net/4/1663/2007/hessd-4-1663-2007-print.pdf
http://www.hydrol-earth-syst-sci-discuss.net/4/1663/2007/hessd-4-1663-2007-discussion.html
http://www.egu.eu


HESSD

4, 1663–1696, 2007

Using and NDWI to

delineate saturated

areas

D. A. DeAlwis et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

◭ ◮

◭ ◮

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

EGU

Table 3. Mean saturation degree for the Soil Moisture Distribution and Routing model (SMDR)

and the Variable Source Loading Function model (VSLF) for the Normalized Difference in Wa-

ter Index (NDWI) homogeneous regions in each of the vegetation types. The Region Colors

represent the colors used to plot the temporal behavior of the respective regions in Fig. 3.

The region color blue represents Normalized Difference in Water Index (NDWI) predicted as

saturated (wet) areas for each of the landcover types.

Landcover Region

Color

SMDR

Saturation Degree

VSLF

Saturation Degree

cm
3

H2O cm
−3

soil

Deciduous Forest Blue 0.70 0.68

Green 0.59 0.56

Red 0.51 0.34

Grass/Pasture Blue 0.65 0.71

Cyan 0.56 0.53

Red 0.36 0.47

Shrub Blue 0.57 0.65

Red 0.34 0.36

Mixed Forest Blue 0.62 0.67

Red 0.39 0.39

Crop Blue 0.60 0.69

Red 0.45 0.41

Evergreen Forest Blue 0.28 0.51

Red 0.28 0.54
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Fig. 1. Landcover in the Town Brook watershed (DeAlwis et al., 2007). Inset figure gives the

location of the Town Brook watershed in New York State.
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Fig. 2. Landscape soil moisture sampling transects (Mehta et al., 2004) overlaid on a digital

elevation model of Town Brook. Soil moisture samples were taken along the T1, T2 and T3

transacts.
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Fig. 3. Variation of the Normalized Difference in Water Index (NDWI) of the two to three homo-

geneous regions in each of the landcover types (as defined by ISODATA analysis for (a) Row

Crop, (b) Deciduous Forests (c) Evergreen Forests (d) Grass/Pasture, (e) Mixed Forests, (f)

Shrub. Blue lines in all figures show the NDWI for predicted saturated zones, red lines show

the NDWI for predicted unsaturated zones, in grass/pasture and deciduous forest the light blue

and green lines show the NDWI for zones of intermediate saturation.
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Fig. 4. Normalized Difference in Water Index (NDWI) predicted saturated (wet) areas for each

of the landcover types (Crop, Mixed Forests, Shrub, Grass/Pasture, and Deciduous Forests).
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Fig. 5. (a) Saturated areas by landcover predicted by the Variable Source Loading Function

(VSLF) model: (b) Intersection of saturated areas predicted by the NDWI and those predicted

by VSLF: (c) saturated areas by landcover predicted by the Soil Moisture Distribution and Rout-

ing (SMDR) model: (d) Intersection of saturated areas predicted by the NDWI and those pre-

dicted by SMDR.
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Fig. 6. Field survey delineated saturated areas in a portion of the Town Brook watershed

compared to the NDWI predicted saturated area.
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Fig. 7. Simulated and measured soil moisture along transects with associated remotely sensed

wet and dry areas (Mehta et al., 2004). Simulated results are from the Soil Moisture Distribution

and Routing (SMDR) model.
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