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Abstract

Operational real time flood forecasting systems generally require a hydrological model
to run in real time as well as a series of hydro-informatics tools to transform the flood
forecast into relatively simple and clear messages to the decision makers involved in
flood defense. The scope of this paper is to set forth the possibility of providing flood5

warnings at given river sections based on the direct comparison of the quantitative
precipitation forecast with critical rainfall threshold values, without the need of an on-
line real time forecasting system. This approach leads to an extremely simplified alert
system to be used by non technical stakeholders and could also be used to supplement
the traditional flood forecasting systems in case of system failures. The critical rainfall10

threshold values, incorporating the soil moisture initial conditions, result from statistical
analyzes using long hydrological time series combined with a Bayesian utility function
minimization. In the paper, results of an application of the proposed methodology to
the Sieve river, a tributary of the Arno river in Italy, are given to exemplify its practical
applicability.15

1. Introduction

1.1. The flood warning problem

The aim of any flood warning system is to provide useful information to improving deci-
sions such as for instance issuing alerts or activating the required protection measures.
Traditional flood warning systems are based on on-line hydrological and/or hydraulic20

models capable of providing forecasts of discharges and/or water stages at critical
river sections. Recently, flood warning systems have also been coupled with quantita-
tive precipitation forecasts (QPF) generated by numerical weather models (NWM), in
order to extend the forecasting horizon from few hours to few days (EFFS, 2001–2004).
Consequently, flood forecasting systems tend to require hydrological/hydraulic models25
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to run in real time during flood emergencies, with increasing possibility of system fail-
ures due to several unexpected causes such as model instabilities, wrong updating
procedures, error propagation, etc.

The aim of this paper is to explore the possibility of issuing flood warnings without
the need of running real time hydrological/hydraulic models by directly comparing the5

forecasted QPF to a critical rainfall threshold value incorporating all the important as-
pects of the problem. To be reliable, this threshold must take into account not only soil
moisture conditions at the onset of a flood event but also the perceived advantages of
a right decision as well as the consequences of a wrong one.

The rationale for developing such a system stems from the need of extremely simple10

tools to be used during emergency situations. The proposed approach, which com-
bines simplicity with clear understandability, does not necessarily require the use of a
computer in real time and can possibly be used to supplement a conventional real time
system in case of failures (electricity, computer, models, etc.).

1.2. The rainfall threshold approach15

The use of rainfall thresholds is common in the context of landslides and debris flow
hazard forecasting (Neary et al., 1986; Annunziati et al., 1996; Crosta and Frat-
tini, 2000). Rainfall intensity increases surface landslide hazard (Crosta and Frattini,
2003) while soil moisture content affects slope stability (Iverson, 2000; Hennrich, 2000;
Crosta and Frattini, 2001).20

In the context of flood forecasting/warning, rainfall thresholds have been generally
used by meteorological organizations or by the Civil Protection Agencies to issue alerts.
For instance, in Italy an alert is issued by the Civil Protection Agency if a storm event
of more than 50 mm is forecasted for the next 24 h over an area ranging from 2 to
50 km2. Unfortunately, this type of rainfall threshold, which does not account for the25

actual soil saturation conditions at the onset of a storm event, tends to heavily increase
the number of false alarms.

In order to analyze flood warning rainfall thresholds in more detail, following the
2665
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definition of thresholds used for landslides hazard forecast, let us define them as “the
cumulated volume of rainfall during a storm event which can generate a critical water
stage (or discharge) at a specific river section”. Figure 1 shows an example of rainfall
thresholds i.e. a cumulated volume of rain versus time of rainfall accumulation. In order
to establish the landslides warning thresholds, De Vita and Reichenbach (1998) use a5

number of statistics (such as the mean), to be derived from long historical records, of
the amount of precipitation that happened immediately before the event.

Mancini et al. (2002), as an alternative to the use of historical records in the case
of floods, proposed an approach based on synthetic hyetographs with different shapes
and durations for the estimation of flood warning rainfall thresholds. The threshold val-10

ues are estimated by trial and error with an event based rainfall-runoff model, as the
value of rainfall producing a critical discharge or critical water stage. Although Mancini
et al. (2002) approach overcomes the limitations of the statistical analysis based exclu-
sively on historical records, rarely sufficiently long to produce statistically meaningful
results, it presents some drawbacks due to the use of an event based hydrological15

model. Such as, it requires assumptions both on the temporal evolution of the de-
signed storms and on the antecedent moisture conditions of the catchment, which one
would like to avoid.

A rainfall threshold approach has also been developed and used within the US Na-
tional Weather Service (NWS) flash flood watch/warning programme (Carpenter et al.,20

1999). Flash flood warnings and watches are issued by local NWS Weather Forecast
Offices (WFOs), based on the comparison of flash flood guidance (FFG) values with
rainfall amounts. FFG refers generally to the volume of rain of a given duration nec-
essary to cause minor flooding on small streams. Guidance values are determined by
regional River Forecast Centers (RFCs) and provided to local WFOs for flood forecast-25

ing and the issuance of flash flood watches and warnings. The basis of FFG is the
computation of threshold runoff values, or the amount of effective rainfall of a given du-
ration that is necessary to cause minor flooding. Effective rainfall is the residual rainfall
after losses due to infiltration, detention, and evaporation have been subtracted from
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the actual rainfall: it is the portion of rainfall that becomes surface runoff at the catch-
ment scale. The determination of FFG value in an operational context requires the
development of (i) estimates of threshold runoff volume for various rainfall durations,
and (ii) a relationship between rainfall and runoff as a function of the soil moisture con-
ditions to be estimated for instance via a soil moisture accounting model (Sweeney et5

al., 1992).
As applied in the USA, approaches for determining threshold runoff estimates varied

from one RFC to another, and in many cases, were not based on generally applicable,
objective methods. Carpenter et al. (1999) developed a procedure to provide improved
estimates of threshold runoff based on objective hydrologic principles. For any specific10

duration, the runoff thresholds are computed as the flow causing flooding divided by
the catchment area times the Unit Hydrograph peak value. The procedure includes
four methods of computing threshold runoff according to the definition of flooding flow
(two-year return period flow or bankfull discharge) and the methodology to estimate
of the Unit Hydrograph peak (Synder’s synthetic Unit Hydrograph or Geomorphologic15

Unit Hydrograph). A Geographic Information System is used to process digital terrain
data and to compute catchment-scale characteristics (such as drainage area, stream
length and average channel slope), while regional relationships are used to estimate
channel cross-sectional and flow parameters from the catchment-scale characteristics
in the different locations within the region of application. However the quality of the20

regional relationships, along with the assumptions of the theory, limits the applicability
of the approach. For example, the assumption that the catchment responds linearly to
rainfall excess, which is needed to apply the unit hydrograph theory, imposes lower lim-
its on the size of the catchment, as small catchments are more non-linear than larger
ones (Wang et al., 1981). But at the same time, the assumption on uniform rainfall25

excess over the whole catchment implicitly introduces upper bounds on the size of the
catchments where a Unit Hydrograph approach could be considered reasonable. Fur-
thermore, the assumption of uniform rainfall excess over the catchment also implicitly
limits the size of the catchment for which a unit hydrograph approach is reasonable.
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With reference to the second aspect of the FFG, namely the estimation of the re-
lationship between rainfall and runoff as a function of the soil moisture conditions, in
a recent paper Georgakakos (2005) derives a relationship between actual rainfall and
runoff, which is taken equal to the effective rainfall, both for the operational Sacramento
soil moisture accounting (SAC) model and for a simpler general saturation-excess5

model.
The results of this work have significant implications in operational application of the

methodology. The threshold runoff is a function of the watershed surface geomorpho-
logic characteristics and channel geometry but it also depends on the duration of the
effective rainfall. This dependence implies one more relationship that must be invoked10

to determine the appropriate value and duration of the threshold runoff for any given
initial soil moisture conditions. In other words operationally it is necessary to determine
not only the relationship between the runoff thresholds and the flash flood guidance in
terms of volumes but also in terms of their respective duration.

The method presented in this paper overcomes all the limitations due to historical15

records length, and the restrictive linearity assumptions required by the Unit Hydro-
graph approach as well as the ones required by the Mancini et al. (2002) approach,
by generating a long series of synthetic precipitation, which is then coupled to a con-
tinuous time Explicit Soil Moisture Accounting (ESMA) rainfall-runoff model. The use
of continuous simulation, which necessarily implies continuous hydrological models of20

the ESMA type, was also advocated by Bras et al. (1985), Beven (1987), Cameron et
al. (1999) and seems the most appropriate way for determining the statistical depen-
dence of the rainfall-runoff relation to the initial soil moisture conditions. The statistical
analysis of the long series of synthetic results allows then to develop joint and condi-
tional probability functions, which are then used within a Bayesian context to determine25

the appropriate rainfall thresholds.
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2. Description of the proposed methodology

In order to ease the description of the methodology, two phases are here distinguished:
(1) the rainfall thresholds estimation phase and (2) the operational utilization phase.
The first phase includes all the procedures aimed at estimating the rainfall thresholds
related to the risk of exceeding a critical water stage (or discharge) value at a river5

section. These procedures are executed just once for each river section of interest.
The second phase includes all the operations to be carried out each time a significant
storm is foreseen, in order to compare the precipitation volume forecasted by a mete-
orological model with the critical threshold value already determined as in phase 1.

2.1. The rainfall thresholds estimation10

As presented in Sect. 1.2, rainfall thresholds are here defined as the cumulated volume
of rainfall during a storm event which can generate a critical water stage (or discharge)
at a specific river section. When the rainfall threshold value is exceeded, the likelihood
that the critical river level (or discharge) will be reached is high and consequently it
becomes appropriate to issue a flood alert; alternatively, no flood alert is going to be15

issued when the threshold level is not reached. In other words the rainfall thresholds
must incorporate a “convenient” dependence between the cumulated rainfall volume
during the storm duration and the possible consequences on the water level or dis-
charge in a river section. The term “convenient” is here used according to the meaning
of the decision theory under uncertainty conditions, namely the decision which cor-20

responds to the minimum (or the maximum) expected value of a Bayesian cost utility
function.

Given the different initial soil moisture conditions, which can heavily modify the runoff
generation in a catchment, it is necessary to clarify that it is not possible to determine
a unique rainfall threshold for a given river section. It is well known that the water25

content into the soil strongly affects the basin hydrologic response to a given storm,
with the consequence that a storm event considered irrelevant in a dry season, can
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be extremely dangerous in a wet season when the extent of saturated areas may be
large. This implies the necessity of determining several rainfall thresholds for different
soil moisture conditions. Although one could define a large number of them, for the
sake of simplicity and applicability of the method, similarly to what is done in the Curve
Number approach (Hawkins, 1985), only three classes of soil moisture condition have5

been considered in this work: dry soil, moderately saturated soil, wet soil. A useful
indicator for discriminating among soil moisture classes, the Antecedent Moisture Con-
dition (AMC) can be found in the literature (Gray, 1982; Hawkins, 1985), which leads to
the following three classes of soil moisture AMC I (dry soil), AMC II (moderately satu-
rated soil ) and AMC III (wet soil). Since each AMC class will condition the magnitude10

of the rainfall threshold, three threshold values have to be determined.
Given the loose link that can be found between rainfall totals and the correspond-

ing water stages (or discharges) at a given river section, the estimation of the rainfall
thresholds requires the derivation of the joint probability function of rainfall totals over
the contributing area and water stages (or discharges) at the relevant river section. This15

derivation is based on the analysis of three continuous time series: (i) the precipitation
averaged over the catchment area, (ii) the mean soil moisture value, (iii) the river stage
(or the discharge) in the target river section. It is obvious that these time series must
be sufficiently long (possibly more than 10 years long) to obtain statistically meaningful
results. In the more usual case when the historical time series are not long enough,20

the average rainfall over the catchment is simulated by a stochastic rainfall generation
model whose parameters are estimated on the basis of the observed historical time
series. The rainfall stochastic model adopted in this work is the Neyman-Scott Rectan-
gular Pulse NSRP model, widely documented in the literature (Rodriguez-Iturbe et al.,
1987a; Cowpertwait et al., 1996). With the above mentioned model, 10 000 years of25

hourly average rainfall over the catchment were generated and used as the forcing of a
hydrologic model. The model used in this work is the lumped version of TOPKAPI (To-
dini and Ciarapica, 2002; Ciarapica and Todini, 2002; Liu and Todini, 2002) described
in the Appendix with which the corresponding 10 000 years of hourly discharges and
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soil moisture conditions have been generated.
At this point it is worthwhile noting that:

– The choice of the stochastic rainfall generation model and the rainfall-runoff model
is absolutely arbitrary and does not affect the generality of the proposed method-
ology.5

– Only the average areal rainfall on the basin is used in the proposed approach thus
neglecting the influence of its spatial distribution. Therefore, the suitable range for
applying the proposed methodology is limited to small and medium size basins
(roughly up to 1000–2000 km2), where the extension of the forecasting lead time
by means of QPF may be of great interest for operational purposes, also taking10

into account that the QPF is generated by the meteorological models with a rather
coarse resolution (generally larger than 7×7 km2).

– The results obtained via simulation are not the thresholds values, but less strin-
gent relations such as: (1) indicators incorporating the information on the mean
soil moisture content, which are used to discriminate the appropriate AMC class15

and (2) the joint probability density functions between total rainfall over the catch-
ment and the water stage (or discharge) at the river section of interest.

Phase 1 of the proposed methodology for deriving the rainfall thresholds follows the
three steps illustrated in Fig. 2:

20

Step 1. Subdivision of the three time series obtained via simulation (generated
average rainfall, simulated average soil moisture content, simulated water stage or
discharge at the outlet) according to the defined soil moisture conditions (AMC);

Step 2. Estimation, for each of the identified AMC classes, of the joint probabil-25

ity density function between the rainfall volume cumulated over a time horizon and the
maximum discharge in a related time interval;
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Step 3. Estimation of a rainfall threshold, for each of the identified AMC classes.

2.2. Step 1: Sorting the time series according to the AMC classes

In order to account for the different soil moisture initial conditions, it is necessary to
divide the three synthetic records, namely the stochastically generated rainfall, the soil5

moisture conditions and the water levels (or discharges) obtained via simulation, in
three subsets, each corresponding to a different AMC class.

This subdivision is performed on the basis of the AMC value relevant to the soil
moisture condition preceding a storm event. According to this value, the corresponding
rainfall and discharge time series will be grouped in the appropriate AMC class. This10

operation needs some further clarification, since the search for the rainfall totals and
the corresponding discharge (or water stage) must be done in different time intervals
in order to account for the catchment concentration time.
With reference to Fig. 3, three time values are defined:
t0 the storm starting time15

T the rainfall accumulation time
TC the catchment concentration time

The latter of which can be estimated from empirical relationships based on the
basin geomorphology or from time series analysis, when long records are available.20

As it emerged from the sensitivity analysis of the proposed methodology, in reality
there is no need of great accuracy in the determination of TC.

On the basis of the above defined time values, the rainfall volume VT (or rainfall
height) cumulated from t0 to t0+T and the maximum discharge value Q (or the max-
imum water stage) falling in the time interval from t0+T to t0+TC are retained and25

grouped in one of the classes according to the AMC value at t0.
For a better description of the probability densities, although not essential, it was

decided to construct the AMC classes that would incorporate approximately the same
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number of joint observations. Therefore, the soil moisture contents corresponding to
the 0.33 and 0.66 percentiles can be used to discriminate among the three classes.
Accordingly, based on the initial soil moisture condition at t0, the different events are
classified as AMC I (dry soil), AMC II (moderately saturated soil) and AMC III (wet soil).

2.3. Step 2: Fitting the joint probability density function5

Once the corresponding couple of values (the rainfall total and the relevant maximum
water stage or discharge) have been sorted into the three AMC classes, for each class
one can use these values to determine the joint probability density functions (jpdf)
between the rainfall total and the relevant maximum discharge (or the water stage), to
be used in step three. As a matter of fact, there is not a unique jpdf because each10

density relates to a different rainfall accumulation time T .
The problem of fitting a bi-variate density f

(
q, v |T

)
in which marginal densities are

vastly different (quasi log-normal that of discharges and quasi exponential in terms
of rainfall totals) can be overcome either by using a “copula” (Nelsen, 1999) or more
interesting a Normal Quantile Transform (NQT) (Van der Waerten, 1952, 1953; Kelly15

and Krzysztofowicz, 1997). Figure 4 shows an example of the shape of one of the
resulting bi-variate densities.

2.4. Step 3: Estimation of the most convenient rainfall threshold

The concept of flood warning thresholds takes its origins from the flood emergency
management of large rivers, where the travel time is longer than the time required to20

implement the planned protection measures. In this case, the measurement of water
stages at an upstream cross section can give accurate indications of what will happen
at a downstream section in the following hours. Therefore, critical threshold levels were
established in the past on the basis of water stage measurements rather than on their
forecasts. Unfortunately, when dealing with smaller catchments, the flood forecasting25

horizon is mostly limited by the concentration time of the basin, which means that one
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has to forecast the discharges and the river stages as a function of the measured or
forecasted precipitation. In this case, uncertainty affects the forecasts and the prob-
lem of issuing an alert requires determining the expected value of some utility or loss
function. In the present work, following the Bayesian decision theory (Benjamin and
Connell, 1970; Berger, 1986), the concept of “convenience” is introduced as the mini-5

mum expected cost under uncertainty. The term “cost” does not refer to “actual costs”
of flood damages that are probably impossible to be determined, but rather a Bayesian
utility function describing the damage perception of the stakeholder, which may even
include the non commensurable damages due to “missed alert”.

Without loss of generality, in the present work the following cost function, graphically10

shown in Fig. 5, is expressed in terms of discharge:

U
(
q, v |VT , T

)
=

{
a

1+be−c(q−Q∗) when v ≤ VT and no alert is issued

C0 +
a′

1+b′e−c′(q−Q∗) when v > VT and an alert is issued
(1)

with T the time of rainfall volume accumulation, v the forecasted volume and VT the
rainfall threshold value, while a, b, c and a′, b′, c′ are appropriate parameters to be
agreed with the stakeholder in order to numerically reproduce the functions describing15

his perception.
U
(
q, v |VT , T

)
is the utility cost function, which if v ≤ VT expresses the perception of

damages when no alert is issued (the dashed line in Fig. 5): no costs will occur if the
discharge q will remain smaller than a critical value Q∗, while damage costs will grow
noticeably if the critical value is overtopped. On the contrary, if v>VT it expresses the20

perception of damages when the alert is issued (the solid line in Fig. 5) a cost which
will be inevitably paid to issue the alert (evacuation costs, operational cost including
personnel, machinery etc.), and damage costs growing less significantly when the crit-
ical value Q∗ is overtopped and the flood occurs. As can be seen from Fig. 5, the utility
function to be used will differ conditionally to the value of the cumulated rainfall forecast25

v and the rainfall threshold VT . If the forecasted precipitation value is smaller or equal
to the threshold value, the alert will not be issued; on the contrary, if the forecasted
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precipitation value is greater than the threshold value, an alarm will be issued.
The searched most “convenient” rainfall threshold value can thus be determined as

the one that minimises the expected utility cost, namely:

V ∗
T =Min

VT

〈
E
{
U
(
q, v |VT , T

)}〉
=Min

VT

〈∫ +∞
0

∫ +∞
0

U
(
q, v |VT , T

)
f
(
q, v |T

)
dq dv

〉
(2)

where f (q, v |T )is the joint probability distribution function of the rainfall volume and the5

discharge peak value described in Sect. 2.3. One rainfall threshold value V ∗
T will be

derived for each accumulation time T . In Fig. 6 one can see the typical shape of the
expected value of the utility E

{
U
(
q, v |VT , T

)}
for a given accumulation time T .

Finally, Fig. 7 shows that all the values of the rainfall thresholds obtained for each
AMC class, can be plotted as a function of the rainfall accumulation time. In the same10

Fig. 7, one can also appreciate the simplicity of the procedure used to decide whether
or not to issue an alert. It is sufficient to progressively accumulate the forecasted
rainfall totals, starting from the measured rainfall volume and to compare the value to
the appropriate AMC threshold value.

3. Operational use of the rainfall threshold approach15

In order to operationally use the rainfall thresholds approach, whenever a storm event
is forecasted, one has to identify the AMC class to be used and the relevant rainfall
threshold. This can be done without needing a hydrological model in real time. For
instance, in the cited work by Mancini et al. (2002), the AMC is estimated according to
the Soil Conservation Service definitions (SCS, 1986) reported in Table 1. However,20

the mentioned approach, although very simple, can lead to an incorrect estimation of
the antecedent soil moisture, since it neglects the inter-annual long term dependency
(seasonality) of the soil moisture conditions. As a matter of fact (see Table 1) AMC only
incorporates the information relevant to the precipitation of the previous 5 days, while
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from the example of Fig. 8, where the box plot of the mean monthly soil moisture condi-
tion is displayed, one can notice that the intra-annual variability of the soil moisture can
be very high and the short-term influence of the precipitation alone is not sufficiently
informative to correctly estimate the antecedent soil moisture conditions.

Therefore, an alternative methodology, which makes use of the long synthetic time5

series, already obtained for the thresholds derivation, is here proposed, to be applied
only once in phase 1. As one can see from Fig. 9, it is possible to determine on a
monthly basis, the mean soil moisture as a function of the cumulated rainfall volume
over the previous n days. More in detail, Fig. 9 shows for the Sieve catchment, on which
the methodology was tested, the mean soil moisture of the month vs the precipitation10

volume cumulated over the previous 72 h. These results were obtained by using the
10 000 years synthetic rainfall and the corresponding simulated soil moisture series.
The graphs in Fig. 9 will be referred to as the “AMC Calendar”. There is an evident
dependency of the soil saturation condition on the antecedent precipitation and it is
quite easy to estimate the appropriate AMC class by means of the AMC Calendar by15

comparing the cumulated rainfall value with the 0.33 and 0.66 quantiles determined as
described in Sect. 2.2 (Fig. 10).

When a storm is forecasted, using the rainfall thresholds together with the AMC
Calendar, it is possible to:

Determine the mean catchment soil moisture and the correct AMC class, entering20

into to the monthly graph with the cumulated rainfall volume recorded in the previous
nh;

Choose the rainfall threshold corresponding to the identified AMC class;
Add the forecasted cumulated rainfall to the observed rainfall volume;
Issue a flood alert if the identified threshold is overtopped.25
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4. A frame for validating the forecasting performances

Following the meteorological literature, a framework based on contingency tables was
used to assess the performances of the proposed approach. Contingency tables are
highly flexible methods that can be used to estimate the quality of a deterministic fore-
cast system (Mason and Graham, 1999) and, in their simplest form, indicate its ability to5

anticipate correctly the occurrence or non occurrence of predefined events. A warning
W is defined as the forecast of the occurrence of an event E (in this case the overtop-
ping of a threshold). A two-by-two contingency table can be constructed as illustrated
in Table 2. From a total number of n observations, one can distinguish the total number
of event occurrences (e) and that of non-occurrences (e′); the total number of warnings10

is denoted as w, and that of no-warnings as w ′. The following outcomes are possible:
a hit, if an event occurred and a warning was issued (with h the total number of hits); a
false alarm, if an event did not occur but a warning was issued (with f the total number
of false alarms); a miss, if an event occurred but warning was not issued (with m the
total number of misses); a correct rejection, if an event did not occur and a warning15

was not issued (with c the total number if correct rejections).
The skill of a forecasting system can be represented on the basis of the hit rate and

the false-alarm rate. Both ratios can be easily evaluated from the contingency table
(Mason, 1982):{

hit rate = h
h+m = h

e
false-alarm rate = f

f+c = f
e′

(3)
20

The hit and false-alarm rates (Eq. 3), indicate respectively the proportion of events for
which a warning was provided correctly, and the proportion of non events for which a
warning was provided incorrectly. The hit rate is sometimes known as the probability of
detection and provides an estimate of the probability that an event will be forewarned,
while the false-alarm rate provides an estimate of the probability that a warning will be25

2677

http://www.copernicus.org/EGU/hess/hessd.htm
http://www.copernicus.org/EGU/hess/hessd/2/2663/hessd-2-2663_p.pdf
http://www.copernicus.org/EGU/hess/hessd/2/2663/comments.php
http://www.copernicus.org/EGU/EGU.html


HESSD
2, 2663–2706, 2005

Bayesian rainfall
thresholds

M. L. V. Martina et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Print Version

Interactive Discussion

EGU

incorrectly issued (Eq. 4).{
hit rate = p

(
W |E

)
false-alarm rate = p

(
W
∣∣E ′ ) (4)

For a system that has no skill, warnings and events are by definition independent oc-
currences, therefore, the probability of issuing an alert does not depend upon the oc-
currence or non occurrence of the event, namely:5

p
(
W |E

)
= p
(
W |E ′ ) = p (W ) (5)

This equality occurs when warnings are issued at random. When the forecast system
has some skill, the hit rate exceeds the false-alarm rate; a bad performance is indicated
by false-alarm rate exceeding the hit rate. Because of the equality of the hit and false-
alarm rates for all forecasts strategies with no skill, the difference between the two rate10

indexes can be considered an equitable skill score ss (Gandin and Murphy, 1992).

ss = p
(
W |E

)
− p
(
W |E ′ ) (6)

5. The case study

The proposed methodology was applied to the case study of the River Sieve. The
River Sieve is a predominantly mountain river, which flows into the River Arno just15

upstream the city of Florence in Italy (Fig. 11). The catchment area is approximately
700 km2 at the cross river section of Fornacina with an elevation ranging form 300 m
to 1300 m. The climate is temperate and generally wet with extreme rainfall events in
fall and spring which may cause flash floods. On 4 November 1966, one of the major
floods of the Sieve, which highly contributed to the Florence flooding, was recorded,20

with more than 800 m3 s−1. For this study, rainfall and temperature hourly observations
were available for 7 years in 12 measurement stations (11 raingauges 1 river stage +
rating curve) located within the basin. A comprehensive database for soil textures, soil
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types and land use at the local scale obtained from surveys carried out in the last 10
years was also available. The conversion from water levels to river discharges at the
Fornacina cross section is obtained by means of a rating curve, derived on the basis
of flow velocity measures and field surveys of the river cross section geometry, and
provided by the Tuscany Regional Hydrological Service.5

According to the proposed methodology, a series of 10 000 years of hourly rain-
fall was generated by means of the Neyman-Scott Rectangular Pulse NSRP model
(Rodriguez-Iturbe et al., 1987a; Cowpertwait et al., 1996). The generated rainfall was
then used as input to the lumped TOPKAPI, a hydrological model described in the Ap-
pendix. The rainfall as well as the resulting discharges series were divided in three10

subsets (AMC1, AMC2, AMC3) according to the time series of Antecedent Moisture
Condition, also resulting from the hydrological simulation. “Convenient” rainfall thresh-
old values were then found by means of Eq. (2) for an increasing time horizon T ranging
from 0 to 72 h. Figure 12 shows the results obtained for the Sieve catchment at For-
nacina.15

The verification of the forecasting capabilities of the proposed methodology applied
to the Sieve catchment closed at Fornacina, based upon the validation framework de-
scribed in Sect. 4, was performed by generating a 1000 year long time series of syn-
thetic rainfall, different from the 10 000 year one used for setting up the methodological
approach. The cases of Correctly Issued Alarms (h), Missed Alarms (m), False Alarms20

(f ), Correctly Rejected Alarms (c) were computed for different lead time horizons T .
Based on the results, the hit rate and the false-alarm rate (Fig. 13) as well as the Skill
Score (ss) (Fig. 14), were computed following their definitions given in Eqs. (3) and (6),
respectively.

From Fig. 13, it is interesting to notice that the false alarm rate stays to zero up to an25

horizon of 6 h in advance while the hit rate remains almost 1 up to 9 h in advance, while
the false alarm rate is approximately 0.1. The quality of the results is also confirmed in
Fig. 14, which shows that the skill score remains close to 1 up to 6 h in advance, while
dropping to 0.9 up to 9 h in advance.
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However, it must be beard in mind that these results do not incorporate the “rainfall
forecasting uncertainty”. They were only derived, on the assumption of “perfect knowl-
edge” of future rainfall, in order to validate the approach. In other words, the actually
observed rainfall is here used as the “forecasted rainfall”. In operational conditions, fu-
ture rainfall is not known and only quantitative precipitation forecasts originated either5

by nowcasting techniques or by Limited Area Atmospheric models may be available.
The introduction of a probabilistic rainfall forecast will inevitably imply the derivation

of an additional probability density f
(
v |v̂
)
, expressing the probability of observing a

given rainfall volume v conditional upon a forecasted volume v̂ , but it is envisaged that
it will not completely modify the proposed procedure. Research work is currently under10

way to provide user oriented operational solutions and will be reported in a successive
paper.

Nonetheless, it is worthwhile noting that the proposed methodology is very appeal-
ing for operational people. In fact, not only it does not require a flood forecasting model
running in real time, but even a computer is not necessary in operational conditions:15

only the two graphs given in Fig. 15 are used in practice to evaluate the possibility of
flooding. Therefore, the advantage of this method stems from its simplicity, thus provid-
ing a quick reference method to the stakeholders and the flood emergency managers
interested at assessing, within a given lead time horizon, the possibility of flooding
whenever a QPF is available.20

6. Conclusions

This paper presented an original methodology aimed at issuing flood warnings on the
basis of rainfall thresholds. The rainfall thresholds values relevant to a given river cross
section take into account the upstream catchment initial soil moisture conditions as
well as the stakeholders’ subjective perception on the convenience of issuing an alert,25

through the minimization of expected costs, within the frame of a Bayesian approach.
The advantage of the proposed methodology lays in its extremely simple operational

2680

http://www.copernicus.org/EGU/hess/hessd.htm
http://www.copernicus.org/EGU/hess/hessd/2/2663/hessd-2-2663_p.pdf
http://www.copernicus.org/EGU/hess/hessd/2/2663/comments.php
http://www.copernicus.org/EGU/EGU.html


HESSD
2, 2663–2706, 2005

Bayesian rainfall
thresholds

M. L. V. Martina et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Print Version

Interactive Discussion

EGU

procedure, based solely on two graphs, that makes it easy to be understood and ap-
plied by non technical users, such as most flood emergency managers are.

Nonetheless, not all the problems have been addressed for a successful operational
use of the methodology. The procedure presented in this paper, although it can be con-
sidered as a great improvement from the presently used approaches, must be viewed5

as a first step towards a sound operational approach. The limitation of the present
stage is due to the implicit assumption of “perfect knowledge” of future rainfall, in the
sense that QPF is taken as a deterministic quantity instead of an uncertain forecast.
Although, this approach is currently used by most flood alert operational services, the
role of the uncertainty in QPF has been presently raised at the attention of the commu-10

nity by meteorologists, through the use of ensemble forecasts and by meteorologists
and hydrologists within the frame of the recently launched International Project HEPEX.

Ongoing research deals in fact with the problem of assessing uncertainty within the
frame of the rainfall thresholds approach.

A first step aims at incorporating the QPF uncertainty in the derivation of the rain-15

fall thresholds, by taking the joint probability distribution function between rainfall and
discharge (or water stage) derived via simulation as a distribution conditional on the
knowledge of future rainfall. Given the probability density of future rainfall conditional
on the QPF, it will then be possible to combine them in order to obtain the overall joint
density from which one can marginalise out the effect of the QPF uncertainty.20

A second step will finally tend to assess the influence of the models (both rainfall sim-
ulator and hydrologic model) uncertainties on the rainfall threshold estimation, although
the effect of this uncertainty is much smaller on decisions than the one produced by
the large QPF uncertainty.
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Appendix

The rainfall-runoff model used: the lumped version of the TOPKAPI model

Two of the hydrologic time series used in the proposed methodology (namely the soil
moisture content and the discharge at the river section of interest) were generated
by means of a lumped rainfall-runoff model (the lumped version of TOPKAPI), which5

allows for a continuous simulation at an hourly time step.
The TOPKAPI approach is a comprehensive distributed-lumped approach widely

documented in the literature (Todini and Ciarapica, 2002; Ciarapica and Todini, 2002;
Liu and Todini, 2002). It was also shown (Liu and Todini, 2002), that the lumped TOP-
KAPI model schematized in Fig. 16, can be directly derived, without the need for a10

new calibration, from the distributed physically meaningful version. In the lumped ver-
sion, a catchment is regarded as a dynamic system composed of three reservoirs: the
soil reservoir, the surface reservoir and the channel reservoir. The precipitation on the
catchment is partitioned into direct runoff and infiltration using a Beta-distribution curve,
which reflects the non-linear relationship between the soil water storage and the sat-15

urated contributing area in the basin. The infiltration and direct runoff are then routed
through the soil reservoir and surface reservoir, respectively. Outflows from the two
reservoirs, namely interflow and overland flow, are then taken as inputs to the channel
reservoir to form the channel flow.

As previously mentioned, it can be proven that the lumped version of the TOPKAPI20

model can be derived directly from the results of the distributed version and does not
require additional calibration. In order to obtain the lumped version of the TOPKAPI, the
point kinematic wave equation is firstly integrated over the single grid cell of the DEM
(Digital Elevation Model) and successively the resulting non-linear storage equation is
integrated over all the cells describing the basin. In the case of the soil model the25
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following relation is obtained:

∂V sT
∂t

= RA −

αs + 1

αsX 2

1[N−1∑
l=1

(N−1∏
m=l

fm

)
+ 1
]


αs

XCsT V
αs
sT

= RA − bsV
αs
sT

(A1)

with

1

CsT
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N∑
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1 +
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)
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fm
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+ 1
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−


j−1∑
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(
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fm

)
N−1∑
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(N−1∏
m=l
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)
+ 1



αs+1
αs


/C

1/αs
si



αs

(A2)

where i is the index of a generic cell; j is the of cells drained by the i th cell; N is5

the total number of cells in the upstream contributing area, VsT is the water storage
in the catchment, R is the infiltration rate; A is the catchment area; fm represents the
fraction of the total outflow from the mth cell which flows towards the downstream cell,
and αs is a soil model parameter assumed constant in the catchment, bs is a lumped
soil reservoir parameter which incorporates in an aggregate way the topography and10

physical properties of the soil.
Equation (A1) corresponds to a non-linear reservoir model and represents the

lumped dynamics of the water stored in the soil. The same type of equation can be
written for overland flow and for the drainage network, thus transforming the distributed
TOPKAPI model into a lumped model characterized by three “structurally similar” non-15

linear reservoirs, namely “soil reservoir”, “surface reservoir” and “channel reservoir”.
Due to the spatial variability of the different cells in terms of water storage and flow

dynamics, the infiltration rate in Eq. (A1) must be preliminarily evaluated by separating
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precipitation into direct runoff and infiltration into the soil. In order to obtain this sep-
aration, a relationship linking the extent of saturated areas and the volume stored in
the catchment has to be introduced, similarly to what is done in the Xinanjiang (Zhao,
1977), in the Probability Distributed Soil Capacity model (Moore and Clarke, 1981) and
in the ARNO (Todini, 1996).5

Given the availability of a distributed TOPKAPI version, this relationship can be ob-
tained by means of simulation. At each step in time the number of saturated cells is
put in relation to the total volume of water stored in the soil over the entire catchment.
Indicating with V sT the total water storage in the soil, with V ss the soil water storage
at saturation and with As the total saturated area, the relationship between the extent10

of saturated areas and the volume stored in the catchment can be approximated by a
Beta-distribution function curve expressed by Eq. (A3):

As

A
=

V sT
V ss∫
0

Γ(r + s)

Γ(r)Γ(s)
ϕr−1(1 −ϕ)s−1dϕ (A3)

with Γ (x) the Gamma function defined as:

Γ(x) =

+∞∫
0

ξx−1e−ξdξ , x > 0 (A4)
15

As it was found in the analysis of the distributed TOPKAPI results, an exfiltration phe-
nomenon exists. For instance when rainfall stops and the relevant overland flow has
receded, surface runoff can still be larger that the possible maximum interflow due to
exfiltration due to a return flow caused by exfiltration. This return flow is estimated us-
ing a limiting parabolic curve (Fig. 16) representing the relationship between the return20

flow and the fraction of saturation in the catchment, which parameters are estimated
on the basis of the distributed TOPKAPI model simulation results. This parabolic curve
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can be expressed as equation:

Qreturn = a1

(
V sT
V ss

)2

+ a2
V sT
V ss

+ a3 (A5)

where Qreturn is the calculated return flow discharge during a time interval t2−t1,
V sT=0.5(V sT1

+ V sT2
) is the averaged soil water storage, a1, a2 and a3 are the pa-

rameters.5

Accordingly, the infiltration rate into the soil within the time interval ∆t can be com-
puted by using equation:

R =
1
A

(VSt2
− VSt1

t2 − t1
−Qret

)
(A6)

The quantities R and Rd are then input into the soil reservoir and the surface reservoir,
respectively. The interflow and the overland flow can be obtained by means of water10

balance method, and are then together drained into the channel reservoir to generate
the total outflow at the basin outlet (Fig. 16).

For a more detailed description of the model refer to Liu and Todini, 2002.
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Table 1. AMC classes definition according to the SCS approach.

5-day antecedent rainfall totals [mm]
AMC class Dormant season Growing season

AMC I (dry) P<12.7 P<35.6
AMC II (medium) 12.7<P<27.9 35.6<P<53.3

AMC III (wet) P>27.9 P>53.3
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Table 2. Two-by-two contingency table for the assessment of a threshold based forecasting
system.

Forecasts
Observations Warning W No Warning W ′ Total

Event, E h m e
Non Event, E′ f c e′

Total w w ′ n
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Fig. 1. Example of a rainfall thresholds and of its use.
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Fig. 2. Schematic representation of the proposed methodology. (1) Subdivision of the three
synthetic time series according to the soil moisture conditions (AMC); (2) Estimation of the
joint pdfs between rainfall volume and water stage or discharge; (3) Estimation of the “conve-
nient” rainfall threshold based on the minimisation of the expected value of the associated utility
function.
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Fig. 3. The synthetic time series and the three time values to be defined.
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Fig. 4. A typical joint probability density function for rainfall volume and discharge with different
(exponential and log-normal) marginal densities.
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Fig. 5. Cost utility functions used to express the stakeholder perceptions.
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Fig. 6. Expected value of the cost utility as a function of different rainfall threshold values.
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Fig. 7. Example of the rainfall thresholds derived for each AMC class as a function of rainfall
accumulation time: when the soil is wet the threshold will obviously be lower.
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Fig. 8. Box plot of the mean monthly soil moisture condition.
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Fig. 9. The AMC calendar for the antecedent soil moisture condition estimation.
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Fig. 10. The use of the monthly AMC Calendar to determine the appropriate AMC class.
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Fig. 11. The River Sieve catchment and the location of the different gauges.
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Fig. 12. The three rainfall thresholds derived for the Sieve catchment closed at Fornacina.
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Fig. 13. Hit Rate and False-Alarm Rate as a function of flood forecasting horizon for the case
of the River Sieve catchment closed at Fornacina.
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Fig. 14. Skill score as a function of flood forecasting horizon for the case of the River Sieve
catchment closed at Fornacina.
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Fig. 15. The resulting two graphs on which the whole operational procedure of the proposed
approach is based upon.
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Fig. 16. The schematic representation of the lumped TOPKAPI hydrological model, according
to Liu and Todini (2002).
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