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Abstract

Soil moisture condition plays a vital role in a watershed’s hydrologic response to a

precipitation event and is thus parameterized in most, if not all, rainfall-runoff models.

Yet the soil moisture condition antecedent to an event has proven difficult to quan-

tify both spatially and temporally. This study assesses the potential to parameterize5

a parsimonious streamflow prediction model solely utilizing precipitation records and

multi-temporal remotely sensed biophysical variables (i.e. from Moderate Resolution

Imaging Spectroradiometer (MODIS)/Terra satellite). This study is conducted on a

1420 km
2

rural watershed in the Guadalupe River basin of southcentral Texas, a basin

prone to catastrophic flooding from convective precipitation events. A multiple regres-10

sion model, accounting for 78% of the variance of observed streamflow for calendar

year 2004, was developed based on gauged precipitation, land surface temperature,

and enhanced vegetation Index (EVI), on an 8-day interval. These results compared fa-

vorably with streamflow estimations utilizing the Natural Resources Conservation Ser-

vice (NRCS) curve number method and the 5-day antecedent moisture model. This15

approach has great potential for developing near real-time predictive models for flood

forecasting and can be used as a tool for flood management in any region for which

similar remotely sensed data are available.

1 Introduction

A watershed’s hydrologic regime, in terms of water balance models, is critical to un-20

derstanding numerous environmental and biophysical processes operating at varying

spatial and temporal scales. Quantifying the spatial and temporal response of runoff to

a precipitation event is critical to understanding processes of erosion, sediment trans-

port, contaminant loadings, flood hydrology, and ecological impact. Soil types, texture,

and condition, surface storage, and soil moisture are primary parameters that influ-25

ence both infiltration and subsequent runoff. Other primary and secondary parameters

2
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that influence infiltration and runoff are vegetation type, density and condition, topog-

raphy, impervious surface, and various artificial barriers to natural flow such as roads,

culverts, and berms.

Effective hydrologic modeling of a watershed’s response to a precipitation event is

partially dependent on the assessment and parameterization of the soil moisture con-5

dition within that watershed in the days or weeks preceding the precipitation event.

Commonly referred to as the antecedent moisture condition (AMC), the soil moisture

condition can account for large variations in runoff from similar precipitation events

within a watershed or from the same storm event in otherwise identical watersheds

(Heggen, 2001).10

Both physically- and empirically-based hydrologic models depend on the characteri-

zation and/or quantification of soil moisture antecedent to the precipitation events and

the subsequent runoff being modeled. Modeling approaches based on physical pa-

rameterization, such as that employed in the Green and Ampt and Holtan models for

infiltration, depend on the quantification of soil moisture as available storage or effec-15

tive saturation. These data must either be collected from soil moisture probe studies or

inferred from empirical analysis of the precipitation history of the watershed or catch-

ment being studied. The spatial variability of soil properties and condition and their

respective infiltration characteristics suggest that physical approaches quickly lead to

massive data requirements if point estimations of soil moisture and infiltration dynamics20

are required across an entire watershed.

The question as how to capture the physical dynamics of infiltration and runoff in

minimally parameterized hydrologic models has traditionally been answered by the ap-

plication of empirical parameterization of rainfall-runoff relationships. The widely used

rainfall-runoff model, the Natural Resources Conservation Service (NRCS) curve num-25

ber (CN) method utilizes a “triad” of antecedent moisture conditions (dry, normal, and

wet) based on 5-day antecedent precipitation for both growing and dormant vegeta-

tive season (USDA-SCS, 1985). While this antecedent soil moisture and precipitation

approach was developed based on midwestern U.S. agricultural watersheds of less

3
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than 250 km
2

(Ponce, 1989), it has been applied in widely varying environmental, geo-

graphic, hydrologic and climatologic settings (Mustafa, 2005; Melesse et al., 2004).

Although many studies utilizing the original or adjusted NRCS AMC curve number

approach report favorable results, other studies have questioned their validity. Mise-

rocchi and Savi (2005), Mishra et al. (2004), Centolani and Savi (2003), and Heggen5

(2001) have concluded that the curve number itself is far from being a static parameter

applied to a designated association of land use land cover (LULC), and soil type or

hydrologic response, and that the variability of CN on a storm by storm basis cannot

be adequately explained by the generalized NRCS method for assessing soil mois-

ture antecedent to a storm event. This growing recognition of the stochastic nature of10

the CN has not lessened the enthusiasm of CN practitioners. Papers continue to be

published in peer-reviewed journals describing CN applications to watershed hydrol-

ogy, with both conventional and modified AMC models (Jacobs et al., 2003; Nachebe,

2006, Melesse and Graham, 2004; Fennessey et al., 2001; Moglen, 2000; Grove et al.,

1998, Shirmohammadi et al., 1997). A trend, however, of many of these recent studies15

is to augment and extend the common CN methodology, as well as other empirical and

physical models, with incorporation of remotely sensed hydrologic parameters.

The advent of remote sensing (RS) with its synoptic view, multiple sensors, and

repetitive coverage coupled with Geographic Information System (GIS) tools have sig-

nificantly facilitated the provision of land use and hydrologic information as well as20

the processing, management and interpretation of hydrologic data. While many re-

searchers have recognized the importance of remote sensing in hydrologic studies in

general, others have just recently begun to evaluate the role of RS in the character-

ization and quantification of soil moisture as it relates to hydrologic models (Cashion

et al., 2005; Jacobs et al., 2003; Schmugge et al., 2002). RS passive microwave and25

radar products have been incorporated into traditional curve number models in lieu of

the NRCS AMC adjustments and have achieved improved performance of those mod-

els in estimating and predicting runoff from precipitation events (Jacobs et al., 2003).

Land surface temperature, as a measure of the thermodynamic state of the surface

4
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and near-surface landscape, is influenced by soil and vegetation canopy moisture, by

surface roughness, and by albedo (Schmugge et al., 2002). Durre and Wallace (2000)

derived a dependency relation between summertime daily maximum temperature and

antecedent soil moisture in the Central and Eastern U.S., whereby a temperature sig-

nal retains a memory of a soil moisture anomaly for up to several weeks. In another5

study (Adegoke and Carleton, 2002), remote sensing vegetation indices of midwestern

U.S. cropland and forest were found to correlate to field-acquired soil moisture. The

authors concluded that a long-term memory of soil water content, of several weeks,

existed in the vegetation canopy.

Despite many improvements of empirical runoff models with the consideration of10

antecedent soil moisture, whether by generalization or by the inclusion of remotely-

sensed data, these models have limited application in many parts of the world. Water

managers for regions that do not have or have only incomplete LULC and soil data will

not be able to apply any variation of the NRCS CN method because these parameters

are essential inputs for the model. By exploiting the documented “memory” of soil15

moisture in land surface temperature and vegetation cover, this study tests a hypothesis

that a rainfall-runoff model can be built solely from these remote sensing parameters

that indicate the antecedent soil moisture condition of a watershed and the resultant

runoff or streamflow response to that moisture condition. For comparison purposes, a

precipitation-runoff model was also developed for the studied watershed utilizing both20

the curve number and the 5-day AMC adjustments.

2 Background of study site

The Guadalupe and San Antonio river basins extend from their headwaters on the Ed-

wards plateau in central Texas to the Texas gulf coast estuaries and bays (Fig. 1). The

middle regions of these basins, as selected for this study, are bounded to the northwest25

by the Balcones escarpment, and to the southeast by the gently sloping coastal plains.

Topographically, these mid-basin watersheds are characterized by low rolling hills and

5
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gently sloped stream valleys. Sandies Creek, a tributary of the Guadalupe River, drains

approximately 2000 square kilometers of predominately rural land in Guadalupe, Gon-

zales, Wilson, Karnes, and DeWitt counties. Land cover types in Sandies Creek wa-

tershed are mainly oak and hickory woodlands with relict stands of long-leaf pine, in-

terspersed with shrub and grasslands. Agricultural use is primarily grazing and hay5

production. Soil types in the watershed vary hydrologically from clay-rich, high runoff

potential soils of the hydrologic groups C and D predominating in the inter-stream areas

of the watershed and sandy, low runoff potential soils of the hydrologic groups A and B

predominating in floodplains and along stream courses. Hydrologic group A soils are

also associated with the occurrence of the pine stands.10

Precipitation in the region is primarily convective, typically associated with the con-

vergence of frontal systems and moisture masses moving inland from the Gulf of Mex-

ico, as well as from the Gulf of California and Pacific Ocean. Mean annual precipitation

across the respective river basins ranges from 750 to 1050 mm, along a west to east

gradient. The majority of significant rainfall events occur in late Spring (May–June) and15

early Autumn (September–October). The region is also known for locally intense pre-

cipitation events that are attributed to the orographic influence of the Edwards Plateau

and Balcones Escarpment, tropical moisture streams from the Gulf of Mexico and/or

the Pacific, and the destabilizing influence of late Spring and early Autumn frontal sys-

tems. This region of central Texas holds numerous world records for precipitation inten-20

sities, from 2 h events to 2 day events (Larkin and Bowmar, 1983; Smith et al., 2000).

Likewise, the region is also home to catastrophic flood events.

Sandies Creek watershed has an extensive history of agricultural use and the stream

course itself has recently been listed, along with neighboring Elm Creek, as an impaired

stream by the Texas Commission on Environmental Quality (TCEQ, 2006). The water-25

shed also has a significant history of flooding. An understanding of the watershed’s

runoff response to precipitation events is therefore critical to developing a water quality

assessment and flood mitigation program.

6
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3 Methodology

3.1 Acquisition of precipitation and streamflow data

Two National Weather Service (NWS) Cooperative weather stations, Gonzales 10 SW

and Gonzales 1 N, were selected as data sources for gauged precipitation. Gonzales

10 SW is located a few kilometers just inside the north-eastern boundary of the wa-5

tershed and Gonzales 1N is located 13 km north of the watershed. With one gauge

station within the watershed boundary, the assumption that a single station data record

would reliably represent spatially varying precipitation within the watershed was ques-

tionable. Monthly precipitation totals for both gauges from 1997 to 2005 were analyzed

for collinearity to address this issue (Table 1). Precipitation events at the two stations10

showed the strongest correlations in 1998 and 2004, indicating a greater likelihood for

spatially uniform precipitation across the region in these two years. On the basis of

the availability of multi-temporal remote sensing data, year 2004 was selected for the

model development of this study.

The sole gauging point for Sandies Creek, situated several kilometers upstream from15

the confluence of Sandies Creek and the Guadalupe River, is a United States Geologic

Survey (USGS) gauge station (ID 8175000) (29.2153 N, 97.4494 W). With a 75 year

data record, this station was selected as the outlet for a 1420 km
2

watershed as delin-

eated with ArcGIS hydrology tools (ESRI Inc., 2006). The overall mean flow rate for the

year 2004 at this gauge station was 3.54 m
3

s
−1

with the mode occurring at 0.40 m
3

s
−1

,20

a rate essentially equivalent to the baseflow component of the total flow. The maximum

daily flow rate, corresponding to a 7-day precipitation event in the third week of Novem-

ber 2004, was 121.12 m
3

s
−1

and the minimum rate was 0.017 m
3

s
−1

, occurring on 17

August 2004 after a dry period of 20 days and record high temperatures.

Daily mean precipitation and streamflow events for Sandies Creek watershed (Fig. 2)25

for 2004 are representative of the seasonal precipitation trends in the region with late

Spring and mid Autumn events responsible for most of the runoff from the watershed.

7
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3.2 Pre-processing remote sensing data

Whereas many land surface remote sensing studies demand high spatial and spec-

tral resolution data, a rainfall-runoff hydrologic model to be based on remote sens-

ing data is more dependent on high temporal resolution. The National Aeronautics

and Space Administration’s (NASA) Moderate Resolution Imaging Spectroradiometer5

(MODIS) on board the Terra satellite, launched in 1999, images the entire earth’s sur-

face every 1 to 2 days in 36 spectral bands from the visible to the middle infrared

(http://modis.gsfc.nasa.gov). MODIS raw data (Level 1A and 1B) and processed prod-

ucts (Level 2, 3 and 4) at spatial resolutions ranging from 250 m to 1000 m are pro-

cessed and delivered at no cost to the public by the Earth Resources Observation10

Systems (EROS) data center of the USGS . Data products known to be sensitive to or

indicative of land surface moisture condition assessed in the study were: the Land Sur-

face Temperature/Emissivity (MOD11A2) 8-day (1 km) product, the Vegetation Indices

(MOD13A2)16-day (1 km) product, and the Albedo (MOD43B3) 16-day (1 km) product.

The Land Surface Temperature/Emissivity (MOD11A2) product provides a per-pixel15

average surface temperature estimation of the composited vegetation canopy and

soil, with an accuracy of 1 degree Kelvin (Wan et al., 2004). The Vegetation Indices

(MOD13A2) product provides both the standard Normalized Difference Vegetation In-

dex (NDVI), and an Enhanced Vegetation Index (EVI). EVI has improved sensitivity

to high biomass regions and is de-sensitized to canopy background signal and atmo-20

spheric influences (Gao et al., 2000; Miura et al., 2001). The Albedo (MOD43B3)

product provides surface albedo, defined as the ratio of upwelling or reflected radiative

flux to downwelling flux, corrected for both direct and diffuse components. All MODIS

products are corrected for atmospheric scattering and absorption.

An additional remote sensing product examined in this study was a daily microwave25

emission or brightness temperature product from the Advanced Microwave Scanning

Radiometer for the EOS (AMSR-E) sensor launched in 2002 on board NASA’s Aqua

satellite. The global coverage AMSR-E sensor assesses the microwave temperature

8
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of the earth’s surface twice daily, on both ascending (night) and descending (day) or-

bits. This level 3 processed product (AE Land3) includes daily surface soil moisture

and vegetation water content and roughness data, both of which are key inputs to hy-

drologic and climate models. AMSR-E products are available free of charge at the

National Snow and Ice Data Center (NSIDC), online at http://nsidc.org/data/amsre/.5

All original MODIS datafiles, in HDF format, were re-projected from the original

Equal-Area Sinusoidal projection to a UTM Zone 14 WGS84 datum projection and then

spatially subsetted to the bounding coordinates of the study area in a new GeoTIFF im-

age format. This was accomplished using a software tool called the MODIS Re-Project

Tool, available from the USGS web portal online at http://edcdaac.usgs.gov/datatools.10

asp. An ArcInfo Arc Macro Language (AML) script (Xie et al., 2005; Zhou et al., 2005)

was employed to convert the subsetted MODIS TIFF images to an ArcGIS grid format,

to clip each grid by the polygon coverage of the watershed boundary, and to create

ASCII format output of all pixel values. These pixel values, as 8 and 16 day forward-in-

time event means, were lumped or averaged for the entire watershed.15

The original AMSR-E datafiles were subsetted to the bounding coordinates of the

watershed prior to download from the NSIDC. The processing routine consisted of

manually regridding and geolocating each AMSR file (in an original Equal-Area Scal-

able Earth Grid) utilizing an ENVI georeferencing routine to map all image pixels to

known X and Y coordinates using a Geographic Lookup Table (GLT). This GLT is built20

in ENVI using the geolocation geometry information downloaded with the AMSR prod-

uct. A second manual processing step involved converting all georeferenced files to

TIFF format. A similar ArcInfo AML script, as described above, was employed to resam-

ple the 25×25 km AMSR pixel to a finer resolution of 2.5×2.5 km in order to achieve a

more accurate fit to the polygonal boundary of the watershed, which at the 25 km pixel25

resolution the watershed would encompass less than 4 pixels. Once resampled, the

new TIFF formatted file was clipped to the watershed boundary, and summary pixel

values were output to a text file. In particular, the AMSR-E daily soil moisture product

for daytime descending orbits was examined in this study.

9
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3.3 Curve number model development

3.3.1 Soils and land use land cover data

The hydrologic group designation for any soil type can be either A, B, C, or D, where

the runoff potential increases from A to D. The source for specific soil hydrologic group

type (SSURGO) is distributed by the NRCS of the USDA. This SSURGO database5

includes both tabular soils data and vector maps of soils as mapped by county agen-

cies. Land cover information, as 21 separate land cover classes, is available in raster

format from the National Land Cover Dataset (NLCD) distributed by the USGS. These

data are generated from unsupervised classifications of Landsat 5 imagery collected

in 1992. The landscape bounded by the extent of the Sandies Creek watershed was10

represented by 16 individual land cover classes in 8 categories. Four categories –

forested land, shrubland, grassland, and pasture/cultivated lands – represented 98.9%

of the total land area of the watershed, the remainder being wetlands, urban lands, bar-

ren lands, and open water. Soil hydrologic group types were predominately D and C

(soil types with low infiltration and high runoff potential), representing 57% and 21% of15

the total watershed area, respectively. Soil types B and A (soils with higher infiltration

but lower runoff potential), represented 13% and 9% of watershed area, respectively.

Geographic Information Systems (GIS) allows for merging vector-based soil map

units with the raster-based land use and land cover (LULC). The resultant product is a

raster image of each soil map unit and LULC classification, commonly referred to as a20

hydrologic response unit (HRU). Curve numbers for each LULC and soil type combi-

nation are readily available in lookup tables found in various hydrology handbooks and

manuals, such as the TR-55 handbook (USDA, 1986). The specific area of each HRU

can be used to calculate a spatially weighted composite curve number (CNcomp) for the

watershed according to the following equation25

CNcomp =

∑
AiCNi
∑

Ai

(1)

10
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with Ai and CNi being the area and CN for each HRU within the watershed.

3.3.2 Antecedent moisture condition model

The actual composite curve number for the watershed was adjusted for antecedent

moisture condition on an event by event basis according to the following empirical

equations.5

CN(I) =
4.2CN(II)

10 − 0.058CN(II)
(2)

CN(III) =
23CN(II)

10 + 0.13CN(II)
(3)

Where CN(II) represents the composite mean curve number for the watershed, CN(I)

the adjusted curve number for dry conditions, and CN(III) the adjusted curve number for

wet conditions (Chow et al, 1985) based on the National Engineering Handbook (NEH-10

4) (USDA-SCS, 1985). Table 4.2 of NEH-4 provides guidance for this adjustment based

on cumulative precipitation for the preceding 5 days, with adjustments for dormant and

growing season conditions (Table 2). For this application, the growing season was

defined as being from 1 May to 30 September.

In recognition that a watershed’s moisture condition must vary dynamically and not15

statically across just three states “dry, normal, and wet” as suggested by the AMC

model above, an exponential smoothing filter (with a damping factor of 0.7) was run

across the calculated curve number values for the data period record. This resulted in

a more hydrologically realistic gradational change of CN (Fig. 3).

3.3.3 Calculation of uniform depth of runoff20

For a given precipitation event, the CN method partitions a given uniform depth of pre-

cipitation into a runoff component and an infiltration component through the following

11
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two equations (USDA, 1986).

S =
25400

CNcomp

− 254 (4)

Q =
(P − Ia)

2

(P − Ia + S)
(5)

Where S represents the maximum potential retention of the watershed in mm. Ia,

the initial abstraction, represents that portion of retention associated with interception,5

ponding, and wetting of soil and vegetation surfaces. Ia is usually approximated as

0.2S. For a given precipitation event (P), Q, the uniform depth of runoff (in mm) is then

determined.

3.3.4 Baseflow extraction

The NRCS curve number method generates a uniform runoff depth (Q) for a watershed10

for an effectively uniform precipitation event. The resultant flowrate, determined by in-

tegrating Q over the watershed area and accounting for channel hydraulics, represents

runoff but not necessarily streamflow, since streamflow includes both baseflow and

runoff components. While the baseflow component can be isolated from a streamflow

record through manual interpretation of the hydrographs, an automated method pro-15

vided by the Baseflow Filter program, a software-based routine available online from

USDA’s Soil and Water Assessment Tool (SWAT) website (USDA – SWAT, 2006), was

employed to extract an estimated baseflow. Using a methodology outlined by Arnold

and Allen (1999), the Baseflow Filter program, through analysis of the recession limb of

hydrographs, extracts an estimated baseflow from a streamflow record in 3 successive20

passes of the extraction algorithm. Depending on a user’s conservative vs. aggres-

sive interpretation, any one of the three passes can be selected as the final baseflow

estimation. For this study, the baseflow for actual streamflow events of year 2004 was

extracted as pass 1, the most conservative filter. On a day by day basis, these baseflow

12
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estimations are then summed with the curve number runoff estimations, as described

below, to produce a modeled streamflow for the watershed for 2004.

3.4 Remote sensing model development

With calendar year 2004 selected for the model, an 8-day mean datapoint interval

was selected on the basis of MODIS 8-day surface temperature product. This interval5

appeared to be the best compromise of daily precipitation and streamflow data, and

the 16-day MODIS vegetation indices and albedo products. An 8-day forward mean

dataset was created for precipitation and gauged streamflow producing 46 individual

data files for the year, each corresponding to the time frame of the MODIS 8-day data.

The 16-day products were converted to an 8-day product by interpolation. The AMSR-10

E soil moisture product was the only dataset not based on an 8-day mean, but rather

on individual days on an 8-day interval.

An examination of the daily precipitation and streamflow records for 2004 indicated

a significant lag time between most rain event peaks and the subsequent response

or streamflow peaks, typically 2 days. For most watersheds, this natural lag time can15

range from a few hours to days. In the creation of the 8-day mean precipitation periods,

failing to include a data period offset for precipitation could preclude the precipitation

events that caused the streamflow event. A separate correlation test was run on each

of five offset periods for precipitation, from a 0-day to a 4-day offset. The highest

correlation occurred when the 8-day mean period was offset or advanced 3 days –20

sufficient time to allow for the watershed’s apparent lag time. Plots of both 8-day mean

precipitation and streamflow records for offsets of 0 and 3 days are shown in Fig. 4.

Note that the 3-day offset precipitation event means demonstrate a much improved

peak-to-peak correspondence to streamflow means.

Given that the regression model was evaluating the effects of antecedent events and25

moisture states on streamflow response, it was necessary to evaluate the 4 primary

MODIS parameters, NDVI, EVI, albedo, and surface temperature (Ts), at various time

offsets or advances from the 8-day streamflow data period. Unlike the procedure uti-

13
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lized to assess the best correlation of precipitation to streamflow, by offsetting the 8-day

period means one day at a time, the offsetting of NDVI, EVI, albedo, and Ts had to oc-

cur in full 8-day increments. Three offsets were tested in the regression model for each

parameter, a 2 period advance (16 day), a 1 period advance (8 day), and no advance

(0 day). The AMSR-E soil moisture product was tested with a 0-day and with one 8-day5

period advance.

Prior to performing the forward stepwise regressions, a distribution analysis of the

8-day mean gauged streamflow record indicated a non-normal distribution, verified by

the Shapiro-Wilks statistical test for normality. A log transformation of the streamflow

data prior to the regression analysis satisfied the normal distribution assumptions for10

linear regression models.

4 Results

4.1 Curve number model

From the assemblage of LULC and soil hydrologic groups encompassed within Sandies

Creek watershed, the spatially weighted composited curve number was calculated as15

71.8. This equates to an adjusted CN of 51.7 for “dry” AMC(I) conditions and a CN

of 85.4 for “wet” AMC(III) conditions using Eqs. (2) and (3). Direct comparisons of

curve number 8-day aggregated modeled streamflows for a single composite curve

number, the three AMC adjusted curve numbers, and a smoothed AMC continuum of

curve numbers are shown in Fig. 5. Since individual CN-derived runoff depths are20

synchronous with the precipitation record, the record of all runoff events were offset 3

calendar days from the precipitation events (prior to being aggregated as 8-day means)

to account for the watershed’s apparent lag time and to facilitate comparison to the RS

model.

An examination of Fig. 5a strongly suggests that a single composite but lumped25

CN parameter is insufficient to reasonably estimate streamflow (runoff plus estimated

14
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baseflow). The cumulative gaged flow for 2004 was 112.2×10
6

m
3
. The lumped CN

modeled flow was 152.6×10
6

m
3
, representing an overestimate of 36.1%. While this

overestimate could be considered reasonable on an annual basis, individual 8-day

comparisons are poor both in terms of magnitude and peak to peak correspondence,

strongly suggesting the importance of modeling antecedent moisture conditions.5

The AMC modification of the lumped curve number approach, by including 3 mois-

ture states and their respective adjustments to CN, offers a considerable improvement

in both individual 8-day magnitudes and peak to peak correlation (Fig. 5b). The cumu-

lative modeled flow was 111.4×10
6

m
3
; a 6.9% underestimate of cumulative gauged

flow. However, there are noticeable discrepencies in individual 8-day events, such as10

the near 100% overestimate in peak flow for the period 21 and 42 events (9 June and

16 November data periods, respectively) and peak to peak mismatches at events 24

and 36.

The smoothed curve number model (Fig. 5c), the more hydrologically realistic one

considering temporally varying AMC, underestimates cumulative annual flow by 28.7%,15

with a total flow of 80.0×10
6

m
3
. Overall, it appears to be the best fitting model in terms

of 8-day event magnitudes and peak to peak correspondence.

4.2 Remote sensing model

A multiple linear regression model was developed to examine the potential of remote

sensing to estimate an 8-day mean streamflow response of Sandies Creek watershed20

to 8-day mean precipitation events for 2004. The conventional CN derived streamflows

were used for comparison purposes.

Prior to regression, all RS parameters were checked for colinearity. Table 3 shows all

pairwise parameter correlations, along with significance probabilities and a correlation

chart. From this table it is apparent that there is a weak correlation of the two vegetation25

indices and albedo to temperature, but a much stronger correlation of albedo to both

NDVI and EVI. Any r
2
-value above 70% in a pairwise correlation is cause for concern.

15
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Rather than exclude the albedo parameter a-priori, it was decided to leave it in the

model, check for its level of significance, and then exclude it if necessary.

With 15 regression parameters now included (6 original parameters plus 9 variants

based on time offsets), the “best” parameter subset for model inclusion was obtained

using forward stepwise multiple regression. This regression method involves evaluating5

the significance of a parameter in reducing the sequential sum of squares of the model

as that parameter enters the model. The significance probability criteria for entering

the model was set at p = 0.250. A total of 6 parameters successfully entered the model

giving the following estimates of model success (Table 4).

An examination of the step history revealed that the first parameter to enter the10

model was precipitation (3-day advance or offset) with 46.6% of the streamflow vari-

ability explained. Surface temperature, with a 1 period or 8-day offset, accounted for an

additional 14% of the streamflow variability. EVI with a 0 period offset accounted for an-

other 20% of streamflow variability. Altogether, these first three parameters accounted

for 80.2% of the variability in log transformed streamflow (Y), while the subsequent 315

parameters only improved the model by an additional 6%. Despite the “best” Mallow’s

Cp criteria – a factor indicating model adequacy – occurring at step 4 or 5 (point at

which Cp is closest to p, the number of parameters), the parameters associated with

steps 4 and 5 are repeats of the parameters of steps 2 and 3, with different offsets.

The removal of these 2 parameters from the model do not significantly degrade the20

results (r
2
adj = 0.782), but once removed, AMSR-E derived soil moisture is no longer

significant at P = 0.796. With the soil moisture parameter removed, the final multiple

regression model includes precipitation (3 day offset), temperature (8 day offset), and

EVI (no offset), with the final r
2
adj = 0.787. All parameter estimates were significant at

P<0.0001 (Fig. 6), as indicated by the individual leverage plots for each parameter. A25

leverage plot is a plot of parameter values against the predicted residuals. The 95%

confidence limit curves, as displayed in the plots, indicate parameter significance if

the curve region does not contain the line denoting the zero value residual (horizontal

dashed line).

16
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The final prediction equation for this regression model follows.

Ŷ = e
0.599+0.326P+9.112EV I−0.201T (6)

Where Ŷ is predicted streamflow (m
3

s
−1

), EVI is enhanced vegetation index (unit-

less) with no advance, P is precipitation (mm) with a 3-day advance, and T is surface

temperature (
◦

C) with an 8-day advance. A plot of gauged versus modeled streamflow5

for both curve number and remote sensing methods can be seen in Fig. 7. The re-

mote sensing multiple regression approach, in an 8-day mean model, estimated total

annual cumulative streamflow at 93.3×10
6

m
3
, an underestimate of 16.8% compared

to a 28.7% underestimate for the optimal AMC adjusted curve number model.

5 Discussion10

The remote sensing model more closely corresponded to gauged peak flow, in both

magnitude and alignment, than did any of the three curve number models evaluated.

The significance of the two primary remote sensing parameters as indicators of land-

scape moisture status, EVI and surface temperature, confirm the results of other stud-

ies that both vegetation and ambient surface temperature retain a “memory” of an-15

tecedent moisture. The non-significance of the AMSR-E derived soil moisture in the

final model can perhaps be attributed to a combination of factors, such as the masking

effect of the vegetation canopy, and the fact that this dataset represented single day

moisture estimations every 8 days and not 8-day continuous means.

The surprising and original result from this study indicates that a watershed’s stream-20

flow can be reasonably estimated on an 8-day basis from readily available and tempo-

rally continuous remote sensing parameters and a precipitation record. Much work

remains in this study in terms of calibration and validation of the estimation equation

for other time periods in the data record for this particular watershed as well as the

derivation of estimation equations for other regionally proximate watersheds. A chal-25

lenging issue in ultimately developing a reasonable streamflow prediction equation is

17
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to derive a spatial scaling coefficient for incorporation in the estimation equation such

that streamflow can be estimated for a range of watershed dimension. Another goal

of future research in this streamflow model is to assess and evaluate spatially dis-

tributed precipitation estimates such as those offered by weather radar (NEXRAD) de-

rived or satellite derived precipitation products. If these products can be utilized in lieu5

of gauged data, this modeling approach could have far-reaching implications for water

balance models and flood vulnerability forecasting in regions of the world with sparse

hydrologic data and knowledge.

6 Conclusions

A multiple regression statistical approach to streamflow estimation utilizing remotely10

sensed biophysical parameters sensitive to a watershed’s soil moisture condition was

presented in this research study. A method was developed to parameterize a statistical

model for streamflow estimation in a rural Texas watershed using surface temperature

and the Enhanced Vegetation Index imagery products from the MODIS/Terra satellite,

combined with a gauged precipitation record for calendar year 2004. For comparison,15

streamflow or runoff for this same data period was determined with the NRCS curve

number method based on soil hydrologic group type and land cover type information.

Estimated 8-day mean streamflows from the remote sensing model represented an

improvement over curve number modeled streamflows, developed with the standard

5-day antecedent moisture condition model. From this study, it is concluded that mul-20

titemporal satellite imagery holds great promise for analysis of the role of landscape

moisture status in the subsequent modeling of a watershed’s streamflow response to

precipitation events. It is anticipated that future research will demonstrate that stream-

flow estimation equations can be determined for watersheds of varying spatial dimen-

sion under similar environmental and climatological conditions.25
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Table 1. Pearson’s r
2

correlations for Gonzales 1N and 10SW weather station monthly rainfall

by year.

Year 1997 1998 1999 2000 2001 2002 2003 2004 2005

r
2

0.71 0.94 0.83 0.90 0.60 0.86 0.87 0.98 0.80
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Table 2. Antecedent moisture condition assessment, modified for metric units, from National

Engineering Handbook 4 (USDA – SCS, 1985).

Total rain previous 5 days (mm)

Condition Soil wetness Dormant season Growing season

I Dry but above wilting point <12 <35

II Average 12–28 35–53

III Near saturation >28 >53
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Table 3. All pairwise parameter correlations with significance probability.

Variable by Variable Correlation Significance

Probability

TEMP PREC –0.1970 0.1945

NDVI PREC 0.1285 0.4000

NDVI TEMP 0.6733 0.0000

EVI PREC 0.1235 0.4189

EVI TEMP 0.6174 0.0000

EVI NDVI 0.9468 0.0000

ALB PREC –0.1322 0.3868

ALB TEMP –0.7259 0.0000

ALB NDVI –0.9666 0.0000

ALB EVI –0.9066 0.0000

SM PREC –0.0588 0.7044

SM TEMP –0.3042 0.0447

SM NDVI –0.1523 0.3237

SM EVI –0.1466 0.3424

SM ALB 0.1253 0.4177

TEMP = temperature (
o
C), NDVI = Normalized Difference Vegetation Index,

EVI = Enhanced Vegetation Index, ALB = albedo, SM = soil moisture
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Table 4.1. Forward stepwise regression step history and initial model results.

Step History

Step Parameter Action P SSseq r
2

Cp p

1 Precipitation

(3 day offset)

Entered 0.000 57.18 0.466 90.8 2

2 Temp

(1 period offset)

Entered 0.001 16.97 0.605 59.2 3

3 EVI

(0 period offset)

Entered 0.000 24.20 0.802 13.1 4

4 Temp

(0 period offset)

Entered 0.008 4.11 0.836 6.9 5

5 EVI

(2 period offset)

Entered 0.055 1.93 0.852 5.1 6

6 Soil moisture

(1 period offset)

Entered 0.117 1.21 0.862 4.7 7

P – significance probability, SSseq – sequential sum of squares, r
2

– Coefficient of Multiple

Determination, Cp – model “adequacy” factor, p = # of parameters in model
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Table 4.2. Continued.

Model Results

SSE DF MSE r
2

r
2
adj Mallows Cp

16.974 36 0.472 0.862 0.839 4.694

SSE – sum square error, DF – degrees of freedom, MSE – mean square error, r
2

– Coefficient

of Determination, r
2
adj – Coefficient of Determination adjusted for multiple parameters, Mallows

Cp – model “adequacy” factor
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Guadalupe River Basin

San Antonio River Basin

›

0 50 10025 Kilometers

Edwards Plateau
Balcones Escarpment

Sandies Creek
Watershed

Coastal Plains

Gulf Coast
estuaries 
and bays

Fig. 1. Location of Guadalupe and San Antonio River basins of southcentral Texas and Sandies

Creek watershed, a 1420 km
2

rural catchment of predominately oak and hickory woodlands,

shrubland, and agricultural grasslands for grazing and hay production.
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Fig. 2. Daily mean streamflow (m
3
s
−1

) at the outlet of Sandies Creek watershed (USGS gauge

station 8175000) and precipitation (mm) for 2004 at Gonzales 10 SW weather station on the

northern edge of the watershed.
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Fig. 4. Comparison of the 8-day mean daily precipitation (mm) for zero and 3-day time offsets,

and 8-day mean streamflow (m
3
s
−1

) for 2004 at Sandies Creek watershed. Note the improved

peak to peak fit of the 3-day offset precipitation means to streamflow event means.
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Fig. 5. (a) Sandies Creek gauged and modeled streamflow for a single composite CN of 71.8,

(b) Sandies Creek gauged and modeled streamflow for AMC states I (CN = 51.7), II (CN =

71.8) and III (CN = 85.4), (c) Sandies Creek gauged and modeled streamflow for a smoothed

AMC continuum.
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Fig. 6. Leverage plots of precipitation (a), temperature (b), EVI (c) and the overall model (d). If

a parameter’s significance curves envelop or contain the dashed line at 0, then that parameter

is not considered significant in the model.
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Fig. 7. Plot of actual versus estimated 8-day streamflow means for the remote sensing and

curve number models for Sandies Creek watershed, calendar year 2004.
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