
HAL Id: hal-00298815
https://hal.science/hal-00298815

Submitted on 18 Jun 2008

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Neural network emulation of a rainfall-runoff model
R. J. Abrahart, L. M. See

To cite this version:
R. J. Abrahart, L. M. See. Neural network emulation of a rainfall-runoff model. Hydrology and Earth
System Sciences Discussions, 2007, 4 (1), pp.287-326. �hal-00298815�

https://hal.science/hal-00298815
https://hal.archives-ouvertes.fr


HESSD

4, 287–326, 2007

Neural network

emulation of a

rainfall-runoff model

R. J. Abrahart and

L. M. See

Title Page

Abstract Introduction

Conclusions References

Tables Figures

◭ ◮

◭ ◮

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

EGU

Hydrol. Earth Syst. Sci. Discuss., 4, 287–326, 2007

www.hydrol-earth-syst-sci-discuss.net/4/287/2007/

© Author(s) 2007. This work is licensed

under a Creative Commons License.

Hydrology and
Earth System

Sciences
Discussions

Papers published in Hydrology and Earth System Sciences Discussions are under

open-access review for the journal Hydrology and Earth System Sciences

Neural network emulation of a

rainfall-runoff model

R. J. Abrahart
1

and L. M. See
2

1
School of Geography, University of Nottingham, Nottingham NG7 2RD, UK

2
School of Geography, University of Leeds, Leeds, LS2 9JT, UK

Received: 8 January 2007 – Accepted: 9 February 2007 – Published: 22 February 2007

Correspondence to: R. J. Abrahart (bob.abrahart@nottingham.ac.uk)

287

http://www.hydrol-earth-syst-sci-discuss.net
http://www.hydrol-earth-syst-sci-discuss.net/4/287/2007/hessd-4-287-2007-print.pdf
http://www.hydrol-earth-syst-sci-discuss.net/4/287/2007/hessd-4-287-2007-discussion.html
http://www.copernicus.org/EGU/EGU.html


HESSD

4, 287–326, 2007

Neural network

emulation of a

rainfall-runoff model

R. J. Abrahart and

L. M. See

Title Page

Abstract Introduction

Conclusions References

Tables Figures

◭ ◮

◭ ◮

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

EGU

Abstract

The potential of an artificial neural network to perform simple non-linear hydrological

transformations is examined. Four neural network models were developed to emulate

different facets of a recognised non-linear hydrological transformation equation that

possessed a small number of variables and contained no temporal component. The5

modeling process was based on a set of uniform random distributions. The cloning

operation facilitated a direct comparison with the exact equation-based relationship.

It also provided broader information about the power of a neural network to emulate

existing equations and model non-linear relationships. Several comparisons with least

squares multiple linear regression were performed. The first experiment involved a di-10

rect emulation of the Xinanjiang Rainfall-Runoff Model. The next two experiments were

designed to assess the competencies of two neural solutions that were developed on

a reduced number of inputs. This involved the omission and conflation of previous

inputs. The final experiment used derived variables to model intrinsic but otherwise

concealed internal relationships that are of hydrological interest. Two recent studies15

have suggested that neural solutions offer no worthwhile improvements in compari-

son to traditional weighted linear transfer functions for capturing the non-linear nature

of hydrological relationships. Yet such fundamental properties are intrinsic aspects of

catchment processes that cannot be excluded or ignored. The results from the four

experiments that are reported in this paper are used to challenge the interpretations20

from these two earlier studies and thus further the debate with regards to the appropri-

ateness of neural networks for hydrological modelling.

1 Introduction

The last decade has witnessed a virtual explosion of neural network (NN) modelling

activities throughout the hydrological sciences. It is readily apparent from the increas-25

ing number of published case studies that the development of data-driven solutions
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based on the use of neural tools or smart technologies is being trialled and tested

in most sectors of hydrological modelling and hydraulic engineering. Numerous ex-

tended descriptions exist and for detailed summaries the interested reader is referred

to the following papers: ASCE (2000a, b); Maier and Dandy (2000); Dawson and Wilby

(2001) and edited volumes: Govindaraju and Rao (2000); Abrahart et al. (2004). NN5

continue to make enormous strides in their struggle to become established as recog-

nised tools that offer efficient and effective solutions for modelling and analysing the

behaviour of complex dynamical systems. Time series forecasting has been a partic-

ular focus of interest and superior performing models have been reported in a diverse

set of fields that include rainfall-runoff modelling (ASCE, 2000a, b; Dawson and Wilby,10

2001; Birikundavy et al., 2002; Campolo et al., 2003; Huang et al., 2004; Riad et al.,

2004; Hettiarachchi et al., 2005; Senthil Kumar et al., 2005) and sediment prediction

(Abrahart and White, 2001; Nagy et al., 2002; Yitian and Gu, 2003; Kisi, 2004, 2005;

Bhattacharya et al., 2005). Two recent catchment studies have nevertheless ques-

tioned the use of such tools for non-linear hydrological modelling purposes. Gaume15

and Gosset (2003) and Han et al. (2007) concluded that: (1) that for short term fore-

casting purposes neural solutions offered no real advantages over traditional linear

transfer functions; (2) that the demands and complexities involved in the development

of neural solutions made them difficult to use and therefore “uncompetitive” (Han et

al., 2007, p. 227); (3) that there is still much to be done to improve our understanding20

about the uncertain nature and hydrological characteristics of neural forecasters “be-

fore [such mechanisms] could be used as a practical tool in real-time operations” (Han

et al., 2007, p. 228); and (4) that the potential merit of putting further resources into

the development of black box computational intelligence methodologies such as feed-

forward neural networks remains questionable since “the quest for a universal model25

requiring no hydrological expertise might well be hopeless” (Gaume and Gosset, 2003,

p. 705). This paper examines the modelling assumptions and reported interpretations

that are recorded in the two listed papers and puts forward a counter argument based

on a set of emulation experiments that are designed to establish the real relationship
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that exists between neural network solutions and traditional linear transfer functions

within a hydrological modelling context.

2 Two critical hydrological studies

Non-linear transformation is a fundamental aspect of most hydrological modelling oper-

ations and real-time forecasting applications. Gaume and Gosset (2003) reported that5

a NN model can sometimes produce results that are similar to a weighted linear trans-

fer function (WLTF) model. Their first comparison exercise involved one-step-ahead

discharge forecasting models developed for the Marne River in France. Inputs com-

prised discharge records and included the last observed record at their point of fore-

cast. The NN model showed marginal improvements over a WLTF model developed10

on an identical set of inputs and this result was attributed to the near-linear nature of

the process that was being modelled comprising “mainly small hydrograph shifts and

tributary flow additions” (p. 700). The two approaches as expected exhibited close be-

haviour and produced similar outputs in terms of predicted flood hydrographs; however,

the NN estimates were usually closer to the observed measurements than their corre-15

sponding WLTF outputs. The rising and falling limb predictions were very close; during

other phases, such as peak floods and low water periods, the NN showed marginal

improvement, and both models showed the same inability to anticipate increasing dis-

charge. Their second comparison exercise involved one-step-ahead discharge fore-

casting models developed for the Le Sauzay River (81 km
2
) in France. Inputs com-20

prised discharge, potential evaporation and precipitation records and included the last

observed record at their point of forecast. The NN model showed marginal improve-

ments over a WLTF model developed on a similar but not identical set of inputs. Their

results were also compared to a conceptual model but that part of their assessment

exercise is not considered in the present paper. The rainfall-runoff process is often de-25

scribed as being highly non-linear, particularly in small catchments such as the one that

was studied, and a non-linear representation is assumed to have been encapsulated in
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the selected modelling inputs and outputs. The two approaches in contrast to expecta-

tions exhibited close behaviour. Their predicted outputs produced similar hydrographs,

in which the peak flood events, as well as the rising and falling limb predictions, ap-

peared to be more or less equivalent. The NN model was nevertheless once again

found to be more accurate than the WLTF model during low water periods. The two5

experiments in this respect exhibited similar results but such outcomes were unsurpris-

ing as the number of low water period measurements greatly outnumbered the records

for other types of event. The poor relative improvement in forecasting outputs related

to the use of neural solutions was attributed to potential noise in the observed hydro-

logical records or to the limited lengths of the datasets upon which the various models10

were developed.

Han et al. (2007) in the second paper reported that a NN model offered no advan-

tages for short-term forecasts over a weighted linear transfer function (WLTF) model.

Their comparison exercise involved a number of models developed on similar but not

identical datasets for Bird Creek (2344 km
2
) in the USA. It also compared models devel-15

oped on eight different forecasting horizons and involved testing a number of different

configurations: NN “Type A” entailed building a dedicated “direct” forecasting model

for each required forecasting horizon, i.e. eight-step-ahead forecasting required eight

individual models; NN “Type B” entailed building a single model that produced eight

outputs, i.e. one output related to each of the eight required forecasting horizons (e.g.20

Toth et al., 2000); NN “Type C” entailed building one “iterative” model that preserved the

same input structure and had one output, but which was run with consecutive updating

of inputs, such that the last output produced in the previous time step was incorporated,

i.e. “marching forward scheme” (e.g. Abrahart, 1998; Varoonchotikul, 2003). Inputs in-

cluded discharge and precipitation records and the last observed record at their point25

of forecast. For short range forecasts the NN model was found to be inferior to the

WLTF model; however, for longer-term forecasts the opposite situation arose in that the

NN model did show some aspects of superior performance. This is a medium sized

catchment and a non-linear representation of the rainfall-runoff process is once again
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assumed to have been encapsulated in the selected modelling inputs and outputs. The

use of eight individual direct forecasting models was considered to have produced the

best overall result but with the caveat that this approach would of course require much

more effort on the part of both developer and user. The pattern of statistical deteriora-

tion associated with the use of longer forecasting horizons was not consistent during5

the final stages. However, the extent to which this result is a function of the evaluation

statistic used as opposed to something more fundamental is unclear.

To further consider the earlier reported findings this paper will test the capabilities of

a NN to produce a non-linear solution using a series of controlled experiments based

on an ideal non-linear hydrological modelling problem set in a data-rich environment.10

NN solutions were developed to emulate a recognised non-linear hydrological model:

the Xinanjiang Rainfall-Runoff Model (Zhao et al., 1980). This model was formulated

as a single equation that had a small number of input variables and no temporal com-

ponent. No specific river records were involved; hence no sweeping generalisations

based on the results of individual catchment studies or the particularities of observed15

datasets will be produced. The inputs to the rainfall-runoff transformation equation

were produced using a statistical random pattern generator. This cloning operation

facilitated a direct comparison with the computed mathematical relationship whilst at

the same providing more general information on the power of a NN to model non-linear

relationships. The mathematical relationship was transparent and the nature of the re-20

lationship is clearly non-linear. The results are compared to traditional Least Squares

Multiple Linear Regression (MLIN) models developed on the same datasets. Neural

solutions were also developed on a smaller number of input variables: omission and

conflation of the original inputs was used to reveal the changing nature of different

models and their computed outputs. The final experiment used derived variables to25

model intrinsic but otherwise concealed internal relationships that are of hydrological

interest.
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3 Emulation of the Xinanjiang rainfall-runoff model

Van den Boogaard and Kruisbrink (1996) list eight possible integration options for hy-

brid neural network modelling. The first such option is “reproduction modelling” which

is hereinafter refereed to in computer science terms as the process of “emulation”. The

aim of an emulator, in the most general sense, is to duplicate the functions of one5

system with a different system, so that the second system appears to behave like the

first system. However, unlike a simulator, it does not attempt to precisely model the

state of the device being emulated; it only attempts to reproduce its behaviour. The

act of NN emulation or cloning is in this instance the process of using a neural model

to mimic an existing equation-based solution – including its inherent imperfections. In10

addition to offering rapid improvement in processing speed and data handling capabil-

ities, for instance in an integrated optimisation procedure (Rogers and Dowla, 1994;

Solomatine and Avila Torres, 1996), emulators can be used to reduce existing model

calibration time through building a response surface that relates internal parameters to

original output (Liong and Chan 1993), or to sidestep potential difficulties associated15

with the calibration of more popular models under conditions of limited discharge and

sediment concentration records (Hsu et al., 2003). NN emulators have also been used

for the detection of important internal processes occurring inside a conceptual model

(Wilby et al., 2003). Emulators can be constructed to include additional variables or to

omit certain variables in those instances where one or more standard inputs are not20

available or withheld. It is also possible to mimic the internal functions of an existing

model, for model reduction purposes, or for rapid prototyping, sensitivity analysis and

bootstrapping operations. Less obvious is the use of neural emulators to mimic spatial

distributions, thus making redundant our existing problems of storing and accessing

copious amounts of spatial input, and enabling models to switch from file-based data25

retrieval (slower) to chip-based data computation (faster) operations.

The Xinanjiang Rainfall-Runoff Model (named after the river to which it was first ap-

plied) was developed in 1973 and first published in 1980 (Zhao et al., 1980; Zhao,

293

http://www.hydrol-earth-syst-sci-discuss.net
http://www.hydrol-earth-syst-sci-discuss.net/4/287/2007/hessd-4-287-2007-print.pdf
http://www.hydrol-earth-syst-sci-discuss.net/4/287/2007/hessd-4-287-2007-discussion.html
http://www.copernicus.org/EGU/EGU.html


HESSD

4, 287–326, 2007

Neural network

emulation of a

rainfall-runoff model

R. J. Abrahart and

L. M. See

Title Page

Abstract Introduction

Conclusions References

Tables Figures

◭ ◮

◭ ◮

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

EGU

1992). This is a semi-distributed conceptual rainfall-runoff forecasting tool, which was

designed for use in humid and semi-humid regions, and is based on the concept of

runoff formation on repletion of storage i.e. runoff is not produced until the soil mois-

ture content of the aeration zone reaches field storage capacity and thereafter runoff

equals rainfall excess without further loss. The model has been applied with success5

to large areas including all of the agricultural, pastoral and forested lands (except for

the loess) of China (Zhao and Liu, 1995, p. 230). This model has a small number of

parameters, its structure and components have strong physical meaning, and these

factors in combination make it a popular tool for hydrological modelling. The basic

model has experienced numerous internal modifications e.g. modified soil moisture10

storage component (Jayawardena and Zhou, 2000). The model has also been coupled

to mesoscale precipitation forecasts where it produced encouraging flood simulation

outputs (Lin et al., 2006). The non-complicated nature of this model continues to make

it a popular choice for hydrological experimentation e.g. for testing intelligent calibration

procedures (Cheng et al., 2002, 2006) or for distributed modelling purposes (Su et al.,15

2003; Chen et al., 2007). This model has also been incorporated into nationwide fore-

casting methodologies, e.g. USA National Weather Service River Forecasting System

(M. Kane, Riverside Technology Inc., personal communication). The ARNO Rainfall-

Runoff Model (Todini, 1995) (which was derived from the Xinanjiang Model) has been

incorporated into a climate model (Dümenil and Todini, 1992); the NUARNO Model20

(which is based on the ARNO Model) is an integrated part of the UK NERC-ESRC

Land Use Programme Decision Support System where it is used to predict the direc-

tion and magnitude of the hydrological response that results from proposed changes

in land-use (Adams et al., 1995, p. 56–58).

In its simplest form the model comprises a single equation:25

R = P − (Wm − Wo) + Wm

[

(

1 −
Wo

Wm

)
1

1+b

−
P

(1 + b)Wm

]1+b

(1)

where R is runoff, P is precipitation, Wm is the maximum field storage capacity, Wo is
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the initial field storage capacity and b is an exponent representing non-uniform spatial

distribution. The term in square brackets can also be treated as an independent item

[AUX]:

If AUX ≤ 0 R = P − (Wm − Wo) (2)

If AUX > 0 R = P − (Wm − Wo) + Wm (AUX)1+b (3)5

If Wo = Wm R = P (4)

A dataset of random input variables was created comprising 5000 records. The initial

values for precipitation [P ], maximum soil water [Wm] and the curve fitting exponent

[b] were random samples taken from uniform distributions computed in MINITAB. Each

distribution was generated between fixed limits:10

– Precipitation (mm/h) between 0 and 50

– Maximum soil water (mm) between 50 and 100

– b (dimensionless) between 0.1 and 0.5

These upper and lower limits were considered reasonable based on the recognised

need to have a broad range of different input scenarios. Initial soil water [Wo], the15

fourth input variable, was assigned a random number generated between the “half-full”

and “maximum” soil water values.

A dedicated software program was written to calculate the numerical rainfall-runoff

response. This program was written to permit a number of different options to be imple-

mented including the addition of noise or error based on a set of independent external20

records. It also performed a linear standardisation of the input variables and output

responses that were scaled to a fixed range [0–1]. To minimise the number of data

conversions required all computed runoff values are henceforth reported in terms of
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standardised discharge units (sdu) or standardised ratio units (sru). The same calcu-

lated numerical dataset was used to explore a number of different models and relation-

ships. In each case a linear comparison was performed that involved the construction

of a MLIN model developed on the same predictors and predictands.

Seven different performance statistics were used for comparing the output re-5

sults. HydroTest was used to perform the required calculations; further particulars

and the relevant equations that describe each metric can be found on that web site

(http://www.hydrotest.org.uk) and appear in its related paper (Dawson el al., 2007).

Model performance was assessed on the basis of two absolute statistics, two relative

statistics and three dimensionless indices: Mean Absolute Error (MAE), Root Mean10

Squared Error (RMSE), Mean Absolute Relative Error (MARE), Mean Squared Rela-

tive Error (MSRE), Coefficient of Efficiency (CofE), Coefficient of Determination (RSqr)

and Index of Agreement (IoAd).

4 Neural network experiments

Four individual experiments were performed in a controlled environment. Each NN15

model contained 2 hidden layers and each hidden layer contained 12 hidden units. No

attempt was made to develop an optimal architectural configuration that could deliver

the best permitted set of modelling output accuracies. No attempt was made to develop

a minimal architectural configuration that might equate to a parsimonious modelling

solution. The adopted method was instead to develop a series of complex models20

that contained redundant component parameters and which allowed for no missed

opportunities. The justification for such actions is twofold:

1. It is important to distinguish between the number of available parameters that re-

mains fixed and the number of effective parameters that increases during training

(Weigend et al., 1992). The number of useful parameters at the start of the cal-25

ibration process is zero, since having been subjected to a random initialisation
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process, such parameters have yet to learn anything useful with regard to either

problem solving activities or the requirements of the user. It is not a simple ques-

tion of counting up the initial number of parameters in a model. It is a matter of

needing to have a sufficient number of potential parameters at the start of the

learning exercise that could, if required, be used to support the modelling pro-5

cess. Too few a number will put constraints on what can or cannot be achieved

and could produce needless simplifications or unwarranted generalities.

2. Neural networks are designed to model continuous nonlinearities in dynamical

systems, or with special modification, piecewise continuous functions (Selmic et

al., 2002). Two hidden layers will permit more complicated target functions, and10

their related solution surfaces, to be modelled in an efficacious manner (Sarle,

1997). Each unit in the second hidden layer will enable a separate peak or trough

to be fitted. However, under difficult situations, two hidden layer solutions are also

capable of approximating discontinuous functions in a purposeful context (Sontag,

1992).15

4.1 Experiment 1

The Stuttgart Neural Network Simulator (SNNS: Zell et al., 1995) was used to develop a

two-hidden-layer feedforward NN. Each processing unit was connected to all process-

ing units in the adjacent layers and full connection was maintained throughout. The

input layer had four input units that corresponded to the input variables: precipitation20

[P ]; initial soil water [Wo]; maximum soil water [Wm]; and the curve fitting exponent [b].

Each of the two hidden layers contained twelve hidden processing units and there was

one output unit in the final output layer for the single output variable [R]. NN initialisa-

tion involved assigning random weights to all connections and processing unit biases.

The permitted range of random weights was set at ±1. The 5000 patterns of standard-25

ised variables were split into two equal groups, one for training purposes, and the other

for split sample testing operations. The network was trained using “backpropagation

297

http://www.hydrol-earth-syst-sci-discuss.net
http://www.hydrol-earth-syst-sci-discuss.net/4/287/2007/hessd-4-287-2007-print.pdf
http://www.hydrol-earth-syst-sci-discuss.net/4/287/2007/hessd-4-287-2007-discussion.html
http://www.copernicus.org/EGU/EGU.html


HESSD

4, 287–326, 2007

Neural network

emulation of a

rainfall-runoff model

R. J. Abrahart and

L. M. See

Title Page

Abstract Introduction

Conclusions References

Tables Figures

◭ ◮

◭ ◮

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

EGU

without momentum”; the accepted shorthand for such solutions is a Backpropagation

Neural Network (BPNN). The learning rate was set and adjusted as per Table 1. Train-

ing material was presented to the network in random order and training was stopped

at 8000 epochs. Error reduction expressed in terms of Sum Squared Error (SSE) was

observed to flatten out after 2000 epochs which suggested broad-scale convergence.5

This use of fixed stopping conditions does not prevent overfitting but substantial defi-

ciencies in such respects were considered improbable due to: (1) the smooth nature of

the mathematical function that was being emulated; (2) the comprehensive nature of

the numerical representations upon which the models were developed and tested; and

(3) the achievement of similar performance statistics on the two split sample datasets.10

4.2 Experiment 2

SNNS was used to construct a second BPNN model. Experiment 2 differs from Ex-

periment 1 in that the curve fitting exponent [b] which is designed to account for a

non-uniform spatial distribution of responses was omitted from the initial set of four in-

puts. The input layer had three input units that corresponded to: precipitation [P ]; initial15

soil water [Wo]; and maximum soil water [Wm]. There was one output unit in the final

output layer for the output predictand [R]. This experiment produces a simpler model

in which the need to include a difficult to determine curve fitting exponent is eliminated.

The model development and testing process was in all other respects identical to that

described for Experiment 1.20

4.3 Experiment 3

SNNS was used to construct a third BPNN model. Experiment 3 differs from Experi-

ment 2 in that an even simpler model was created: it had two input units in the input

layer corresponding to the input variables precipitation [P ] and “soil water ratio” (initial

soil water [Wo] divided by maximum soil water [Wm]). There was one output unit in the25

final output layer for the single output predictand [R]. The two soil water input measure-
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ments were thus conflated into a single ratio and the curve fitting exponent was again

omitted. This experiment represents a further loss of detailed hydrological information

and represents something of a minimalist position with regard to what can or cannot be

modelled without resorting to the development of a simple “rating curve”. The model

development and testing process was in all other respects identical to that described5

for Experiments 1 and 2.

4.4 Experiment 4

SNNS was used to construct a fourth BPNN model. This exploration used derived

variables to model intrinsic but otherwise concealed internal relationships that are of

hydrological interest. This model had two input units in the input layer, corresponding to10

the derived input variables “soil water ratio” (initial soil water divided by maximum soil

water [Wo/Wm]) and “input-storage ratio” (precipitation divided by maximum soil water

[P/Wm]). There was one output unit in the final output layer for the single derived output

predictand “runoff ratio” (runoff divided by precipitation [R/P]). Each input and output

variable is a dimensionless index that is of hydrological significance so it is interesting15

to model the non-linear relationship that is occurring between these factors inside the

Xinanjiang Rainfall-Runoff Model. The model development and testing process was

in all other respects identical to previous experiments. The “captured transfer function

surface” was also visualized: (i) to help understand the exact nature of the black-box

modelling solution that has been encapsulated; and (ii) to provide additional insights20

into the underlying hydrological processes and relationships. Figure 9 shows the dis-

tribution of points in input space. Two interpolated output surfaces were constructed in

input space using inverse distance weighting based on (1) the original calculated out-

puts as depicted in Fig. 10 and (2) the neural network outputs as depicted in Fig. 11.
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5 Results

BPNN training programme results for the four reported experiments are provided in

Table 1. MLIN parameter coefficients are provided in Table 2. HydroTest BPNN and

MLIN performance evaluation statistics are provided in Table 3. Figures 1, 3, 5 and

7 provide BPNN scatterplots of actual against predicted values for Experiments 1–4.5

Figures 2, 4, 6 and 8 provide companion MLIN scatterplots for the same experiments.

Training [A] and testing [B] dataset outputs are provided in each case; BPNN outputs

are for the final product that was created during the last stage of the learning and

development process i.e. trained for 8000 epochs. The superior performance of the four

non-linear BPNN solutions, in contrast to the poor relative performance of their linear10

MLIN counterparts, is apparent throughout most sectors of each individual experiment.

5.1 Experiment 1

The output results for Experiment 1 are illustrated in Figs. 1 and 2. BPNN (Figs. 1a,

b) outputs exhibit near-perfect agreement between the expected and predicted runoff

values. The two scatterplots thus demonstrate that neural solutions are able to emulate15

this particular hydrological function and can perform a non-linear modelling operation in

an efficacious manner. Figures 2a, b contain the corresponding results for MLIN. The

scatterplots in this instance reveal a curvilinear profile that is “twisted” around the “line

of perfect agreement”. The higher and lower level values are underpredicted whilst

the central region values are overpredicted. Moreover, the lower level values exhibit20

the highest levels of spread. The resultant pattern of error indicates that the linear

model has failed to capture important non-linearities. These findings are reflected in

the evaluation statistics provided in Table 3. MLIN, in comparison to BPNN, exhibits

poorer performance on each of the seven evaluation metrics. The two split sample

datasets were observed to produce similar outputs in each case which is indicative of25

unbiased solutions and minimal potential overfitting.
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5.2 Experiment 2

SSE for the trained model was much higher than that obtained in Experiment 1, levelling

off at a little under 1.14 sdu, compared to 0.04 sdu. The output results for Experiment 2

are illustrated in Figs. 3 and 4. BPNN (Figs. 3a, b) outputs exhibit a clear trend, but the

results are somewhat less impressive in comparison to the results that were produced5

from the “four input variable” model – especially in the uppermost (underestimated) and

lower (minor scattering) sections of the scatterplots. Nevertheless, the omission of a

principal non-linear component meant that there was less information contained within

the input variables. The end result, however, is still considered to be a reasonable

non-linear approximation. Figures 4a, b show the corresponding results for MLIN.10

The scatterplots reveal a similar pattern of errors to that found in Experiment 1 and

this result is reflected in the evaluation statistics. MLIN, in comparison to the BPNN,

shows poorer performance on each of the seven evaluation metrics (Table 3). The two

split sample datasets were observed to produce similar outputs in each case which is

indicative of unbiased solutions and minimal potential overfitting.15

5.3 Experiment 3

SSE for the trained model was higher, in comparison to the two previous solutions,

levelling off at a liitle over 3.76 sdu. BPNN (Figs. 5a, b) outputs still exhibit a clear

trend, but the output values form a scattered cloud, having a spread of values situated

both above and below the line of perfect agreement. The spread of error is least at the20

upper and lower ends of the range and greatest in the central regions. Nevertheless,

the omission of one principal component and the conflation of two others meant that

there was even less information in the input variables upon which to develop a model.

However, broad levels of non-linear approximation can still be achieved. Figures 6a,

b show the corresponding results for MLIN. The scatterplots in this instance reveal a25

similar pattern of errors to that found in Experiments 1–2 and this result is reflected in

the evaluation statistics. MLIN, in comparison to the BPNN, shows poorer performance
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on each of the seven evaluation metrics (Table 3). The two split sample datasets

were observed to produce similar outputs in each case which is indicative of unbiased

solutions and minimal potential overfitting.

5.4 Experiment 4

SSE for the trained model levelled off at a little under 8.05 standardised ratio units (sru).5

Error is much higher in this experiment, compared to that found in the earlier modelling

scenarios, which is indicative of a more challenging “modelling situation”. BPNN out-

puts are shown in Figs. 7a, b. The scatterplots reveal a reasonable level of agreement

between the original computations and the neural outputs in the upper section of the

graphs, but there is a broad spread of predictions in the lower sections, and a clear10

cut-off point below which the neural solution does not produce output predictions. This

particular situation represents a different form of generalisation that occurs under con-

ditions of insufficient information, or detrimental contradictions, in the dataset. It can

be equated to “pit-filling” in the lower regions of the target output. Indeed, in different

regions of the solution space, a crude generalisation is the best that can be done under15

such circumstances which serves to confirm that when there is a firm relationship to

be modelled, the neural solution will extract it, whereas in other cases it will attempt to

fit a broad higher level approximation. Figures 8a, b show the corresponding results for

MLIN and depict the failure of this method to capture important non-lineararites. The

scatterplots in this instance reveal a different pattern of errors to that found in Experi-20

ments 1–3. The output in both plots is “pivoted” around a central point on the “line of

perfect agreement” and the distribution of values spreads out from this point in both

directions such that the maximum spread of values occurs in the uppermost and low-

ermost regions. Higher level values are underpredicted. Lower level values straddle

the line of perfect agreement. The differences between such findings and the previous25

results can be related to the fact that the non-linear nature of the modelling exercise

has changed. This result is reflected in the evaluation statistics. MLIN, in compari-

son to the BPNN, shows poorer performance on six of the seven evaluation metrics
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(Table 3). MSRE (Mean Squared Relative Error) records as a ratio the level of overall

agreement between the observed and modelled datasets and on this particular occa-

sion depicts superior scores. However, a low score on this metric does not necessarily

indicate a good model in terms of accurate forecasts, since positive and negative errors

will tend to cancel each other out. The nature of the reported error as shown on the5

scatterplot confirms that such oddities can be explained in terms of numbers related to

high levels of potential “cancelling out”. The two split sample datasets were observed

to produce similar outputs in each case which is indicative of unbiased solutions and

minimal potential overfitting.

Figures 10–11 reveal the complex nature of the target solution surface. Figure 910

provided information about the unequal distribution of the output points in input space

from which the two interpolated surfaces were constructed. Figure 10 identifies var-

ious conflicts and inconsistencies in the calculated estimations that provided target

outputs for the lower levels of P/Wm and Wo/Wm. R/P, in this particular region of the

initial computations, contained a “speckled” pattern such that the neural solution was15

required to implement a certain degree of “simplification” or “averaging”. The derived

surface nevertheless exhibits a recognisable trend that extends across the diagram

from bottom-left to top-right. This trend becomes more well defined when it reaches

mid to higher values of either P/Wm or Wo/Wm. Here the influence of soil water is

less significant, producing a clear-cut, diagonal switchover, that runs more or less from20

top-left to bottom-right on the diagram i.e. opposite direction to the main trend that

increases from zero-zero in the bottom-left corner to one-one in the top-right corner.

This main trend is also curved and appears to have a pivotal point in the bottom-right

corner, with steep changes in surface, contrasting with the outer boundaries that have

shallower increases. The overall appearance resembles a traditional “hand fan” and25

the inherent nature of the non-linear internal relationship that has been modelled in

this experiment is revealed. Figure 11 confirms the non-linear nature of the neural

network solution that has been developed for Experiment 4. The construction process

is observed to have (1) produced a “hand fan” model; (2) maintained important upper
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regions relationships; and (3) resolved potential conflicts in the lower regions of the

output surface. Further analysis of “surface residuals” was not undertaken but might

be instructive in terms of subsequent hydrological modelling experiments.

6 Discussion

Two earlier published papers considered the nature of the relationship that existed5

between NN and WLTF models developed on hydrological datasets. The four controlled

experiments that are reported in this paper permit the earlier findings to be viewed in

context. It is important to consider the previous interpretations and conclusions in

terms of the theoretical justifications that underpinned each investigation. The earlier

reported studies would appear to have been based on the following assumptions:10

1. The rainfall-runoff relationship is a recognised non-linear catchment process;

2. Measurements of observed rainfall and runoff can be used to develop a non-linear

catchment response dataset;

3. The measured datasets and the manner in which such datasets are used has en-

capsulated the non-linear catchment response in a suitable format for subsequent15

identification and extraction using machine learning algorithms.

This list does not however contain an explicit method of testing for the presence of

non-linear relationships in each dataset. The simplest test would be to develop a linear

model on the selected dataset, as a measure of the extent to which a linear or near-

linear relationship exists, and thereafter select the most appropriate tool for subsequent20

modelling operations.

The exact manner in which a specific problem has been formulated is also impor-

tant. The two earlier papers did not consider the extent to which the required solution

called for the production of a simple model, with limited non-linear modelling capa-

bilities, and no real need for the incorporation of complex dynamics. The solutions25
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incorporated the last observed record at their point of forecast and as such the mod-

elling operation might simply amount to calculating the change in discharge, which in

most cases will be a near-linear operation, as opposed to something more physical.

Further particulars on the dominant effect of including the last observed record at the

point of forecast and reported findings related to countering or suppressing such fac-5

tors using a constraint-based method can be found in Abrahart et al. (2007)
1
. It is also

axiomatic in such cases that the use of smaller forecasting horizons will lead towards

the development of linear or near-linear solutions. Han et al. (2007) reported modelling

experiments performed over different horizons which provides further insight into this

question. Indeed, as the forecasting horizon was increased, the dominant effect of the10

last recorded input was reduced and the requirement for producing a non-linear solu-

tion becomes more apparent. If a marked non-linear relationship exists it should be

quite obvious that a non-linear solution will be required to model it – as demonstrated

in this paper. However, if a theoretical non-linear relationship appears to have been

captured in an acceptable manner using a linear or near-linear model, then the exact15

reason(s) for this unexpected result should be questioned. It is, moreover, insufficient

to assert that such findings can be attributed to potential failings, either in a specific

dataset, or to the tool that has been applied to model it, without first having undertaken

detailed investigations that are able to confirm or disprove such matters in the manner

of “hypothesis testing”.20

The controlled experiments that are reported in this paper have established that a

NN will produce an appropriate non-linear solution if presented with an appropriate

non-linear situation to model. If the problem is linear, or near-linear, it is axiomatic

that WLTF models and trained NN models will produce a similar set of results; the

tools are performing as expected. The anticipated “superior performance” of a NN in25

relation to a WLTF will, as a result, appear to be limited. It is also possible that one

might obtain better generalisation using a simple linear model than a NN in the case

1
Abrahart, R. J., Heppenstall, A. J., and See, L. M.: Timing error correction procedures

applied to neural network rainfall-runoff modelling, Hydrol. Sci. J., in review, 2007.
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of a function that contains mild non-linearities if the datasets are too small or contain

too much noise, which will prevent the NN from accurately estimating the non-linearities

(Sarle, 1997). The earlier studies can therefore be interpreted in a different light. Linear

models should be used as benchmarks against which NNs are tested to indicate the

degree to which the presented relationship that needs to be modelled is linear and5

therefore requires the application of a linear modelling solution. Moreover, if required,

following the adoption of a linear modelling solution is it also the case that non-linear

tools could thereafter be used for the identification of neglected non-linearities (Curry

and Morgan, 2003). The question of which tool would be more appropriate in a linear

or near-linear modelling situation is not a matter for scientific contest; it is a practical10

issue that equates to picking the “right tool for the right job”.

Hydrological modelling requires consistent measures of merit and trust. Hillel (1986:

p. 42) advocated that hydrological modelling solutions should be: “parsimonious” –

each model should contain a minimum number of parameters that can be measured

in the field; “modest” – the scope and purpose to which a specific model can be ap-15

plied must not be overstated; “accurate” – the correctness of the forecast or prediction

need not be better than the correctness of the input measurements; and “testable” –

the limits within which the model outputs are valid can be defined. This paper and its

predecessors have focused on one aspect of merit and trust: the production of more

accurate outputs. However, other qualities and issues are also important with respect20

to practical operational implementations, and mechanistic properties such as “robust-

ness” and “graceful degradation” will not in all cases have an optimal relationship with

model output accuracies and so must be treated as independent properties that impart

a set of constraints. To provide a robust solution each model must exhibit a constant

or stable behaviour and be insensitive to potential uncertainties in the construction25

and parameterisation process e.g. problems related to measurements that cannot be

obtained with sufficient accuracies or are not constant over long(er) periods. To be

reliable and trusted an operational model must also exhibit the properties of “graceful

degradation”; a gradual and progressive reduction in overall performance such that the
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model continues to operate and function in a normal manner, but provides a reduced

level of service, as opposed to taking incorrect actions or suffering a total collapse of

processing activities. Environmental modelling investigations into the changing nature

of neural network outputs related to the provision of degraded inputs are reported for

hydrological forecasting in Abrahart et al. (2001) and for sediment transfer in Abrahart5

and White (2000). For more detailed discussion on the requirements constraint issue

the interested reader is referred to Alippi (2002).

7 Conclusions

Two important issues have been raised: a) to what extent can a neural network model

perform non-linear hydrological modelling operations given a suitable problem and a10

set of information-rich unproblematic observations, i.e. to help overcome issues related

to poor content and noise; and b) to what extent are most reported neural network

hydrological modelling investigations and proposed solutions near-linear as opposed

to non-linear applications. This paper has shed some light on the first question. It is

possible to infer from the success of the reported modelling experiments that neural15

network hydrological modelling solutions can be used to perform reliable non-linear

transformations and to produce different levels of hydrological process generalisation.

Minimum effort was placed on design and construction of the NN. The end product,

nevertheless, was considered to be acceptable in all cases and not necessarily optimal.

For operational purposes such solutions might be sufficient. The act of building a neural20

network emulator was also discovered to be a rather robust operation that required

limited expert involvement. The networks were quick to create and simple to test which

makes them ideal tools for bootstrapping, sensitivity analysis and rapid prototyping

implementations. Further emulation exercises are to be encouraged.

The power of a neural network to perform simplification operations and to explore25

alternative internal relationships has been demonstrated. This type of exploration offers

numerous interesting possibilities. It could for example be used for the assessment of
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more complex models, or of their internal components, in terms of visualizing difficult-

to-observe process-based relationships. The power to omit one or more problematic

variables under certain conditions is of particular importance in the case of scarce or

difficult to obtain datasets, and, in addition, has clear cost-benefit implications.
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Table 1. BPNN training programme and last reported error for the four reported experiments.

Exp. 1 Exp. 2 Exp. 3 Exp. 4

Epochs/

training cycles

Learning rate SSE(sdu) SSE(sdu) SSE(sdu) SSE(sru)

0–2000 0.8 0.0655 1.1916 3.8582 8.4872

2001–4000 0.6 0.0484 1.1633 3.8167 8.2796

4001–6000 0.4 0.0410 1.1503 3.7878 8.1569

6001–8000 0.2 0.0376 1.1382 3.7623 8.0489
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Table 2. MLIN parameter coefficients for the four reported experiments.

Exp. 1 Exp. 2 Exp. 3 Exp. 4

Intercept −0.1535 −0.1290 −0.2249 −0.1040

Precipitation [P ] 0.6286 0.6294 0.6283 –

Initial Water [Wo] 0.6817 0.6771 – –

Maximum Water [Wm]. −0.4133 −0.4093 – –

b [curve fitting exponent] 0.0500 – – –

Soil Water Ratio [Wo/Wm]. – – 0.3518 0.7021

Input-Storage Ratio [P/Wm]. – – – 0.5147
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Table 3. HydroTest evaluation statistics for the four reported experiments.

Exp.
Equal treatment Favour high flows Comparison with norms

MAE MARE RMSE MSRE CofE RSqr IoAd

BPNN

Training

1 0.0030 0.1619 0.0039 3.3415 0.9997 0.9997 0.9999

2 0.0140 0.2728 0.0213 3.0822 0.9909 0.9910 0.9977

3 0.0269 0.3163 0.0388 3.3362 0.9700 0.9702 0.9923

4 0.0405 0.2658 0.0569 2.7176 0.9502 0.9511 0.9872

Testing

1 0.0029 0.1433 0.0040 7.0474 0.9997 0.9997 0.9999

2 0.0141 0.2692 0.0217 7.0690 0.9899 0.9900 0.9975

3 0.0264 0.3072 0.0383 6.4309 0.9685 0.9688 0.9918

4 0.0407 0.2617 0.0569 0.4809 0.9503 0.9511 0.9872

MLIN

Training

1 0.0662 3.8984 0.0808 2,284.33 0.8697 0.8697 0.9640

2 0.0650 3.9764 0.0849 2,796.14 0.8562 0.8636 0.9596

3 0.0676 3.7823 0.0833 1,728.56 0.8615 0.8615 0.9615

4 0.0725 0.3445 0.0963 1.4153 0.8572 0.8572 0.9603

Testing

1 0.0659 3.9541 0.0804 3,155.88 0.8612 0.8625 0.9628

2 0.0651 4.1488 0.0841 3,767.03 0.8482 0.8572 0.9587

3 0.0666 4.7857 0.0821 9,807.15 0.8554 0.8562 0.9608

4 0.0724 0.3356 0.0957 0.3583 0.8593 0.8594 0.9605
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Fig. 1. BPNN training output (A) and testing output (B) scatterplots for Experiment 1.
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Fig. 2. MLIN training output (A) and testing output (B) scatterplots for Experiment 1.
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Fig. 3. BPNN training output (A) and testing output (B) scatterplots for Experiment 2.
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Fig. 4. MLIN training output (A) and testing output (B) scatterplots for Experiment 2.
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Fig. 5. BPNN training output (A) and testing output (B) scatterplots for Experiment 3.
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Fig. 6. MLIN training output (A) and testing output (B) scatterplots for Experiment 3.
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Fig. 7. BPNN training output (A) and testing output (B) scatterplots for Experiment 4.
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Fig. 8. MLIN training output (A) and testing output (B) scatterplots for Experiment 4.
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Fig. 9. Scatter of points in input space for Experiment 4.
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Fig. 10. Target surface interpolated from equation outputs for Experiment 4.
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Fig. 11. Target surface interpolated from neural network outputs for Experiment 4.
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