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Abstract

This paper examines the potential of scatterometer data from ERS satellites for improv-
ing hydrological simulations in both gauged and ungauged catchments. We compare
the soil moisture dynamics simulated by a semidistributed hydrologic model in 320
Austrian catchments with the soil moisture dynamics inferred from the satellite data.
The most apparent differences occur in the Alpine areas. Assimilating the scatterom-
eter data into the hydrologic model during the calibration phase improves the relation-
ship between the two soil moisture estimates without any significant decrease in runoff
model efficiency. For the case of ungauged catchments, assimilating scatterometer
data does not improve the daily runoff simulations but does provide more consistent
soil moisture estimates. If the main interest is in obtaining estimates of catchment soll
moisture, reconciling the two sources of soil moisture information seems to be of value
because of the different error structures.

1. Introduction

Soil moisture has an important influence on hydrological and meteorological pro-
cesses, although the volume of water stored as soil moisture represents only a small
proportion of liquid freshwater on the Earth. Soil moisture controls the partitioning of
radiation into latent and sensible heat and hence the water balance of catchments in
most climates. Soil moisture also controls the magnitude of floods through partitioning
rainfall into runoff and infiltration. A realistic representation of soil moisture is therefore
essential for numerous purposes.

In the past years there has been a concerted effort to better understand the spatio-
temporal dynamics of soil moisture in small catchments (e.g. Western et al., 1998;
Western and Bldschl, 1999; Bardossy and Lehmann, 1998). These studies have pro-
vided a lot of insight into how soil moisture varies in space as a function of terrain, soil
characteristics and what the spatial statistical characteristics are. The ground based
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measurements used in the above studies were based on gravimetric sampling, on Neu-
tron moisture meters or on Time Domain Reflectometry. All methods are sufficiently
accurate to allow a meaningful interpretation of the measurements and they can be
calibrated relatively easily. The main drawback of ground based measurements, how-
ever, is that they can only cover relatively small areas due to logistic constraints, and
the spatial support or foot print of a measurement is usually on the order of a few
centimetres. This makes it very difficult to estimate meaningful spatial averages over
medium sized to large catchments. There have been a number of attempts to relate
ground measurements to larger catchment scales (e.g. Western et al., 2002) but there
are two alternative methods of estimating the soil moisture dynamics that are more
relevant for large regions. The first method consists of estimating soil moisture based
on hydrological models. The second method consists of back-calculating soil moisture
from satellite observations. Each of these alternative methods has its advantages and
disadvantages. The main advantage of using hydrological models for estimating soil
moisture is that they explicitly represent areal averages over catchments and the in-
put data are usually available over large areas. Also, soil moisture simulated by these
models is considered representative over the entire root zone, which is the hydrolog-
ically most important zone in terms of runoff generation. The main disadvantage of
this type of model is that there is always some degree of calibration needed to accu-
rately represent the hydrological processes in a particular case (Bldschl and Grayson,
2002). An alternative approach of estimating soil moisture is the use of satellite data.
A range of platforms exists or will be shortly in place (e.g. Schultz and Engman, 2000;
Jackson, 2005). Out of these, radar microwave sensors are particularly appealing for
retrieving soil moisture. Radar measurements of bare soil surfaces are very sensitive
to the water content in the soil surface layer due to the pronounced increase in the soil
dielectric constant with increasing water content (Ulaby et al., 1982). In a hydrologic
context, the main advantage of using spaceborne sensors for soil moisture retrieval is
that they provide an integral value over an area rather than point values. Also, many
of these data sources are available at a global scale, so they are ideally suited for the
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ungauged catchment problem. However, there are also a number of disadvantages
in a hydrologic context. The main limitation is probably the limited penetration depth.
Microwaves only sense the top few centimetres of the soil or less while, for hydrologic
predictions, the soil moisture in deeper soil layers is just as important. Hydrological
use of this type of data hence needs to carefully consider the implications of the limited
penetration depth.

It appears an obvious thing to merge these two branches of soil moisture estima-
tion, hydrological models and spaceborne data, to benefit from the advantages of both
methods. There has indeed been a substantial body of work in recent years geared
towards combining hydrologic or atmospheric models and spaceborne data. These
methods of integrating satellite data in a consistent manner with model predictions
are usually referred to as Data Assimilation (DA) procedures. DA methods are quan-
titative, objective methods to infer the state of a hydrologic system from irregularly
distributed and temporally inconsistent data sets with differing accuracies, providing at
the same time more reliable information about the predictive uncertainty in model fore-
casts (McLaughlin, 1995). Existing DA schemes were developed mainly for numerical
weather prediction, where the most commonly used techniques are optimal interpola-
tion and variational minimisation (Daley, 1991). Spurred by the success of DA in other
fields and by a few early hydrological investigations (e.g. Entekhabi et al., 1994; Milly,
1986) DA has attracted a lot of attention in hydrology in recent years (Wigneron et al.,
1999; Hoeben and Troch, 2000; Houser et al., 2000; Boni et al., 2001; Walker et al.,
2001; Francois et al., 2003, Schuurmans et al., 2003). These papers have mostly fo-
cused on the assimilation of surface soil moisture data into land surface models. Some
of these studies have simulated the real time mode and have hence used a scheme for
updating the state variables of the model. Houser et al. (2000) and Walker et al. (2001)
assessed the relative merits of updating schemes including direct insertion, statistical
corrections, Newtonian nudging, optimal interpolation, Kalman filtering and ensemble
Kalman filtering. Another important application is the simulation mode where the soil
moisture data are used in the calibration of land surface models together with other
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data sources.

The rationale of combining two sources of information on soil moisture, hydrologi-
cal models and satellite data, is that even though both sources have clear limitations
and are associated with significant uncertainty it is their combination that should help
reduce the uncertainty of the integrated estimates. The main hypothesis of this is
that the error structures of the estimates from these two methods are likely different,
so one would expect a combination of the two sources to be less biased and exhibit
less random error than any of the two sources individually. The hypothesis of different
error structures is plausible because of a number of reasons. Most importantly, the
estimates come from completely different instruments, ground based instruments and
spaceborne sensors, so one would also expect their errors to be different. Also, the
models that estimate soil moisture in these two sources have a different structure and
they are calibrated in different ways.

The aim of this paper is to compare the soil moisture dynamics estimated from hy-
drological models with those inferred from satellite data, and to examine the potential
of scatterometer data from ERS satellites for improving hydrological simulations in both
gauged and ungauged catchments.

This paper is organised as follows. The data section provides an overview of satellite
(scatterometer) data as well as the climate and hydrologic data. The methods section
presents the model, the method of reconciling the penetration depth of the satellite
data with the model structure, the calibration procedure, and evaluates the model per-
formance. In the next sections we compare soil moisture derived from the scatterome-
ter data with the soil moisture simulations obtained by the hydrologic model. We then
present the results of assimilating the scatterometer data into the hydrologic model
during the calibration phase. Finally, we analyse the potential of the scatterometer soll
moisture estimates for predictions in ungauged catchments. The paper concludes with
remarks on possibilities for improving satellite derived soil moisture estimates.
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2. Data

This study is set in Austria and the data are from the period 1991-2000. The dataset
includes soil moisture estimates from the ERS scatterometer, climatic data used for
simulating soil moisture using a hydrologic model as well as runoff data.

2.1. Scatterometer data

The satellite soil moisture data used in this study are taken from the Global Soil Mois-
ture Archive 1992-2000 located at http://www.ipf.tuwien.ac.at/radar/ers-scat/home.htm
(Scipal et al., 2002). The archive is based on ERS Scatterometer data and comprises
global surface soil moisture data and indicators of root zone soil moisture sampled at
ten-day intervals.

Scatterometers are active microwave sensors characterised by a coarse spatial but
a high temporal resolution. To retrieve soil moisture information, scatterometers on-
board of the European Remote Sensing Satellites ERS-1 and ERS-2, operated by the
European Space Agency were used. The ERS scatterometer operates at 5.3 GHz (C-
band) vertical polarization, collecting backscatter measurements over an incidence an-
gle range from 18° to 57° using three sideways looking antennae. The sensor achieves
global coverage within 3 to 4 days where each beam provides measurements of radar
backscatter from the sea and land surface for overlapping 50 km resolution cells with
a 25km grid spacing at approximately 10:30a.m. and 10:30 p.m. for ascending and
descending tracks, respectively. Unfortunately, over Europe ERS scatterometer oper-
ations were often in conflict with Synthetic Aperture Radar (SAR) acquisitions which is
why only 17-40% of all possible acquisitions were actually taken. The locations of the
centroids of the pixels for Austria are presented in Fig. 1.

Scatterometry offers capabilities to infer soil moisture due to the strong variation of
the dielectric constant of the soil with volumetric water content. However, scattering
from land surfaces depends on other factors as well. Potential retrieval techniques
must account for the confounding effects of surface roughness, vegetation, topogra-
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phy and soil texture. Retrieval of soil moisture for “The Global Soil Moisture Archive”
is based on the change detection method developed by Wagner et al. (1999b). The
method accounts for the effects of surface roughness, vegetation and heterogeneous
land cover (Wagner et al., 1999a, b, c). It allows the retrieval of surface soil moisture
information of the topmost 2 cm by comparing the instantaneous vegetation corrected
backscatter coefficient to the lowest and highest backscatter coefficients observed in a
nine year period (1992—2000). Under the assumption that within this period the respec-
tive area has been observed under completely dry (lowest backscatter coefficient) and
saturated conditions (highest backscatter coefficient) the derived soil moisture informa-
tion, mg, is equivalent to the degree of saturation in relative units (ranging between 0
and 100%).

2.2. Climatic and hydrologic data

The climatic data used to drive the hydrologic model include measurements of daily
precipitation and snow depths at 1091 stations and daily air temperature at 212 climatic
stations. To calibrate and verify the hydrologic model, daily runoff data from 320 gauged
catchments were used with areas ranging from 10 km? to 9770km? and a median of
196 km?. A more detailed description of the spatial distribution of the climate stations
and the boundaries of the gauged catchments is presented in Parajka et al. (2005a).
The inputs to the hydrological model were prepared in two steps. First, the daily
values of precipitation, snow depth and air temperature were spatially interpolated by
methods that use elevation as auxiliary information. External drift kriging was used for
precipitation and snow depths, and the least-squares trend prediction method was used
for air temperatures (Pebesma, 2001). The spatial distribution of potential evapotran-
spiration was estimated by a modified Blaney-Criddle method (Schrodter, 1985; Para-
jka et al., 2003) using daily air temperature and potential sunshine duration calculated
by the Solei-32 model (Mészaros et al., 2002, http://www.ih.savba.sk/software/solei/)
that incorporates shading by surrounding terrain. In a second step, a digital elevation
model with a 1x1km grid resolution was used for deriving 200 m elevation zones in
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each catchment. Time-series of daily precipitation, air temperature, potential evapora-
tion and snow depth were then extracted for each of the elevation zones to be used in
the hydrological simulations.

3. Method
3.1. Hydrological model

The hydrologic model used in this research is a semi-distributed conceptual rainfall-
runoff model, following the structure of the HBV model (Bergstrom, 1976; Lindstrom
et al., 1997). The model runs on a daily time step and consists of a snow routine,
a soil moisture accounting routine and a flow routing routine. The soil moisture rou-
tine estimates root zone soil moisture by balancing evaporation and runoff output with
precipitation input. The outputs are a function of root zone soil moisture as estimated
by the model. More detailed information about the model structure and its hydrologic
applications in Austria is presented, e.g. in Parajka et al. (2004, 2005a, b).

3.2. Matching penetration depths

The main challenge in combining spaceborne soil moisture with soil moisture repre-
sented in hydrological models are the shallow penetration depths of the spaceborne
data. Some assumptions hence need to be made on the vertical distribution of soil
moisture in the soil profile. A number of studies have applied representations of the
one-dimensional Richards equation. Bernard et al. (1981), Prevot et al. (1984), and
Bruckler and Witono (1989) used fixed head boundary condition in the one-dimensional
Richards equation, and Entekhabi et al. (1994) updated the 1D state variables in the
Richards equation using a Kalman filter. The difficulty with the Richards equation ap-
proach is that the soil physical characteristics need to be know in much detail which
is usually not possible at the field scale. Also, it is unclear what is the value of an
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excessive level of detail in the vertical direction if the model is lumped over areas of
hundreds of square kilometres. Because of this, simplifications of the Richards equa-
tion have been proposed which are invariantly some type of multilayer model. Two layer
models of various variants have been proposed by Jackson et al. (1981) and Ottlé and
Vidal-Madjar (1994) which they combined with the direct insertion updating approach.
A two layer model based on basin average soil moisture has been suggested by Geor-
gakakos and Baumer (1996). A three layer approach has been proposed by Houser et
al. (2000) who applied a number of assimilation schemes. The relative merits have not
yet been fully assessed but it seems clear that, given the spatial scales and data limita-
tions, more parsimonious approaches are more appealing than the more sophisticated
ones.

This paper therefore adopts an alternative approach. Rather than resolving the ver-
tical profile to estimate surface soil moisture from root zone soil moisture an attempt
is made to estimate root zone soil moisture from the surface values. The approach is
pragmatic. The main idea is that surface soil moisture tends to fluctuate much more
rapidly than root zone soil moisture. This is because the soil dampens the high frequen-
cies as soil moisture infiltrates into the soil. Rather than solving the flow equations we
represent the dampening effect by a linear, exponential filter in the time domain. In
other words, a Taylor hypothesis is made to trade space for time. The filtered values
are termed the Soil Water Index, SWI:

st(t/)e_¢
SWi(t) = ———. (1)

To
i

where my; is the retrieved surface soil moisture value at time ¢;, ranging between 0 and

1. The main parameter in the approach is the time constant of the filter or pseudo

diffusivity 7. In general, the pseudo diffusivity depends on soil properties including soil

depth and the moisture state (Wagner et al., 1999b; Ceballos et al., 2005). As soil

properties are not known quantitatively on a regional scale, this parameter was set to
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an a priori value of T=20 days (Wagner et al., 1999c) in this paper. This value is con-
sistent with hydrological reasoning. The field capacity of Austrian soils as obtained by
calibrating hydrological models (Merz and Bloschl, 2004), typically, is on the order of
150 mm. Assuming a porosity of 0.3, a pseudo diffusivity of 20 days would then trans-
late into a wetting front celerity of 25 mm per day. This is a typical value for Austrian
soils.

The Soil Water Index, SWI, is a non-dimensional index between 0 (completely dry),
and 1 (saturated). The index has been shown to be bounded well by the wilting level
and the point midway the field-capacity and total water capacity (Wagner et al., 1999b).
Throughout this paper, the SW/ index is used as a satellite estimate of relative root zone
soil moisture.

In the hydrological model, Ss,, is the soil moisture of a top soil layer controlling runoff
generation and actual evaporation (Eq. A.4 of Parajka et al., 2006). This soil moisture
has been scaled by the field capacity, FC, to obtain relative root zone moisture, i.e.
Ssy/FC. The scaled soil moisture is a dimensionless variable ranging from 0 to 1.
Throughout this paper this variable is used as a hydrological estimate of relative root
zone soil moisture.

3.3. Multi-objective calibration of the hydrologic model

In this study, the model was calibrated for 320 gauged catchments. Daily inputs (pre-
cipitation, air temperature and potential evapotranspiration) were allowed to vary with
elevation within a catchment, and the soil moisture accounting and snow accounting
was performed independently in each elevation zone. However, the same model pa-
rameters were assumed to apply to all elevation zones of a catchment. From a total
of 14 model parameters, 3 parameters were preset (Tz=2°C, T5=0°C, T;,=0°C) and
11 parameters (Table 1) were estimated by automatic model calibration. We used the
shuffled complex evolution (SCE-UA) scheme of Duan et al. (1992) to calibrate the
model parameters to observed runoff and snow cover. The objective function (Z.) to
be minimised in the calibration involves three parts which are related to runoff (Zy),
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snow cover (Zg) and a priori information about the distribution of each model parame-
ter (Zp). Z¢ is the weighted mean of these parts:

Zo=Wy-Zo+Wy-Zg+Wz-Zp, (2)

where the weights were obtained in Parajka et al. (2005a) as w4=0.6, w,=0.1 and
W3=0.3.

The runoff objective function Z, follows the relation proposed by Lindstrom (1997),
which combines the Nash-Sutcliffe coefficient (ME) and the relative volume error (VE):

Zo=(1-ME)+w, VE, 3)

where

i=1

n 2
; (Oobs,i - Osim,i)
>

ME =1 - , (4)
n 2
(Oobs,i - Qobs)
i=1
n n
. Os/m,i - Qobs,i
VE _ i=1 - i=1 (5)
,21 Qobs,i
=

Qqim ; is the simulated streamflow on day /, Q,, ; is the observed streamflow, Q,, is
the average of the observed streamflow over the calibration (or verification) period of n
days, and the weight w, was found in Parajka et al. (2005a) as w,=0.1.

The snow objective function Z5 compares the observed and simulated snow cover-
age. Observed snow coverage was estimated from daily grid maps constructed from
the observed snow depth data. Simulated snow coverage was derived from the snow
water equivalent simulated by the model for each elevation zone in the catchment.
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Snow simulations on a particular day were considered to be poor if the difference be-
tween simulated and observed snow coverage was greater than 50% of the catchment
area. The 50% threshold was determined in sensitivity analyses (not shown here)
taking into account different areal arrangements of elevation zones in different catch-
ments, where the sensitivity was assessed on the basis of model performance. The
snow objective function Zs was then defined as the ratio of the number of days with
poor snow cover simulation (n,,) to the total number of days in the simulation period:
n

Zs=—- (6)

The third term, Zp, allows inclusion of an expert estimate about the a priori distribu-
tion of each parameter. In calibration procedures, the parameter values are usually
bounded between two limits (Duan et al., 1992) and otherwise no a priori assumptions
are made about the parameters. This implies that the a priori distribution of the param-
eters is a uniform distribution. We believe that it is possible to make a more informed
guess about the shape of the a priori distribution and introduced a penalty function, Zp,
based on an a priori distribution for each parameter:

Pj=p;
o = ) (525
fmax,j
pmax,j - p/,j
s =4 () ¥

where p; is the model parameter j to be calibrated, p, and p,, are the lower and upper
bounds of the parameter space, respectively, p,. is the parameter value at which the
a priori distribution is at a maximum and kis the number of parameters to be calibrated.
The probability density function of the Beta distributionf is:

(7)

.1
f(x|u,v)=mx“‘1(1—x)v‘1 for0O<x<1,u>0,v>0 (9)
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B(u,v) = /x”'1(1 -x)"ldx =
0

rwrey 10)
Mu+v)

where the values of u, v, p,, p, and p,.x have been taken from Merz and Bloschl
(2004). In the absence of more detailed information we have chosen the same values
of the u, v, p;, p, and pax for all catchments (Table 1). If more detailed information
was available (for example from catchment attributes or from field studies), the limits
and parameters of the Beta distributions for each model parameter could be assigned
differently from catchment to catchment.

3.4. Hydrologic model performance

For the evaluation of the calibration and verification efficiencies the entire period of ob-
servation (1991-2000) was split into two periods: the calibration period from 1 Novem-
ber 1991 to 31 December 1995 and the verification period from 1 November 1996 to 31
December 2000. Warm up periods from January to October were used in both cases.
We examined the model performance in terms of the efficiency of the model of sim-
ulating runoff using the Nash-Suitcliffe coefficient (ME, Eq. 4) and volume errors (VE,
Eq. 5). We also examined the model performance in terms of the days of poor snow
cover simulations (Zs, Eq. 6). These performance measures have been evaluated
independently for the calibration and the verification periods (Table 2).

Table 2 shows that the median of ME over the 320 catchments in the calibration
and verification periods is 0.76 and 0.73, respectively. This means that the model
performance decreases only slightly when moving from calibration to verification. The
median of VE in the calibration and verification periods is 0.0% and 1.9%, indicating
that both the calibration and verification is essentially unbiased. The median of the
snow performance measure Zs is 5.4% in the calibration period and 4.2% in the verifi-
cation period, which indicates that the model performance is even somewhat better in
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the verification period.

The spatial patterns of the runoff efficiencies ME in the calibration (1991-1995) and
verification (1996—-2000) periods are presented in Fig. 2. Results indicate that there
are regional differences in the model performance. In the western, alpine parts of
Austria the simulation of runoff is generally better than in the eastern lowlands. The
alpine catchments are wetter and snowmelt is more important than in the catchments
of the east. Overall, the magnitudes of these model efficiencies are more favourable
or similar to results from other regional studies published in the literature (e.g. Seibert,
1999; Perrin et al., 2001; Merz and Bloschl, 2004; Parajka et al., 2005a). This suggests
that the parameter estimates are robust and that the model represents the hydrological
balance of the catchments reasonably well.

4. Comparison of soil moisture estimates

We compared the relative soil moisture simulated by the hydrologic model with the SWI
index estimated from the scatterometer data. Both estimates, notionally, represent root
zone soil moisture. For the soil moisture simulations we used the parameter sets op-
timised for the calibration period (1991-1995) and simulated the daily water balance
for all 320 catchments in the period 1991-2000. In each catchment, the soil moisture
component was calculated separately for different elevation zones. Subsequently we
constructed grid maps of soil moisture exhibiting subcatchment variability for each day
of the selected simulation period. For the case of nested catchments, the soil moisture
patterns of the smaller catchments were plotted on top of those of the larger ones. The
scatterometer soil moisture values were assigned to the representative area (polygon)
around the centroids (Fig. 1). For each day when scatterometer soil moisture date
were available we plotted a grid map representing the regional variability of soil mois-
ture. Examples of the spatial patterns of the relative soil moisture so estimated for two
particular days are presented in Fig. 3.

The comparison of the spatial patterns of the hydrologic model and scatterometer

2752

HESSD
2, 2739-2786, 2005

Assimilating
scatterometer data
into hydrologic
models

J. Parajka et al.

Title Page
Abstract Introduction
Conclusions References
Tables Figures
1< >l
< >
Back Close

Full Screen / Esc

Print Version

Interactive Discussion

EGU


http://www.copernicus.org/EGU/hess/hessd.htm
http://www.copernicus.org/EGU/hess/hessd/2/2739/hessd-2-2739_p.pdf
http://www.copernicus.org/EGU/hess/hessd/2/2739/comments.php
http://www.copernicus.org/EGU/EGU.html

10

15

20

25

soil moisture shows that for days with snow cover (e.g. Fig. 3, left) the scatterometer
soil moisture is obviously not meaningful. The reason is that no soil moisture infor-
mation can be obtained by remote sensing methods when snow covers the surface.
Unfortunately, it is not possible to exclude snow observations based solely on the scat-
terometer data, which is why erroneous data are contained in the present version of
the scatterometer soil moisture data base. A more plausible agreement between the
spatial patterns is obtained for days without snow cover (e.g. Fig. 3, right) although the
spatial patterns of the hydrologic model soil moisture are much more spatially detailed.
In the following analyses we therefore used the gridded snow depth information to ex-
clude those soil moisture estimates that have been retrieved on days with existing snow
cover (catchment mean snow depth >0.1 cm), and calculated the catchment average
from the remaining soil moisture estimates simulated in different elevation zones for
each particular day. We then compared the catchment mean soil moisture estimated
by the hydrologic model with the scatterometer soil moisture of the nearest scatterom-
eter retrieval point. The distance between the centroid of each catchment and the
centroid of the scatterometer pixels was used for that purpose.

A demonstration of the temporal dynamics of the two different soil moisture sources
is plotted in Fig. 4 for two catchments in the year 1992. Figure 4 top shows the com-
parison for the Weer catchment in Tirol. The mean catchment altitude of the catchment
is 17735 m. The comparison indicates that very little correlation exists between model-
simulated and scatterometer-derived soil moisture. A much better agreement appears
for the Pesenbach catchment (Fig. 4, bottom). The Pesenbach catchment is in Upper
Austria and the mean catchment altitude is 569 m. For the Pesenbach the correlation
coefficient between the two soil moisture estimates is about 0.78. The median and per-
centile difference (75%—25%) of the correlation coefficient (r) over all 320 catchments
is presented in Table 2. The median of r indicates that for the majority of the catch-
ments there is very little correlation between scatterometer and model soil moisture
estimates in both the calibration and verification periods. However significant regional
differences exist.
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The spatial patterns of the overall agreement between the two soil moisture sources,
in terms of the correlation coefficient, are presented in Fig. 5. Fig. 5 top and bottom
show the correlations for the calibration period (1991-1995) and verification period
(1996—2000), respectively. The spatial patterns of the correlation coefficient, especially
for the calibration period, exhibit a distinct boundary between the alpine region and the
lower parts of Austria. In the Alpine region, the correlations are poor and even negative.
In the northern prealpine and northern/eastern lowland areas the relationship between
the two different soil moisture estimates seems to be significant.

These results indicate that in the alpine regions with complex terrain it is difficult
to derive regionally consistent soil moisture estimates from the scatterometer data and
the hydrologic model simulations. In the flatlands, the estimates seem to be much more
accurate. Part of the poor correlations in the Alps may be due to the rugged terrain and
forest cover which may make the scatterometer data less accurate than in the flatlands.
The low correlations may also be due to only using the summer scatterometer data.
This will reduce the seasonal sample variance which, with a given error variance, will
decrease the correlation coefficient. Clearly, the soil moisture estimates from the hy-
drological simulations are also associated with considerable uncertainty. One would,
however, not expect major differences in the uncertainty between the Alpine and low-
land parts of Austria.

5. Scatterometer soil moisture assimilation

In order to reconcile the two soil moisture estimates we assimilated the scatterometer
data in the calibration phase of the hydrological model. We extended the multi-objective
calibration approach presented in the previous section (Eqg. 2) by using the following
objective function:

Zy=(1-r)-Zp, (11)
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where r is the correlation coefficient between soil moisture estimated from the scat-
terometer data and simulated by the hydrologic model, and Z, represents the com-
pound objective function defined by Eq. (2). As the objective function is minimised
large correlation coefficients will be favoured in the calibration process. Based on the
soil moisture comparison above, the correlation coefficient between the soil moisture
estimates was calculated only for days when no snow cover was observed.

The model efficiencies obtained in the data assimilation are presented in Table 3.
The medians of the runoff efficiency ME over the 320 catchments in the calibration and
verification periods are 0.75 and 0.72, respectively. This is only slightly poorer than
the efficiencies obtained without data assimilation (Table 2). The median of the volume
error VE in the calibration and verification periods is 0.1% and 0.4%, respectively, indi-
cating that the data assimilation in the calibration and verification periods is essentially
unbiased. The percentile difference, i.e. the scatter between the catchments, of the
volume errors do increase when scatterometer data are assimilated. The median of
the snow performance measure Z in the calibration period is 5.1% and in the verifica-
tion period it is 3.9%, which suggests that this model performance is even somewhat
better than that obtained without data assimilation.

The spatial patterns of the ME model performance in the calibration and verifica-
tion periods are presented in Fig. 6. These patterns are similar to those obtained in
simulations without the assimilation of scatterometer data (Fig. 2). Again, in the ver-
ification period the runoff model efficiency is somewhat lower than in the calibration
period. This indicates that scatterometer assimilation into the model calibration does
not significantly decrease the runoff model efficiency.

Very significant differences between the cases with and without assimilation do oc-
cur, however, in the correlation coefficients between the soil moisture estimates (Fig. 7).
Assimilation of scatterometer data in the model calibration increases the correlations
dramatically. This is not surprising, of course. Significant improvements occur, espe-
cially, in the western, Alpine, part of Austria, but the correlations also increase in the
lowland areas. Table 3 suggests that the increase in the median of the correlation
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coefficient is from 0.07 to 0.26 (calibration period) and from 0.12 to 0.17 (verification
period). Also, the quantile differences decrease which indicates that the match of the
two soil moisture sources is more consistent throughout Austria.

The regional difference in soil moisture correlations indicates that for northern pre-
alpine regions and lowlands the soil moisture dynamics of the hydrological model agree
well with the satellite estimates of soil moisture, even in the validation period. For these
areas it is possible to reconcile the two sources of soil moisture estimation. The soil
moisture correlations in the alpine areas are somewhat better than without data assim-
ilation, however, the relationship is still poor.

Including the scatterometer data in the calibration of the hydrologic model changes
the temporal soil moisture dynamics simulated by the hydrologic model. Figure 8
presents an example. Figure 8 top shows the simulations for the Weer catchment
where, previously, no correlations between two soil moisture estimates were found.
Assimilating the scatterometer data improves the soil moisture correlation from —0.04
to more than 0.54. Figure 8 bottom shows the soil moisture time series for the Pe-
senbach catchment. For this catchment, the correlation coefficient between the two
soil moisture estimates increases from 0.78 to 0.86. In the two examples, the main
effect is that the scatterometer data assimilation decreases the calibrated value of the
field capacity, FC, of the model. The relative soil moisture (i.e. soil moisture scaled by
the field capacity hence fluctuates strongly when scatterometer data are assimilated.
Interestingly, for both example catchments, the data assimilation does not change the
model efficiency with respect to daily runoff.

6. Hydrologic model performance for ungauged catchments

In this section we tested the potential of assimilating scatterometer data for improving
hydrological predictions in ungauged catchments. As the scatterometer data are avail-
able for both gauged and ungauged catchments, it may be possible to extract useful
information for simulations in ungauged catchments. Estimation of daily runoff and soil
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moisture in ungauged catchments was evaluated for two cases. In the first case we
only used observed snow cover data and the regionalised information about the model
parameters for the prediction at ungauged sites. In the second case we additionally
used the information about the soil moisture state obtained from the scatterometer
data. For both cases, we calibrated the hydrologic model without the information of
locally measured runoff using the following objective function Z,:

Zy=Wg-r+Wg-Zg+W;-Zp (12)

where r is the correlation coefficient between model simulated soil moisture and scat-
terometer derived soil moisture for days without observed snow cover, Zg represents
the agreement between observed and simulated snow cover (Eq. 6) and Z, (Eq. 7)
is the penalty based on an a priori distribution for each parameter. For the ungauged
case prediction, we did not apply a uniformly predefined parameter distribution in each
of the 320 catchments (as in the multiple objective calibration), but we constrained
each parameter in each catchment separately, based on information obtained from pa-
rameter transposition from neighbouring catchments using the kriging method. The
transposition of the model parameters was as in Parajka et al. (2005). The weights in
Eqg. (12) were examined in test simulations (not shown here), and were set to wg=1.0
and w,=1.0. The distinction between the two cases was the weight wy. For the sec-
ond case, where we tested the potential of soil moisture scatterometer data we set the
weight ws to 0.2. In the first case we removed the influence of this term by setting w;
to 0.0.

The evaluation of the model performance was as in Parajka et al. (2005). We treated
one gauged catchment as ungauged and simulated the water balance dynamics using
parameters estimated without the local runoff measurements. Next, we estimated the
model performance by comparing the simulated and observed hydrographs as well
as the correlation between simulated and scatterometer derived soil moisture. We
repeated the analysis for each catchment in turn and calculated the statistics of these
error measures for all catchments. The comparison of these error measures with those
for the locally calibrated case, both for the calibration and verification periods, indicates
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what decrease of model performance one would have to expect when moving from
gauged to ungauged catchments. This decrease we term the spatial loss in model
accuracy.

The results of model performance in ungauged sites is presented in Tables 4 and
5. Table 4 gives the model efficiencies for ungauged catchments without the use of
scatterometer data. The median of the runoff model efficiency (ME) was 0.65 in the
calibration and 0.64 in the verification periods. This indicates that the spatial loss in
ME was 0.11 in the calibration and 0.09 in the verification periods, when compared to
local calibration including at site runoff measurements (Table 2). The median of runoff
volume errors (VE) is slightly negative in the calibration and verification periods which
suggests a slight underestimation of runoff. The median of the correlation coefficients
yields 0.11 in the calibration and 0.16 in the verification periods which shows poor
agreement between model simulated and satellite-derived soil moisture estimates.

Table 5 shows the runoff model performance when the scatterometer data were as-
similated in the ungauged catchment predictions. The medians of the runoff ME for
the calibration and verification periods is 0.61 and 0.59, respectively. This indicates
that the data assimilation decreases runoff simulation performance as compared to the
case where no scatterometer data are assimilated (Table 4). In the calibration period
the decrease is from 0.65 to 0.61 and in the verification period the decrease is from
0.64 to 0.59. In fact, the decrease in runoff model performance is larger than for the
gauged catchment cases (Tables 2 and 3). The procedure hence does not seem to
extract useful information from the scatterometer data in ungauged catchments. The
median of runoff volume errors, VE, is —4.2% in the calibration and —3.1% in the veri-
fication periods. This indicates a slight underestimation of runoff in both periods.

As would be expected, the correlation coefficients between the soil moisture sim-
ulated by the hydrologic model and derived from the scatterometer data increases if
scatterometer data are assimilated. In the calibration period, the increase is significant
(from 0.11 to 0.27). In the verification period, however, the increase is slim (from 0.16 to
0.17). Clearly, for the verification period no scatterometer data have been assimilated
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and the information does not seem to carry over from the calibration to the verification
period.

The relative changes in model performance due to assimilating scatterometer data
for ungauged catchments are shown in Fig. 9 top. Blue colours relate to catchments
where the runoff model efficiency improves when scatterometer data are assimilated.
Red and yellow colours relate to catchments where the runoff model efficiency de-
creases. Most catchments are red or yellow. This indicates that assimilating scat-
terometer data does not improve runoff simulations in ungauged catchments. In fact,
the runoff simulation performance tends to decrease.

Figure 9 bottom shows the relative changes in the correlations between the soil mois-
ture estimates from scatterometer data. Again, blue colours relate to catchments where
the correlations increase, red and yellow colours relate to catchments where the cor-
relations decrease. In terms of soil moisture simulations the correlations do increase
in almost all catchments. While a tighter relationship between the two soil moisture
estimates is no surprise, it does allow for more consistent soil moisture estimates in
ungauged catchments.

7. Discussion and conclusions

The comparison of the two different soil moisture estimates indicates that their spatial
and temporal dynamics are quite different. Because of this, the potential of improv-
ing runoff simulations by assimilating scatterometer data into the hydrological model
is limited in the study region examined here. The most noticeable differences were
observed between the alpine regions and the flatlands. Results showed that there is a
strong decrease in the correlation between the soil moisture estimates in regions with
mean elevations of more than 600 ma.s.l. and large topographical variability. There
are a number of potential sources of these differences.

The first source of disagreement may be related to problems with the scatterometer
retrieving algorithm in alpine regions. Retrieval of soil moisture from scatterometer data
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performs best over flat to gently undulating regions with low vegetation cover (grass-
land, crops, etc.). Retrieval is much more limited over densely forested terrain, rock
outcrops or urban areas which are all characterized by very stable and high backscat-
ter in C-band (Wagner et al., 1999a). Therefore, with increasing percentage of forest
cover, rock outcrops or urban area within one scatterometer pixel one would expect the
soil moisture sensitivity to decrease. Figure 10 shows the sensitivity of the backscat-
tering coefficient to soil moisture changes, expressed in decibels, for July, when vege-
tation is most dense in Austria. The sensitivity is defined as the difference in backscat-
ter between the driest and wettest observed soil conditions in the nine year period
(1992-2000), corrected for the seasonal vegetation dynamics. As expected, the high-
est sensitivity can be observed over the agriculturally-dominated Austrian lowlands with
values of up to 4dB, although this is a much lower sensitivity compared to grassland
regions, where sensitivities up to 8-10dB can be observed. Over the densely forested
Austrian Alps the sensitivity is significantly lower with values ranging from 1 to 2dB.
This value is not much larger than the typical noise level of the scatterometer data over
these regions, which is about 0.3dB. This shows that retrieval is expected to perform
significantly better over the lowlands than over the mountain regions.

To better understand the potential controls on the consistency of the soil moisture
patterns we plotted the correlation coefficients of soil moisture from Fig. 5a against
a number of landscape characteristics. Figure 11a shows the correlation coefficients
plotted versus the standard deviation of elevation within each scatterometer polygon.
There is an apparent relationship with low relief areas exhibiting much stronger cor-
relations than high relief areas. Figure 11b shows the correlation coefficients plotted
versus the percent forest area of each scatterometer polygon. There is a clear trend
of the upper envelope. Open areas may show large correlation coefficients but, as the
forest cover increases, the maximum correlations that can be obtained decrease. This
is related to the decrease of scatterometer sensitivity with percent forest cover. How-
ever, apparently, there are other controls as some of the polygons with little forest cover
show very low correlations. These are the high alpine areas where mountain pastures,
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rocks and glaciers prevail. Figure 11c shows the correlation coefficients plotted versus
percent glacier of each polygon. The polygons with a large proportion of glacier always
show negative correlations. Clearly, glaciers limit the retrieval of soil moisture.

The second source of disagreement may stem from the hydrological model. The
hydrological model performs best, in terms of simulating runoff, in the alpine areas
and poorest in the lowlands. One would therefore not necessarily expect lower perfor-
mance in terms of simulating soil moisture in the mountains as compared to the low
lands. However, the main control of runoff in the mountains is snow rather than soil
moisture, so there is the possibility that soil moisture is represented poorly. The strong
association of the negative correlations with glacier area in Fig. 11c is, in fact, an in-
dication that the hydrological model does not simulate soil moisture well in the high
alpine catchments where glacier runoff is important. No glacier component has been
included in the hydrological model and snow fall and snow depletion on glaciers are
represent by the snow component of the model.

The differences between the two soil moisture estimates may also be related to the
spatial variability of the forcing climatic variables (precipitation, air temperature, solar
radiation etc.) in alpine regions. Alpine catchments tend to have a much larger altitudi-
nal range than flatland catchments which may result in a much larger within-catchment
variability of soil moisture controls and hence soil moisture. Figure 12 shows an anal-
ysis of the spatial within-catchment variability of simulated soil moisture, normalised
by the temporal variability of catchment soil moisture within the simulation period. The
spatial variability is indeed much larger in the alpine catchments than it is in the low-
lands. In the Alps the ratio is more than six times that in the lowlands. The pattern
is very similar to those of the correlation coefficients between soil moisture simulated
by the hydrologic model and soil moisture derived from the ERS scatterometer data
(Fig. 5). It is also similar to the improvement in runoff model efficiency when scat-
terometer data are used in the ungauged sites simulations (Fig. 9, top). The low cor-
relation coefficients of the hydrologically modelled and scatterometer soil moisture are
co-located with the large spatial within-catchment variability in the Alps. On the other
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hand, the large correlation coefficients are co-located with the small spatial within-
catchment variability in the lowlands. The similarity of the patterns suggests that the
spatial within-catchment variability does indeed strongly affect the correlation between
the two soil moisture estimates.

As soil moisture cannot be retrieved by the scatterometer when snow is on the
ground, in the comparisons of this paper, SWI values have only been used for those
dates where the snow depth data indicated snow free ground. There are alternatives
of how to mask snow cover effects on the scatterometer data. To examine the effect of
the masking we tested the correlation between the two soil moisture estimates under
different masking criteria. The correlations slightly improved when the scatterometer
surface data, m,, were masked rather than the SW/ data. The correlation improved fur-
ther when SWI data were calculated for the days of scatterometer acquisitions instead
at regular 10 days intervals. This is because of the limited scatterometer coverage
which has a negative impact on the quality of the SWI. There may therefore be po-
tential in improving the masking criteria. There is also potential in spatially varying
the time constant of the filter or pseudo diffusivity to account for the differences in the
penetration depth of the scatterometer data and the depth of the top soil layer in the
hydrological model. In this paper a value of T = 20 days has been selected. The time
constant would be expected to depend on soil depth which is likely smaller in the Alps
than it is in the flatlands. More detailed soils data, however, is needed to constrain this
parameter.

A problem particular to the Austrian situation is the very low number of scatterome-
ter acquisitions due to operation conflicts with the Synthetic Aperture Radar (SAR) on
board of ERS-1 and ERS-2. For the period used in this paper, scatterometer acquisi-
tions were taken in only 17-40% of all satellite overpasses. Considering, in addition,
the lengthy snow and frost period in the Austrian Alps the number of available data is
much less than over most land surfaces worldwide. Still, also the data acquired over
the mountain regions were considered in this study to examine how much informa-
tion relevant to soil moisture is contained in the scatterometer data under such difficult
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conditions.

Overall, the assimilation of scatterometer data into the calibration of the hydrologic
model has been found to improve the relationship between the two soil moisture esti-
mates, without any significant decrease in runoff model efficiency. However, it should
be noted that, in the alpine regions, the increase in soil moisture correlation was not
very significant and the soil moisture relationship was still rather poor. The calibration
using the scatterometer data has changed the temporal dynamics of soil moisture es-
pecially in the alpine regions. The temporal variability of soil moisture has increased
mainly due to a decrease in the field capacity model parameter, FC, and a change in
the nonlinearity parameter, (. Interestingly, the change in model parameters does not
affect much the overall model performance with respect to measured runoff. These re-
sults point to the potential of scatterometer data assimilation in regional water balance
simulations especially in terms of reducing the degrees of freedom in the calibration.
Reconciling the two different soil moisture estimates for gauged catchments may be of
value if one is interested in the temporal dynamics of soil moisture in regions with small
topographical variability and low vegetation.

The runoff model efficiencies in the ungauged case predictions without using scat-
terometer data are similar to results obtained in other regionalisation studies (e.g. Para-
jka et al., 2005a). The use of scatterometer data for ungauged catchments decreases
the runoff model performance significantly in the alpine catchments. This is apparently
related to the low signal to noise ratio of the scatterometer data in the Alps. The rela-
tionship between the two soil moisture estimates is poorly defined. There are a number
of lowland catchments where the ungauged catchment performance is increased as a
result of assimilating the scatterometer data. In almost all catchments, the use of
scatterometer data improves the consistency between the scatterometer data and the
hydrologic model estimates at ungauged sites both for the calibration and the verifi-
cation periods. It is hence possible to reconcile the two sources of soil moisture but
there is little value of assimilating scatterometer data for simulating runoff, neither in
gauged nor in ungauged catchments. However, if soil moisture is the main interest
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there may be value in reconciling the two soil moisture estimates because of the dif-
ferent error structures. As in the gauged catchment case, this applies to regions with
small topographical variability and low vegetation.

Satellite data are sometimes recommended to assist hydrological simulations in un-
gauged catchments (Bloschl, 2005). There are a number of studies that report on
close correlations between observed runoff and satellite soil moisture data. Scipal et
al. (2005), for example, found a high correlation (R2>O.85) between basin-averaged
soil moisture data from the scatterometer and measured runoff of the Zambezi River in
south-eastern Africa. However, the analyses in this paper indicate that the correlations
may much lower under more difficult conditions and for smaller catchment scales. Also,
the existence of correlations does not necessarily imply improvements of runoff simu-
lations. Indeed, there is very little evidence in the literature to indicate that soil moisture
satellite data may assist in improving runoff simulations and/or forecasts both in gauged
and ungauged catchments. There are, of course, numerous other reasons for using
satellite data in hydrology. It is also likely that new developments will increase the use-
fulness of soil moisture information from satellites for hydrological purposes. As new
sensors are becoming available one would expect the soil moisture information con-
tent of scatterometer data to improve. The higher spatial resolution (25km) provided
by the successor of the ERS scatterometer, the Advanced Scatterometer (ASCAT) on
board of the Meteorological Operational (METOP) satellite series (Figa-Saldana et al.,
2002), will enhance the dynamic range of the sensitivity, since less spatial integration
of the backscatter data takes place. This will improve the signal-to-noise ratio over
pixels with low vegetation cover. In this case study, the temporal coverage of ERS-1
and ERS-2 was very poor. ASCAT will take acquisitions every second day over Austria
or more which will allow to obtain a much better sequence of wetting and drying of the
soil surface and will provide more acquisitions during the short time period when the
ground is snow free and not-frozen in mountain regions. This study also pointed to the
importance of providing quality indicators with the scatterometer data which may assist
users in selecting the most suitable data.
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For improving the estimates of spatial and temporal soil moisture dynamics we are
planning to reanalyse the scatterometer data. The revised methodology should ac-
count for azimuthal variations of the backscattering coefficient which is anticipated to
improve the accuracy of the soil moisture estimates. For the regionalisation of model
parameters and hydrological prediction in ungauged catchment we plan to mask data
from regions which are affected by snow cover, data from forested regions and re-
gions with large spatial soil moisture variability. We believe this will help derive more
reliable regional links between catchment attributes and model parameter and exploit
more effectively the value of scatterometer data in regions with sparse ground-based
observations.
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Table 1. Model parameters and a priori distributions. v and v are the parameters of the Beta models
distribution (Eq. 9), p, and p,, are the lower and upper bounds of the parameter space and p,;.«
is the parameter value at which the Beta distribution is at a maximum (Eq. 7). J. Parajka et al.
Parameter name  Model part  p, Py u v Prmax
SCF (-) Snow 1.0 1.5 1.2 40 1.03
DDF (mm/°C day) Snow 0.0 5.0 20 40 125
LP/FC (-) Soil 0.0 1.0 40 1.2 094
FC (mm) Soil 0.0 6000 1.1 1.5 100.2
B (=) Soil 00 200 1.1 1.5 3.4
K, (days) Runoff 0.0 2.0 20 40 0.5
K, (days) Runoff 20 300 20 40 9.0
K, (days) Runoff 30.0 180.0 1.05 1.05 105.0
Cp (mm/day) Runoff 0.0 8.0 20 4.0 2.0
Cp (days®/mm) Runoff 00 500 1.05 1.05 25.0
LS, (mm) Runoff 1.0 1000 3.0 3.0 505
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Table 2. Median and quantile difference (75% and 25%) of runoff model efficiency (ME), volume
errors of runoff (VE), snow cover simulations error (Zg) and correlation coefficient between the
two soil moisture estimates (r). Results are for 320 catchments. No assimilation of soil moisture
data.

Median/ Calibration period  Verification period
quantile difference of (1991-1995) (1996-2000)
ME (-) 0.76/0.13 0.73/0.19
VE (%) 0.0/3.0 1.9/9.3
Zg (% of days) 5.4/11.4 4.2/10.3
r(-) 0.07/0.57 0.12/0.50
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Table 3. Median and quantile difference (75%—25%) of runoff model efficiency (ME), volume
errors of runoff (VE), snow cover simulations error (Zg) and correlation coefficient between the
two soil moisture estimates (r). Results are for 320 catchments. Assimilation of scatterometer
soil moisture data.

Median/ Calibration period  Verification period
quantile difference of (1991-1995) (1996-2000)
ME (-) 0.75/0.13 0.72/0.18
VE (%) -0.1/6.2 0.4/12.0
Zg (% of days) 5.0/10.8 3.9/10.6
r(-) 0.26/0.37 0.17/0.40
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Table 4. Median and quantile difference (75%—25%) of model efficiency of runoff (ME), volume
errors of runoff (VE) and correlation coefficients between the two soil moisture estimates (r)
calculated for the ungauged catchment case. Results are for 320 catchments. No assimilation
of soil moisture data.

Median/ Calibration period Verification period
quantile difference of (1991-1995) (1996—2000)
ME (-) 0.65/0.16 0.64/0.19
VE (%) -1.4/16.4 -1.0/15.5
r(=) 0.11/0.54 0.16/0.40
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Table 5. Median and percentile difference (75%—25%) of model efficiency of runoff (ME), vol-
ume errors of runoff (VE) and correlation coefficients between the two soil moisture estimates

(r) calculated for the ungauged case. Results are for 320 catchments. Assimilation of scat-
terometer soil moisture data.

Median/ Calibration period Verification period
quantile difference of (1991-1995) (1996—2000)
ME (-) 0.61/0.19 0.59/0.21
VE (%) -4.2/15.8 -3.1/16.5
r(=) 0.27/0.36 0.17/0.36

2774

HESSD
2, 2739-2786, 2005

Assimilating
scatterometer data
into hydrologic
models

J. Parajka et al.

EG

(@


http://www.copernicus.org/EGU/hess/hessd.htm
http://www.copernicus.org/EGU/hess/hessd/2/2739/hessd-2-2739_p.pdf
http://www.copernicus.org/EGU/hess/hessd/2/2739/comments.php
http://www.copernicus.org/EGU/EGU.html

[ma.s.l]

0 600 1200 1800 2400 3000 3600

Fig. 1. Location of centroids of the pixels for the scatterometer data in Austria.
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CALIBRATION

VERIFICATION
ME [-]

Fig. 2. Nash-Sutcliffe model efficiency (ME) of daily runoff in the calibration (1991-1995) and
verification periods (1996-2000). Calibration of hydrologic model was performed without the

use of scatterometer soil moisture data.
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Fig. 3. Examples of spatial patterns of relative root zone soil moisture simulated by the hydro-
logic model (bottom) and estimated by the ERS scatterometer (top) for two particular dates: 10
February 1992 (left) and 10 May 1993 (right).
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Fig. 4. Comparison of relative soil moisture simulated by the hydrologic model (HM) and de-
rived from the scatterometer (ERS). Example for two catchments, Weer catchment (top) and
Pesenbach catchment (bottom). Scatterplots (right) show the correlation (r) between different
soil moisture estimates obtained for days without snow cover in the period 1992—2000.
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Fig. 5. Spatial patterns of the correlation coefficient, r, between soil moisture simulated by
the hydrologic model and soil moisture derived from the ERS scatterometer in the calibration
(1991-1995) and verification (1996—2000) periods. No assimilation of scatterometer soil mois-
ture data.
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CALIBRATION

Fig. 6. Nash-Sutcliffe model efficiency (ME) of daily runoff in the calibration (1991-1995) and
verification periods (1996-2000). Scatterometer soil moisture data have been assimilated in
the calibration phase of the hydrologic model.
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Fig. 7. Spatial patterns of the correlation coefficient, r, between soil moisture simulated by
the hydrologic model and soil moisture derived from the ERS scatterometer in the calibration
(1991-1995) and verification (1996—2000) periods. Scatterometer soil moisture data have been
assimilated in the calibration phase of the hydrologic model.
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Fig. 8. Comparison of relative soil moisture simulated by the hydrologic model (HM) and de-
rived from the scatterometer (ERS). Example for two catchments, Weer catchment (top) and
Pesenbach catchment (bottom). Scatterplots (right) show the correlation (r) between different
soil moisture estimates obtained for days without snow cover in the period 1992-2000. Red
colour represents the soil moisture simulations using the model parameters obtained without
the soil moisture data assimilation, blue colour represents the soil moisture simulations using
the model parameters obtained with soil moisture data assimilation.
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Fig. 9. Relative change in runoff model efficiency (ME) and in the relationship between scat-
terometer and hydrologic model soil moisture estimates when scatterometer data are used in
the ungauged sites simulations. The relationship between the two soil moisture estimates is
represented by the correlation coefficient (r). Calibration period (1991-1995).

2783

HESSD
2, 2739-2786, 2005

Assimilating
scatterometer data
into hydrologic
models

J. Parajka et al.

it

EG

C


http://www.copernicus.org/EGU/hess/hessd.htm
http://www.copernicus.org/EGU/hess/hessd/2/2739/hessd-2-2739_p.pdf
http://www.copernicus.org/EGU/hess/hessd/2/2739/comments.php
http://www.copernicus.org/EGU/EGU.html

HESSD

2,2739-2786, 2005

Assimilating
scatterometer data
into hydrologic
models

J. Parajka et al.

Senszitivity (dB)
[——— ]
1% 25 3.9

Fig. 10. Scatterometer sensitivity to soil moisture in dB the month July, when vegetation is
most dense in Austria. The sensitivity is defined as the difference in backscatter between the
driest and wettest observed soil conditions in the nine year period (1992-2000), corrected for

the seasonal vegetation dynamics.
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11. Correlation coefficient, r, between soil moisture simulated by the hydrologic model
and soil moisture derived from the ERS scatterometer in the calibration period (1991-1995)
as per Fig. 5a plotted versus (a) standard deviation of elevation within each scatterometer
polygon; (b) percent forest area of each scatterometer polygon; (c) percent glacier area of
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Fig. 12. Ratio of the standard deviation of soil moisture within a catchment (variability in space)
and the standard deviation of catchment soil moisture within the period 1991-2000 (variability
in time).
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