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Abstract

This study investigates dynamically different data-driven methods, specifically a statis-

tical downscaling model (SDSM), a time lagged feedforward neural network (TLFN),

and an evolutionary polynomial regression (EPR) technique for downscaling numeri-

cal weather ensemble forecasts generated by a medium range forecast (MRF) model.5

Given the coarse resolution (about 200-km grid spacing) of the MRF model, an opti-

mal use of the weather forecasts at the local or watershed scale, requires appropriate

downscaling techniques. The selected methods are applied for downscaling ensem-

ble daily precipitation and temperature series for the Chute-du-Diable basin located in

northeastern Canada. The downscaling results show that the TLFN and EPR have10

similar performance in downscaling ensemble daily precipitation as well as daily maxi-

mum and minimum temperature series whatever the season. Both the TLFN and EPR

are more efficient downscaling techniques than SDSM for both the ensemble daily pre-

cipitation and temperature.

1 Introduction15

Downscaling methods were initially developed and used for global climate models

(GCMs) outputs. In this study our goal is to develop data-driven methods for down-

scaling ensemble weather forecast data provided by the National Centers for Environ-

mental Prediction (NCEP) medium range forecast (MRF) modeling system. It is well-

known that these large scale numerical models are generally not accurate at modeling20

local climate, because they are unable to represent local sub-grid scale features and

dynamics. However, in operational hydrology, hydrological models are usually used to

simulate sub-grid scale phenomenon and therefore require input data (such as precip-

itation and temperature) at similar sub-grid scale. For instance, precipitation scenarios

at such finer temporal and spatial resolution are needed in order to improve the design25

and evaluate the future performance of urban drainage systems (Bronstert et al., 2002).
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In practical hydrologic applications, there is a need to convert the MRF forecasts into

high resolution information useful at the local or watershed scale. There are various

downscaling techniques available to convert coarse resolution climate model outputs

into daily meteorological variables appropriate for hydrologic applications.. The most

widely used statistical downscaling models usually implement linear methods such as,5

multiple linear regression, Canonical correlation analysis or singular value decompo-

sition (Conway et al., 1996). However, it is not yet clear which statistical downscaling

method provides the most reliable estimates of daily rainfall and temperature series.

Nevertheless, the interest in non-linear regression methods, namely, artificial neural

networks (ANNs), is nowadays increasing because of their high potential for complex,10

non-linear and time-varying input-output mapping. Although the weights of ANN are

similar to non-linear regression coefficients, the unique structure of the network and

the non-linear transfer function associated with each hidden and output nodes allows

ANNs to approximate highly non-linear relationships without a priori assumption. More-

over, while other regression techniques assume a functional form, ANNs allow the data15

to define the functional form. Therefore, ANNs are generally believed to be more pow-

erful than the other regression-based downscaling techniques (von Storch et al., 2000).

Genetic Programming (GP) is another well known data-driven technique that has show-

ing promising potential for the downscaling of daily extreme temperatures (Coulibaly,

2004). However, no study has fully investigated and compared the selected data-driven20

methods for downscaling ensemble weather forecasts. The purpose of this study is to

identify optimal models that can capture the complex relationship between selected

large-scale predictors and locally observed meteorological variables (or predictands)

using three different methods, i.e. linear regression method, ANNs, and GP, so as to

compare the performances of the three methods in downscaling daily precipitation and25

temperature.. The paper specifically focuses on the time lagged feedforward neural

networks (TLFN), which have temporal processing capability without resorting to com-

plex and costly training methods, and on evolutionary polynomial regression (EPR)

which is based on hybrid evolutionary paradigm. The results of these two models are
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compared with the well known multiple regression based downscaling tool namely sta-

tistical downscaling model (SDSM).

2 Study area and data

The study area selected in this research for the application and evaluation of down-

scaling methods is the Chute-du-Diable basin located in the Saguenay-Lac-Saint Jean5

watershed (Fig. 1), which is a well-known flood prone region in Canada. There are a

large number of reservoirs and dams in the Saguenay watershed and most of the large

reservoirs are managed by the Aluminum Company of Canada (ALCAN) for hydroelec-

tric power production. However, in this study, only the results from Chute-du-Diable are

presented. Chute-du-Diable has an area of 9700 km
2

and is located in the eastern part10

of the Saguenay watershed (Fig. 1). Twenty-three years (1979–2001) of historical total

precipitation (Prec.), mean maximum temperature (Tmax) and mean minimum temper-

ature (Tmin) series are collected from ALCAN hydro-meteorological network, and used

as predictands in this study. The NOAA-CIRES Climate Diagnostic Center has under-

taken a reforecasting project providing retrospective numerical ensemble forecasts. An15

unchanged version of National Centers for Environmental Prediction’s Global Forecast

System (NCEP GFS, formely known as MRF) at T62 resolution is used to generate

15-day real-time forecast scenarios (30 time steps of 12 h each). Forecasts are run ev-

ery day from 00:00 UTC initial conditions from 1979 to present. There are 15-member

ensemble forecasts that are generated from 15 initial conditions consisting of a reanal-20

ysis and seven pairs of bred modes (Hamill et al., 2004). The global latlon grid has a

large-scale resolution of 2.5
◦

both in longitude and latitude and contains 144×73-grid

points. The global data were collected directly from the reforecast project ftp server.

There are 12 files per day and the field variables are described in Table 1. These files

are netCDF (network Common Data Format) files.25

In order to get geographical subsets of grid points over a region of interest, we used

an operator named “ncks” (netCDF Kitchen Sink) from NCO (netCDF Operators). This
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operator is executed through a Matlab Graphical User Interface we have developed.

Geographical subsets are produced by “ncks” only from a global latlon grid. So, we

have been able to process only the first eight variable fields shown on Table 1. The

geographical subsets files are also netCDF files. So a second operation was neces-

sary to transform the netCDF files for the geographical subsets into Matlab files using5

MexCDF conversion utilities. MexCDF is a mex-file interface between NetCDF and

MATLAB.

3 Time lagged feedforward neural network (TLFN)

A neural network is characterized by its architecture, which is represented by the net-

work topology and pattern of connections between the nodes, its method of determin-10

ing the connection weights, and the activation functions that it employs. Multi-layer

perceptrons (MLPs), which constitute probably the most widely used network architec-

ture, are composed of a hierarchy of processing units organized in a series of two or

more mutually exclusive sets of neurons or layers. The information flow in the network

is restricted to a flow, layer by layer, from the input to the output, hence also called15

feedforward network. TLFN is a neural network that can be formulated by replacing

the neurons in the input layer of an MLP with a memory structure, which is sometimes

called a tap delay-line. The size of the memory layer (the tap delay) depends on the

number of past samples that are needed to describe the input characteristics in time

and it has to be determined on a case-by-case basis. TLFN uses delay-line processing20

elements, which implement memory by simply holding past samples of the input signal.

The output (y) of such a network with one hidden layer is given by:

y(n) = ϕ1





m
∑

j=1

w jyj (n) + b0



 = ϕ1





m
∑

j=1

w jϕ2

(

k
∑

i=0

wj ix(n − i ) + bj

)

+ b0



 (1)
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where m is the size of the hidden layer, n is the time step, w j is the weight vector for

the connection between the hidden and output layers, k is the memory depth, wj i is

the weight matrix for the connection between the input and hidden layers, ϕ1 and ϕ2

are transfer functions at the output and hidden layers respectively, and bj and b0 are

additional network parameters (often called biases) to be determined during training of5

the networks with observed input/output data sets. For the case of multiple inputs (of

size p), the delay-line with a memory depth k can be represented by

χ (n) = [X (n), X (n − 1), ..., X (n − k + 1)] (2)

where X (n)=(x1(n), x2(n), ..., xp(n)) and represents the input pattern at time step n,

xj (n) is an individual input at the nth time step and X (n) is the combined input matrix to10

the processing elements at time step n. Such delay-line only “remembers” k samples

in the past. The advantage of TLFNs is that they share some of the nice properties

of feedforward neural networks, but they can capture the information present in the

input time signals. An interesting feature of the TLFN is that the tap delay-line at the

input does not have any free parameters; therefore the network can still be trained with15

the classical backpropagation algorithm. The TLFN topology has been successfully

used in non-linear system identification, time series prediction, and temporal pattern

recognition (Principe et al., 2000). A major advantage of the TLFN is that it is less

complex than the conventional time delay and recurrent networks and has the similar

temporal patterns processing capability (Coulibaly et al., 2001).20

4 Evolutionary Polynomial Regression (EPR)

EPR is a hybrid evolutionary regression technique based on genetic programming (GP)

introduced by Koza (1992). GP is a method for constructing populations of mathe-

matical models using stochastic search methods namely evolutionary algorithms. For

multivariate time series modeling using the GP approach, the ultimate objective of the25
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evolutionary process is to discover an optimal equation (or model) for relating depen-

dent variable (or predictand) and independent variables (or predictors). However, as

the search space of all possible equations is extremely large particularly for multivari-

ate time series, the heuristic search needs to be optimized in term of computational

efficiency and parsimonious solution (i.e. model structure). The evolutionary polyno-5

mial regression (EPR) technique recently proposed by Giustolisi and Savic (2005) aims

to provide optimal solution by exploiting both the numerical and symbolic regression.

Essentially, EPR uses a GA to find the form of the polynomial expressions and least

squares optimization to determine the values of the parameters in the expressions.

The description of the EPR method is limited herein to the needs of the present study.10

For more detailed description of the EPR method, the readers are referred to other

sources, such as Giustolisi and Savic (2003, 2004, 2005). Although the EPR tech-

nique is similar to the rule-based symbolic regression (Davidson et al., 2000), there

is a key difference in the search for model structure. While the latter uses rules to

simplify symbolic expressions, the former employs a simple GA to search in the model15

structure space. In the rule-based symbolic regression limits the range of operators

normally used in symbolic regression to a subset consisting of addition, multiplication

and non-negative integer powers. The expressions that result from applying the limited

set of operators are usually in the form of polynomials such as

y =

m
∑

j=1

ajzj + a0 (3)20

where y is the least squares estimate of the target value, aj is an adjustable parameter

for the j th term, a0 is an optional bias, m is the number of terms/parameters of the

expression, and zj is a transformed variable. In EPR method, it is useful to transform

Eq. (3) into the following vector form (Giustolisi and Savic, 2005)

YNx1(θ, Z) =
[

INx1Z
j

Nxm

]

[

a0a1...am
]T

= ZNxdθdx1 (4)25
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where YNx1(θ, Z) is the least squares estimate vector of the N target values; θ1xd is

the vector of d=m+1 parameters aj and a0 (θ
T

is the transposed vector); and ZNxd

is a matrix formed by I , unitary vector for bias a0, and m vectors of variables Zj that

for fixed j are a product of the independent predictor vectors of inputs, X=(X1X2...Xk).

The key idea behind the EPR is to use evolutionary search for exponents of polynomial5

expressions by means of a GA engine (Giustolisi and Savic 2004, 2005). This allows:

(a) easy computational implementation of the algorithm; (b) efficient search for an ex-

pression (formula); (c) improved control of the complexity of the expression generated;

and (d) a small number of search parameters to be pre-specified (Giustolisi and Savic,

2005).10

5 Model design

When applying the three downscaling methods in this study, data from 1979 to 1996

are used to construct the models, and data from 1997 to 2001 are used for validation

to test the model performance. There are two major steps in designing the models,

the first step is to select the input predictors, and the second step is to determine the15

model parameters.

5.1 Selection of predictors

As described before, the predictor variables are derived from the 3-D ensemble fore-

casts. This means each variable has 15 time delays (forecast range), and in each

delay, there are 15 members. First, the correlations between the predictands and the20

members of certain predictors are calculated to decide which members should be se-

lected as inputs in the downscaling models. Among all the possible predictor variables

for precipitation, apcp (predicted accumulated precipitation) appears the most corre-

lated to observed daily precipitation (Prec.). Similarly, predicted temperature at 2 m

(t2m) is most correlated to observed Tmax and Tmin. To further investigate the time25
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delay effect, the correlation between the observed precipitation and the first member

(M1) of the 15 members of apcp, the mean of the 15 members, and the total of the 15

members of the variable apcp are compared (see Fig. 2). Similar analysis is done for

Tmax and Tmin, correlations between the observed temperature (Tmax, Tmin) and M1

(of the 15 members of t2m) are compared with the correlations between the observed5

temperature and the mean of the 15 members of t2m (Fig. 2). It appears from Fig. 2

that the mean of the 15 members is most correlated with the observed values for apcp

and t2m respectively. Therefore, the mean of each predictor variable is preferred rather

than using any single member from its ensemble. Then partial auto-correlation analy-

sis (PACF) is performed for each predictor variable to find significant time lags. Then10

all the 8 predictors (Table 1) with their significant lags from PACF analysis are used

as input variables in TLFN models to perform sensitivity analysis. Sensitivity analysis

provides a measure of the relative importance among the predictors by calculating how

the model output varies in response to variation of an input. The relative sensitivity of

the model to each input is calculated by dividing the standard deviation of the output15

by the standard deviation of the input, which is varied to create the output. The results

provide a measure of the relative importance of each input (predictor) in the particular

input-output transformation. Based on sensitivity analysis results, the most relevant

input variables are then selected. The final selected predictor variables used for the

three models are presented in Table 2.20

5.2 Model parameters determination

Once the input variables are selected, they are used to construct downscaling models

with the three different methods. Because SDSM is a well-known multiple regression

technique, here only structure of TLFN and EPR are described. All potential optimal

combinations of the parameters of TLFN and EPR are trained to get the best models.25

The performance of the models is evaluated by three statistics: mean squared error

(MSE), normalized mean squared error (NMSE, NMSE=MSE/variance of desired out-

put), and correlation (r) between model output and desired output for validation period.
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The optimal model parameters identified for TLFN and EPR are shown in Table 3.

6 Downscaling results

Validation statistics in terms of seasonal model MSE, NMSE, and r are used (Table 4).

Surprisingly, the comparative results indicate that TLFN and EPR have very similar per-

formance in downscaling precipitation, Tmax and Tmin, and they performs much better5

than SDSM, especially in downscaling precipitation. Precipitation is always more diffi-

cult to downscale than temperature, but the TLFN and EPR perform well in winter, and

then in spring and autumn, while the results are not so good in summer, this may be

caused by heavier precipitation in form of convective storms and thunderstorms that

are difficult to model with large scale weather models. All the three methods have10

better model results for temperature in spring and autumn, this is because the temper-

ature usually has higher variance in winter and summer, which makes it more difficult

to model. Moreover, scattered plots of downscaled versus observed Prec., Tmax and

Tmin data during the whole validation period are used to show the model results. All

the output data from validation period are plotted and a comparison line which repre-15

sent the perfect model is also shown on the plot. Figure 3 shows the logarithmic scale

plots of downscaled Prec. versus observed Prec. using SDSM, TLFN, and EPR re-

spectively. It can be seen that all the spots from TLFN and EPR are distributed more

closely around the perfect model line than those of SDSM. Similar results for Tmax

and Tmin can be seen in Fig. 4 and Fig. 5. All the three methods demonstrated good20

performance in downscaling Tmax and Tmin, but TLFN and EPR are still better than

SDSM. Although SDSM appears to perform poorly as compared to the other models,

it consistently uses a much smaller number of parameters whatever the predictand of

concern. The EPR also appears more parsimonious than the TLFN in term of num-

ber of input variables. In general, the comparative results suggest TLFN and EPR25

have a good potential for downscaling ensemble weather forecasts. However, further

improvement is needed for the downscaling of precipitation series.
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7 Conclusions

This study investigates and compares three data-driven methods, (i.e. SDSM, TLFN,

and EPR), for downscaling ensemble daily precipitation and temperature series at the

Chute-duDiable station located in the Saguenay watershed in northeastern Canada.

The comparative results show that TLFN and EPR have quite similar performance in5

downscaling Prec., Tmax and Tmin, and they perform much better than SDSM in all

the downscaling experiments. For precipitation, TLFN and EPR have relatively good

results in winter than other 3 seasons, while SDSM perform poorly in all the four sea-

sons. TLFN and EPR have very good results in mapping Tmax and Tmin, especially

in spring and autumn. SDSM also performs well in downscaling temperature, but not10

as good as TLFN and EPR. The comparative study indicates that EPR and TLFN ex-

hibit good potential for downscaling ensemble weather forecasts. Further study will

include the downscaling of all the 15 members to better assess the variance of down-

scaled data as compared to the observed data. This will lead to ensemble hydrologic

modeling using the downscaled ensemble variables.15
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Table 1. NOAA reforecast ensemble variable fields.

Variable Field Description Surface level (mb)

apcp Accumulated precipitation (mm) Surface

heating Vertically integrated diabatic heating (K/s/mb) Vertical average

pwat Precipitable water Surface

prmsl Pressure reduced to mean sea-level (Pa) Surface

t2m Temperature at 2 m (K) Surface

rhum Relative humidity (%) 700 mb

u10m Zonal wind at 10 m (m/s) Surface

v10m Meridional wind at 10 m (m/s) Surface
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Table 2. Selected predictors for all the three downscaling methods.

selected lags of predictors

Predict Downscaling

ands Methods apcp heating pwat prmsl t2m rhum u10m v10m

SDSM lag0,1,2,3 lag1,2,3 lag0,1,2 – – lag0,1 – –

Prec TLFN lag0,1,2,3 lag1,2,3,4,5,7, lag0,1,2,3,5,6, lag0,1,2,3,4,5,6,8 lag0,1,2 lag0,1,2,3 lag0,1,3

8,9,10,11,12 7,9,10,11,12 ,9,10,11,12

EPR lag0,1,2 lag0,1,2 lag0,1,2 lag0,1,2 lag0,1,2 lag0,1,2 lag0,1,2 lag0,1,2

SDSM – – – – lag0,1,2,3,4,5,6,7 – – –

,8,9,10,12

Tmax TLFN lag0,1,2,3 lag0,1,2,3,4,6, lag0,2,3,5,6,7, lag0,1,2,3 lag0,1,2,3,4,5,6,7 lag0,1,2 lag0,1,2,3 lag0,1,2,3

7,8,9,10,11,12 9,10,11,12 ,8,9,10,11,12

EPR lag0,1 lag0,1 lag0,1 lag0,1 lag0,1 lag0,1 lag0,1 lag0,1

SDSM – – – – lag0,1,2,3,4,5,6,7 – – –

,8,9,10,11

Tmin TLFN lag0,1,2,3 lag1,2,3,4,5,6, lag0,1,2,3,4,5, lag0,1,2,3 lag0,1,2,3,4,5,6,7 lag0,1,2 lag0,1,2,3 lag0,1,2,3

7,8,9,10,11,12 6,7,8,9,10,11,12 ,8,9,10,11,12

EPR lag0,1,2,3 lag0,1,2,3 lag0,1,2,3 lag0,1,2,3 lag0,1,2,3 lag0,1,2,3 lag0,1,2,3 lag0,1,2,3

Lag: indicates the forecast range of the predictor variable. Lag 0 indicate the MRF ensemble

forecasts (15 members) for day 1; Lag 1 stands for ensemble forecasts for day 2 and so one.

203

http://www.hydrol-earth-syst-sci-discuss.net
http://www.hydrol-earth-syst-sci-discuss.net/4/189/2007/hessd-4-189-2007-print.pdf
http://www.hydrol-earth-syst-sci-discuss.net/4/189/2007/hessd-4-189-2007-discussion.html
http://www.copernicus.org/EGU/EGU.html


HESSD

4, 189–210, 2007

Comparison of

data-driven methods

for downscaling

X. Liu et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

◭ ◮

◭ ◮

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

EGU

Table 3. Optimal TLFN and EPR model structure and parameters.

TLFN EPR

parameter value parameter value

Processing Element 20 EPR type Y=sum (aiX1X2f(X1)f(X2))+ao

Epoches 2000 Regression type Dynamical

Memory GammaAxon Generation 20

Number of hidden layer 1 Function Secant Hyperbolic

Hidden layer transfer function SoftMaxAxon Terms [1:5]

Output layer transfer function LinearAxon Exponent [–1,0.5,1,2,3]

Stopping criteria Cross validation Solution Linear programming

Learning rule DeltaBarDelta Strategy Multi-objective genetic algorithm
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Table 4. Seasonal model performance for daily Prec., Tmax, and Tmin for the validation period

using SDSM, TLFN and EPR downscaling models.

Predictand Season

s Models Winter Spring Summer Autumn

MSE NMSE r MSE NMSE r MSE NMSE r MSE NMSE r

SDSM 32.89 1.86 0.03 27.09 1.33 0.09 78.77 1.66 0.04 56.48 1.47 0.04

prec. TLFN 9.51 0.54 0.71 12.17 0.60 0.64 34.17 0.72 0.56 25.13 0.65 0.61

EPR 9.53 0.54 0.71 11.66 0.57 0.66 34.53 0.73 0.55 24.37 0.63 0.64

SDSM 84.94 1.82 0.12 89.40 1.02 0.62 34.41 1.67 0.15 51.54 0.78 0.70

Tmax TLFN 8.27 0.18 0.91 13.55 0.15 0.94 8.55 0.42 0.81 7.54 0.11 0.94

EPR 9.17 0.20 0.91 15.60 0.18 0.94 8.60 0.42 0.81 7.64 0.12 0.94

SDSM 43.08 0.53 0.75 25.26 0.31 0.86 8.49 0.55 0.71 11.36 0.24 0.88

Tmin TLFN 22.68 0.28 0.85 11.64 0.14 0.93 5.42 0.35 0.81 8.61 0.18 0.91

EPR 26.56 0.33 0.82 12.80 0.16 0.93 5.42 0.35 0.82 8.49 0.18 0.93
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Fig. 1. Location of the study area in northern Quebec (Canada).

206

http://www.hydrol-earth-syst-sci-discuss.net
http://www.hydrol-earth-syst-sci-discuss.net/4/189/2007/hessd-4-189-2007-print.pdf
http://www.hydrol-earth-syst-sci-discuss.net/4/189/2007/hessd-4-189-2007-discussion.html
http://www.copernicus.org/EGU/EGU.html


HESSD

4, 189–210, 2007

Comparison of

data-driven methods

for downscaling

X. Liu et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

◭ ◮

◭ ◮

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

EGU

Correlation between t2m and observed Tmax

0.75

0.8

0.85

0.9

0.95

1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Forecast Range

C
o
rr

e
la

ti
o
n

T2m_M1

T2m_mean

Correlation between t2m and observed Tmin

0.7

0.75

0.8

0.85

0.9

0.95

1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Forecast Range

C
o
rr

e
la

ti
o
n

T2m_M1

T2m_mean

Correlation between apcp and observed prec.

0

0.1

0.2

0.3

0.4

0.5

0.6

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Forecast Range
C

o
rr

e
la

ti
o
n apcp_M1

apcp_mean

apcp_total

Fig. 2. Correlation plots between predictors and observed Precipitation, Tmax and Tmin.
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Comparison of observed vs downscaled prec. using TLFN
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Comparison of observed vs downscaled prec. using EPR
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Fig. 3. Scatter ved versus downscaled Prec. using SDSM, TLFN, EPR.
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Comparison of observed vs downscaled Tmax using SDSM
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Comparison of observed vs downscaled Tmax using TLFN
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Comparison of observed vs downscaled Tmax using EPR
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Fig. 4. Scatter plots of observed versus downscaled Tmax using SDSM, TLFN, EPR.
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Comparison of observed vs downscaled Tmin using SDSM
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Comparison of observed vs downscaled Tmin using TLFN
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Comparison of observed vs downscaled Tmin using EPR

-50

-40

-30

-20

-10

0

10

20

30

-50 -40 -30 -20 -10 0 10 20 30

observed Tmin (℃)

d
o
w

n
sc

a
le

d
 T

m
in

 (
℃

 

 

 

Fig. 5. Scatter plots of observed versus downscaled Tmin using SDSM, TLFN, EPR.
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