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Abstract

In the context of the European Water Framework Directive options for improving the wa-
ter quality of the lowland river Havel (Germany) were assessed. The lower section of
this river is actually a polytrophic river-lake system suffering from high external nutrient
loading and exhibiting significant in-river turnover. In order to gain a better understand-5

ing of present conditions and to allow integrated scenarios of nutrient management to
be evaluated the catchment models SWIM and ArcEGMO-Urban were coupled with a
simple, newly developed nutrient TRAnsport Model (TraM). Using the TraM model, the
retention of nitrogen and phosphorus in a 55 km reach of the Lower Havel River was
quantified and its temporal variation was analyzed. It was examined that about 30%10

of the external nitrogen input to the Lower Havel is retained within the surveyed river
section. A comparison of simulation results generated with and without consideration
of phosphorus retention/release revealed that summer TP concentrations are currently
increased by 100–200% due to internal loading. Net phosphorus release rates of about
20 mg P m−2 d−1 in late summer were estimated for the Havel lakes. Scenario simula-15

tions with lowered external nutrient inputs revealed that persistent phosphorus limita-
tion of primary production cannot be established within the next decade. It was shown
that a further reduction in nitrogen concentrations requires emissions to be reduced in
all inflows. Though the TraM model needs further extension it proved to be appropriate
for conducting integrated catchment and river modeling.20

1. Introduction

In many river basins eutrophication appears to be one of the most important water
quality problems. In search of adequate restoration strategies eco-hydrological models
are frequently used to assess the impact of landuse management on nutrient emis-
sions from river basins (e.g. Schreiber et al., 2005; Kronvang et al., 1999). However,25

the representation of individual water bodies in catchment models is often poor. This

2550

http://www.copernicus.org/EGU/hess/hessd.htm
http://www.copernicus.org/EGU/hess/hessd/2/2549/hessd-2-2549_p.pdf
http://www.copernicus.org/EGU/hess/hessd/2/2549/comments.php
http://www.copernicus.org/EGU/EGU.html


HESSD
2, 2549–2579, 2005

Analysis of nutrient
retention and

management for a
lowland river

D. Kneis et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Print Version

Interactive Discussion

EGU

is especially true for regulated rivers and river-lake systems, which exhibit a unique
behavior with respect to nutrient retention. Since the European Water Framework Di-
rective (WFD) focuses on the ecological status of individual river sections and lakes,
there is an increasing need for linking catchment models to water quality models of
adequate space-time resolution and complexity (Van Griensven and Bauwens, 2003).5

Within a study on the water quality of the Havel River (NE-Germany) a conceptual
nutrient TRAnsport Model (TraM) adapted to lowland rivers was developed. It provides
a suitable method to integrate the output of catchment models into a simple transport
scheme and enables in-river concentrations of total phosphorus (TP) and total nitro-
gen (TN) to be estimated. The model was applied to the Havel River downstream of10

Berlin (Fig. 1) with two goals in mind: First, the relevance and seasonality of nutri-
ent retention had to be figured out quantitatively by evaluating data from official water
quality monitoring programs. Secondly, the impact of different strategies of catchment
management on total nutrient concentrations of the river was assessed.

The studied river section is characterized by a large number of interconnected lakes15

and is regulated by weirs. Since external nutrient input is significant, the Lower Havel
River is strongly eutrophic and in-river turnover of nitrogen and phosphorus was ex-
pected to be extraordinarily high. Although nutrient loading decreased in the 1990s,
phosphorus concentrations remained high, because a large P-pool has accumulated
in the lakes’ sediment over the last decades. Today the lakes act as net sources of P20

as it is typical after reduction of nutrient loads in the inflow (Søndergaard et al., 2003;
Kozerski and Kleeberg, 1998; Jeppesen et al., 1991).

This paper introduces the basic concept of the nutrient transport model TraM and
its application within a catchment modeling framework. A special focus is put on the
estimation of N and P retention with high temporal resolution and its representation in25

the model. Selected results of scenario analyses carried out with TraM are presented
and discussed in the context of water quality management.
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2. Methods

2.1. The transport model TraM

In the TraM model water bodies can be represented by two basic concepts commonly
used in water quality modeling (Chapra, 1997): River reaches where advective trans-
port is dominant are represented by plug-flow reactors (PFR) whereas the shallow well5

mixed lakes shown in Fig. 1 are approximated by continuous flow stirred tank reactors
(CFSTR). Table 1 summarizes the features of both types of reactors as implemented
in the TraM model.

The first step in setting up the model is to subdivide the river system into a number of
PFR and CFSTR. Longer river reaches are further discretized into separate PFR since10

every reactor is parametrized by a single average cross-section. As the water surface
slope of impounded lowland rivers is usually no more than a few cm/km a single stage
hydrograph is assigned to every PFR. The length of a plug flow reactor usually falls
in the range from less than 100 to several hundred meters. The system shown in
Fig. 1 was split into 88 reactors. To form a network with defined upstream-downstream15

relations suitable for routing calculations, all CFSTR and PFR are linked automatically
based on GIS data.

At runtime, the load hydrograph at the downstream end of a reactor is computed
using the static and dynamic input data listed in Table 1. Within a complete model run,
the computation is carried out for each single reactor and advances from the upstream20

end(s) of the river network to the downstream model boundary. In the current version
of TraM only a single substance can be simulated at a time and retention is described
according to zero or first order kinetics (see Sect. 2.3).

2.2. Linking river transport, hydrodynamic and catchment models

As depicted in the lower part of Table 1 hydrological time series as well as data on25

river loads are needed to run a TraM simulation. For model calibration observed dis-
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charge and concentration hydrographs were provided by the Brandenburg state water
authorities. However, in case of scenario analyses all boundary conditions must be
simulated as well. In this study, nutrient loads and discharges that enter the system
shown in Fig. 1 were calculated by a catchment modeling work group using the mod-
els SWIM (Krysanova et al., 2000) and ArcEGMO-Urban (Biegel et al., 2004). SWIM5

computes the discharge of tributaries and the corresponding P and N loads result-
ing from non-point emissions. In contrast, the Urban module of ArcEGMO estimates
N and P losses from point sources only. Discharge and nutrient loads of the tributary
Spree were approximated based on observed flow and concentration data also for sce-
nario simulations. The internal flow distribution as well as stage hydrographs for the10

investigated river section were simulated with the unsteady 1D hydrodynamic model
HEC-RAS (USACE, 2002). It proved to be particularly suitable because it handles
looped river networks and supports the input of geometric data via GIS. The HEC-RAS
data base for the system shown in Fig. 1 comprises about 1100 cross-sections and 27
junctions. The interaction between the applied models is illustrated in Fig. 2.15

2.3. Estimation of nutrient retention

Water quality is monitored biweekly by the authorities at many stations along the Lower
Havel River (Fig. 1). To assess nutrient retention, data from the period 1991–2004 were
used. Since this study focused on total nitrogen and total phosphorus no differentiation
into distinct N or P species was made. Nitrogen losses are mainly caused by den-20

itrification and sedimentation (Jensen et al., 1992b; Seitzinger, 1988). Both, nitrate
reduction (Chapra, 1997) and settling of particulate N (Scheffer, 1998) are dependent
on the respective concentrations. Since Jensen et al. (1992b) found denitrification in
lakes to be closer related to TN concentrations (CTN) rather than to NO−

3 , a lumped first
order term was tested for the description of total nitrogen retention (Eq. 1).25

−
dCTN

dt
= kTN ∗ CTN (1)
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Initial estimates of the loss rate kTN (d−1) for all major lakes were deduced from
Eq. (2).

kTN =
Q
V

∗
(CTN,obs − CTN,sim)

CTN,sim
(2)

CTN,obs is the observed concentration (mg l−1) at the lake outlet and CTN,sim is the
corresponding concentration that can be calculated from the TN load in the inflow treat-5

ing the lake as a conservative CFSTR. Q is the flow rate (m3 d−1) and V (m3) is the
lake volume. For the river reach between the monitoring stations 1 and 2 (Fig. 1) kTN
could be estimated from the ratio of total nitrogen concentration (CTN) at these stations
using the corresponding mean travel time Tm (d). The calculation is based on Eq. (3)
which can easily be derived from Eq. (1).10

kTN =
1
Tm

∗ ln
(

CTN,upstream

CTN,downstream

)
(3)

Tm was determined for a range of steady flows by simulating the propagation of ar-
tificial load pulses. Monthly values of kTN were estimated according to Eq. (3) using
MQmonth in the calculation of the mean travel time Tm. Monthly median values of the
concentration ratio were used to account for outliers in the TN data. The estimates of15

kTN obtained by the above methods were further refined in manual model calibration.
The objective was to achieve best agreement of observed and simulated monthly me-
dian TN concentrations at 12 monitoring stations shown in Fig. 1. One set of monthly
kTN values was calibrated for each lake or river reach between neighboring monitoring
stations, respectively.20

The seasonal dynamics of phosphorus retention rTP was obtained from mass bal-
ances for the five largest lakes over the years 1995–2000. rTP was calculated similarly
to kTN by relating the observed phosphorus load at the lake outlet (LTP,obs) to values
that could be expected due to the P load in the lake’s inflow (LTP,sim), assuming the

2554

http://www.copernicus.org/EGU/hess/hessd.htm
http://www.copernicus.org/EGU/hess/hessd/2/2549/hessd-2-2549_p.pdf
http://www.copernicus.org/EGU/hess/hessd/2/2549/comments.php
http://www.copernicus.org/EGU/EGU.html


HESSD
2, 2549–2579, 2005

Analysis of nutrient
retention and

management for a
lowland river

D. Kneis et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Print Version

Interactive Discussion

EGU

lake to be a conservative CFSTR. The difference (LTP,obs−LTP,sim) was divided by the
lake’s surface area to yield values of rTP in (mg P m−2 d−1). Negative values of rTP
indicate P retention whereas in times of net phosphorus release rTP becomes greater
than zero. Phosphorus retention in river and channel sections was neglected in this
study, because the sediment surface area is small and residence time is short com-5

pared to that of the lakes. Also, it is known from on site inspection that P enriched
organic sediments rarely exist in the river and channel sections.

3. Results and discussion

3.1. Significance of phosphorus retention and release

The seasonal dynamics of phosphorus retention as it was calculated from mass bal-10

ances (see Sect. 2.3) is shown in Fig. 3. A phenomenon observed in all investigated
lakes is a period of net phosphorus export from July–November with maximum net re-
lease rates from August–October. In winter and spring the settling of particulate phos-
phorus balances the phosphorus release from the sediment or even results in slight net
retention. Analogous seasonal patterns were identified for a river-lake system in the15

nearby Nieplitz catchment. The net release rates shown in Fig. 3 result in a massive
increase of pelagic P concentrations during summer. Phosphorus limitation of primary
production does not occur under these conditions.

Reliable predictions of future phosphorus concentrations require the lakes’ sedi-
ments to be included in TraM as an additional model compartment. This is necessary20

as in the long term the P pool in the sediment will decrease due to continued net phos-
phorus export (Fig. 3) and thus P release will do. Although corresponding models have
been developed in the past (e.g. Van der Molen, 1991) the establishment of trans-
ferable relations between sediment characteristics (including P content) and internal
loading is still a major challenge of limnological research (Søndergaard et al., 2003).25

The development, parametrization and calibration of a sediment P model for the Havel
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lakes was beyond the scope of this study.
However, since scenario simulations for the time period 2003–2015 were requested,

reasonable assumptions on future P release had to be made. Therefore, annual net
phosphorus export rates from the Havel lakes were related to the amount of inorganic
bound P stored in the upper 30 cm sediment layer. This layer seems to be relevant for5

P export, because upward diffusion of phosphate in the sediment pore water reaches
down to a maximum depth of about 30 cm according to SRP profiles (Schettler, 1995).
The sediment P and Fe contents were estimated from core samples collected in sum-
mer 2004. Balance calculations revealed that several decades of continued net P
export will be necessary to cause a decrease in the sediment P/Fe ratio to a value10

of about 0.12 (atomic ratio). The latter ratio is of special relevance since iron hydrox-
ides very effectively adsorb phophorus especially under oxic conditions, making the
P/Fe ratio an indicator for P release potential of the sediment. Jensen et al. (1992a)
and Maassen et al. (2005) found that sediments with P/Fe ratios below 0.16–0.12 show
significantly decreased phosphorus remobilisation. In addition one has to consider that15

in connected river-lake systems the phosphorus exported from one location will partly
settle in lakes further downstream causing a delay in “self-purification”. Consequently,
all scenario simulations discussed in Sect. 3.4 were carried out on the assumption
that phosphorus release rates shown in Fig. 3 remain unchanged until 2015 (see also
Sect. 3.3).20

In Fig. 4 simulated concentrations of TP at the monitoring station Ketzin (label 1 in
Fig. 1) are plotted against biweekly observations. As expected, the goodness of the
model prediction (solid graph in Fig. 4) varies from year to year due to the use of av-
erage P retention rates (see Table 3). Actually, the seasonal succession of plankton
shows significant variability and certain groups of algae make different proportions of25

phytoplankton biomass every year. E.g. one could expect net P release rates above av-
erage when algae with low settling losses become dominant because less particulate
P is retained. This mechanism might be an explanation for the heavy underestima-
tion of P concentrations by the model in summer 2000 (see Fig. 4) as the biomass of
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cyanobacteria was extraordinarily high in this year according to official monitoring data.
However, the effect of sedimentation on net P export is ambiguous, since a high settling
rate may increase P retention on the one hand but it may favor the release of redox-
sensitive bound P on the other hand by stimulating mineralization. In addition, short
periods of temporary stratification may occur in some years. These events can hardly5

be predicted but may be of relevance for the redox conditions at the water-sediment in-
terface and thus for P release (Welch and Cooke, 2005; Kleeberg and Kozerski, 1997).

Against this background, it seems too early to speculate on the strong overestima-
tion of P concentrations in summer 2003 and 2004 by the model (Fig. 4). The next
years will prove, if this can be attributed to interannual variability or whether the the-10

sis (see above), according to which the effects of todays net P export will not become
perceptible before decades, needs correction.

As can been seen in Fig. 4 the conservative model which neglects phosphorus re-
tention (dashed graph) and the calibrated model produce similar results in winter and
spring, indicating that P concentrations are almost completely attributed to external15

loads during these seasons. But from July onwards, the model results heavily diverge
and it can be stated that internal loading increases summer TP concentrations by a
factor of 2–3 compared to a situation without net phosphorus release from sediments.

3.2. Significance of Nitrogen Retention

Since the underlying processes of nitrogen losses were not differentiated, the cali-20

brated values of the retention parameter kTN (Eq. 1) reflect the effects of both denitrifi-
cation and N sedimentation. As shown in Fig. 5 nitrogen retention is low in winter with
kTN in the range 0–0.02 (d−1). In summer N losses range from 0.005–0.03 (d−1) in
most sections of the river-lake network. Maximum values of about 0.04 (d−1) indicate
that up to 4% of total nitrogen may be eliminated in one day. The absolute values of N25

retention (Table 2) are of the same magnitude as those reported from shallow Danish
lakes (Windolf et al., 1996).

Figure 5 shows conspicuous differences in magnitude and seasonality of TN reten-
2557
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tion between water bodies in terms of kTN. A satisfying explanation of the observed
patterns would require more detailed investigations that do not focus on total nitrogen
alone but include all relevant N species. However, some first hypothesis shall be given
here:

One obvious feature emerging in lakes B, C, E, and F is that highest nitrogen losses5

occur already in spring, long before water temperature or plankton biomass reach their
maximum values. Possibly, this could be explained by the dominance of diatoms in
spring and early summer. Due to the silica shells this group of algae suffers from
higher sinking losses compared with other phytoplankton. Thus, diatom blooms should
result in enhanced sedimentation of N. Furthermore, nitrification, the crucial step prior10

to denitrification, may be enhanced in spring due to deeper penetration of oxygen into
the sediment. Another phenomenon observed in these lakes is a depression in kTN
values in late summer (Fig. 5), which possibly can be attributed to nitrogen fixation by
blue-green algae. As detailed species information are unavailable, this can hardly be
proven by monitoring data. However, data show that the maximum of cyanobacteria15

biomass usually occurs in the relevant time. Taking into account the very low nitrogen to
phosphorus ratios at many of the monitoring stations (TN/TP <5 from August–October,
DIN/SRP <1 in August and September) the occurence of nitrogen fixing blue-green
algae seems likely (see Windolf et al., 1996, for a discussion). As mentioned in the
context of P retention, low settling rates could alternatively be responsible for a de-20

crease in N retention.
In case of the Teltowkanal, the low seasonal variation in kTN probably results from

a steady supply of nitrate (about 80% of TN) by several large wastewater treatment
plants accompanied by increased water temperatures in winter.

Beyond doubt, further investigation is needed to explain the spatial and temporal25

differences in N retention, e.g. the extraordinarily high values of kTN in some of the
lakes (Fig. 5). Shortcomings in the model boundary conditions as well as errors in
the simulation of flow distribution must also be considered since both may result in
misleading estimates of retention parameters. Furthermore, the approximation of TN
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retention as a first order process may turn out to be too simple when DIN/TN ratios
vary largely.

A simple way to figure out nitrogen retention quantitatively is to compare cumulated
N loads calculated by the calibrated TraM model with cumulated N loads from a con-
servative model run (Fig. 6). The latter simulation delivers nitrogen loads at a gage5

that would occur if N retention was negligible. As can be deduced from Fig. 6 about
30% of the total nitrogen which is discharged into the studied river section via its trib-
utaries is retained. This results in a significant reduction of N export to downstream
waters. Compared to estimated in-stream nitrogen retention in a Danish lowland river
(Svendsen et al., 1998) nitrogen losses in the Havel River are remarkably high. Since10

denitrification is most effective at the sediment-water interface (Seitzinger, 1988), this
might be explained to a substantial extend by the large surface area of the Havel Lakes
(see also Behrendt and Opitz, 2000). Figure 6 illustrates that the deviation between
model simulation and observation is rather small when looking at cumulated TN loads.
However, as Table 3 indicates the temporal variability in TN concentrations is replicated15

by the model much less accurately.

3.3. Analysis of parameter sensitivity

As Figs. 3 and 5 indicate, the nitrogen retention parameter kTN as well as the net
phosphorus retention rate rTP are subject to large spatial and interannual variation.
The average parameter values used in model simulations are therefore associated20

with potentially high uncertainty. Thus, the sensitivity of simulation results to changes
in parameter values was tested (Fig. 7). In case of kTN the values found in calibration
for each river section (Fig. 5) were varied by ±10, 25 and 50%, respectively. The values
of rTP were altered in the same range but only the months June–October with net P
release (rTP>0) were included.25

As Fig. 7 shows, TN concentrations in summer are much more susceptible to er-
rors in the retention parameter kTN than winter concentrations. Multiplying kTN by a
scaling factor of 0.5 results in an increase in the monthly average TN concentration
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by about 36% in July but only 8% in February. Scaling factors of 1.1, 1.25 and 1.5
(retention enhanced by 10–50%) result in decreasing TN concentrations. Again the
changes are more pronounced in the month with the lowest TN concentration (July)
than in the month with highest CTN (February). The outcome of the analysis can easily
be interpreted: as expected, percental changes in the retention parameter show the5

largest effect when kTN is high. Winter concentrations are less affected since nitrogen
retention is low and CTN is largely controlled by external loads. When looking at aver-
age TN concentations over the whole year the model seems robust since errors in kTN
must exceed 50% before CTN changes by more than 20%.

For phosphorus (right graph in Fig. 7) results of the sensitivity analysis are again10

presented for the month with lowest (April) and highest (October) TP concentrations
CTP. Obviously, changes in phosphorus release rates in the period June–October do
not have any effect on CTP in April, indicating that P enriched lake water is completely
flushed in winter at higher discharges. As expected CTP shows a strong reaction to
altered values of rTP in October, since concentrations are heavily controlled by internal15

loading in late summer and autumn (see Sect. 3.1). Annual averages of CTP are less
susceptible to errors in rTP estimates. Even a ∆rTP of ±50% results in average TP
concentrations changed by not more than 15%.

3.4. The impact of reduced phosphorus emissions

Two selected scenarios of phosphorus control measures are presented here. In the first20

scenario (“P1”) it was assumed that phosphorus emissions from point sources were di-
minished all over the Havel basin except for the subbasin of the tributary Spree, which
was not in the focus of this study (Table 4). The reduction in P emissions from wastew-
ater treatment plants was quantified by the use of the ArcEGMO-Urban model (Biegel
et al., 2004) taking into account possible enhancements in P elimination. The second25

scenario (“P2”) includes scenario P1 but comes with the additional assumption that the
average TP load emitted from the Spree catchment is reduced by approximately 50%
to reach a concentration level of about 80 µg l−1. That is, the load reduction in the
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Spree River was chosen to meet a certain target concentration (immission approach)
as defined by a wastewater management plan (SSB, 2001). The base scenario with
unchanged P emissions was called “P0”.

The relative effects of the pollution control measures are presented in Table 4. As
indicated by the average emissions (g s−1) for the base scenario P0, the Spree catch-5

ment alone contributes over 50% of the total P input to the Lower Havel River. Con-
sequently, the reduction of P emissions from all other subcatchments by about 13%
(scenario P1) has only little effect on the total P input (−5.2%). On the other hand,
a 50% decrease in P loads of the Spree River and its side branch, the Teltowkanal,
results in a significant change in total P input (−35.2%). The alteration of the average10

TP concentration of the Havel River turns out to be much lower than the change in
average total emissions. This can directly be attributed to net phosphorus release from
the lakes’ sediments, which (see Sect. 3.1) was assumed to be unaffected by altered
external P loading.

Whereas Table 4 only shows long term average concentrations, the effect of reduced15

P emissions on the concentrations’ seasonality is pointed out in Fig. 8. The absolute
decrease in mg l−1 is similar for all month. The relative rates of change (∆ TP (%))
however show substantial intraannual differences, since absolute concentrations also
vary significantly due to internal loading and the natural flow regime of the Havel River.
Whereas scenario P2 causes a reduction in TP concentration of up to 50% in spring20

the corresponding value for August–November is only 20% or less.
The consequences for water quality management are obvious: The TP concentra-

tion in late summer and autumn cannot be reduced to a level that results in phosphorus
limitation of the phytoplankton, even if drastic pollution control measures would be im-
plemented (see Sas, 1989, for a pragmatic definition of limiting concentrations). In25

contrast, concentrations in spring are more sensitive to decreased external phospho-
rus loading. As Fig. 8 illustrates, TP falls below 40 µg l−1 in April under scenario P2.
Considering a TP/SRP ratio of about 0.3 in spring (data from lake E; see Fig. 1) dis-
solved phosphorus concentrations are dropped to a level where algal blooms might
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possibly be prevented by P limitation. As studies from the nearby Müggelsee (Spree
catchment) by Köhler et al. (2000) suggest, initial nutrient concentrations control al-
gal growth not only in spring but may also influence the succession of plankton over
the whole year. Hence, a further reduction of external P load might be effective for
eutrophication control in spite of persistent sediment P release.5

3.5. The effect of reduced nitrogen emissions

As with phosphorus, different cases of reduced nitrogen emissions were analyzed with
the TraM model but only a single scenario will be discussed here. In this scenario
(“N1”) it was assumed that non-point nitrogen emissions were reduced all over the
Havel basin, again excluding the Spree subbasin. For this, landuse maps of present10

conditions (scenario “N0”) were modified (Jacobs and Jessel, 2003), e.g. portions of
arable land were converted to grassland and another portion was set aside. In addition,
the growing of intercrops was considered in scenario N1 in order to minimize N losses.
The change in N export from the catchment was calculated at the Potsdam Institute for
Climate Impact Research using the SWIM model. Though TN loads from all considered15

subbasins were reduced by about 29% on average, the TN concentration of the Havel
River decreases only slightly (Fig. 9). This emphasizes the outstanding impact of nitro-
gen loads emitted from the Spree catchment, which were not altered in scenario N1.
That is, a significant reduction in average TN concentrations of the Lower Havel River
would require massive emission control measures to be taken in the Spree catchment20

which comprises a number of large point sources. However, the effect of reduced N
input on primary production is hard to predict: Summer DIN concentrations temporarily
fall below 0.1 mg l−1 already under present conditions. It is uncertain whether a fur-
ther decrease could induce prolonged N limitation or just favors N-fixing cyanobacteria
as long as P concentrations are high. Another point in the discussion on reduced N25

emission are the costs, because it is expensive to upgrade N elimination in wastewater
treatment whereas retention in the river system (see Sect. 3.2) is “for free”.
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4. Conclusions

By means of the simple nutrient transport model TraM it was shown that in-river turnover
significantly influences total nutrient concentrations of the lowland river Havel. Hence,
the quantification of nitrogen and phosphorus retention rates turned out to be essen-
tial not only for understanding the present state of water quality but also for evaluat-5

ing possible strategies of river basin management. The TraM model, adapted to the
characteristics of the Havel River, proved to be a useful and necessary extension to
mesoscale catchment models. As TraM uses empirical rates to account for N and P
retention, the applicability of the current model version is limited. Distinct changes
in natural boundary conditions or management practice might render empirical coeffi-10

cients examined by calibration invalid. Therefore, more complex models, which take
into account all relevant species and reaction terms of the N and P cycle seem de-
sirable. However, one must keep in mind the large number of parameters introduced
by those models. Many of them are well defined in theory but hard to measure in the
field and they are therefore prone to uncertainty. Effective settling velocities and the15

parameters involved in sediment phosphorus release are just two common examples,
not to mention the problem of spatial heterogeneity. We think the approach taken in
this study is a reasonable compromise, suitable for pointing out options and limits of
nutrient concentration management. The next version of the TraM model will overcome
some of its actual deficiencies. That is, a sediment compartment will be implemented20

to force closed mass balances (Reichert et al., 2001) and a generic reaction module is
currently tested, which allows very simple to rather sophisticated kinetic models to be
created by the user. In our opinion robust water quality models of adaptable complex-
ity are needed to better integrate both, catchment nutrient dynamics and in-river/lake
turnover into a modeling framework applicable in the context of the WFD.25
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2563

http://www.copernicus.org/EGU/hess/hessd.htm
http://www.copernicus.org/EGU/hess/hessd/2/2549/hessd-2-2549_p.pdf
http://www.copernicus.org/EGU/hess/hessd/2/2549/comments.php
http://www.copernicus.org/EGU/EGU.html


HESSD
2, 2549–2579, 2005

Analysis of nutrient
retention and

management for a
lowland river

D. Kneis et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Print Version

Interactive Discussion

EGU

A. Habeck, who ran the SWIM and ArcEGMO-Urban simulations and supplied lots of input
data for the TraM model. We thank J. Jacobs, R. Thiel, and W. Wendler who finally established
the set of management scenarios. This study was funded by the German Federal Ministry of
Education and Research.

References5

Behrendt, H. and Opitz, D.: Retention of nutrients in river systems: Dependence on specific
runoff and hydraulic load, Hydrobiologia, 410, 111–122, 2000. 2559

Biegel, M., Schanze, J., and Krebs, P.: ArcEGMO-URBAN Urban water Modelling on the River
Basin Scale, in: Proceedings of the 6th international Conference on Urban Drainage Mod-
elling, Dresden, Germany, 15–17 September 2004, 543–550, http://urban.arcegmo.de/pdf/10

UDM04 Biegel.pdf, 2004. 2553, 2560
Chapra, S. C.: Surface water quality modeling, McGraw-Hill, 1997. 2552, 2553
Jacobs, J. and Jessel, B.: Design of landuse scenarios for river basin management (in Ger-

man), UVP-Report 3+4, UVP-Gesellschaft e.V., 117–121, 2003. 2562
Jensen, H. S., Kristensen, P., Jeppesen, E., and Skytthe, A.: Iron:phosphorus ratio in surface15

sediment as an indicator of phosphate release from aerobic sediments in shallow lakes,
Hydrobiologia, 235/236, 731–743, 1992a. 2556

Jensen, J. P., Jeppesen, E., Kristensen, P., Christensen, P. B., and Søndergaard, M.: Nitrogen
loss and denitrification as studied in relation to reductions in nitrogen loading in a shallow
hypertrophic lake, Int. Revue ges. Hydrobiol., 77, 29–42, 1992b. 255320

Jeppesen, E., Kristensen, P., Jensen, J. P., Søndergaard, M., Mortensen, E., and Lauridsen, T.:
Recovery resilience following a reduction in external phosphorus loading of shallow eutrophic
Danish lakes: Duration, regulating factors and methods for overcoming resilience, Mem. Ist.
ital. Idrobiol., 48, 127–148, 1991. 2551

Kleeberg, A. and Kozerski, H. P.: Phosphorus release in lake Grosser Müggelsee and its impli-25
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Table 1. Features of continuous flow stirred tank reactors (CFSTR) and plug-flow reactors
(PFR) in the TraM model.

CFSTR PFR

Equivalent in nature Polymictic lakes River/channel sections
Advective transport Neglected Implemented
Dispersive transport Implemented Currently neglected
Transport calculation Numerical solution of

mass balance equation
Shifting of load hydrograph time
axis according to flow velocity

Geometric input data Stage-Volume- and
Stage-Area-Relation

Flow area and wet perimeter as
function of stage

Dynamic input data Stage and flow hydrographs, time series of load from up-
stream waters and external sources, retention parameters
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Table 2. Monthly median values of TN retention (mg m−2 d−1) for lakes of the Potsdamer Havel
calculated from mass balances for the years 1996–2002. See Fig. 1 for lake labels C–F.

Lake Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

C 107 141 322 330 230 227 224 181 184 140 168 124
D 43 124 71 -15 36 42 133 44 27 46 16 -13
E 42 100 161 137 67 35 27 20 51 75 67 44
F 48 57 97 148 80 72 37 71 -8 90 66 20
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Table 3. Errors in simulated TP and TN concentrations at monitoring station Ketzin (label 1 in
Fig. 1) for the period of model calibration (1995–2000) and four additional years. ME: mean
error (Bias), MAPE: mean absolute percental error, Efficiency: Nash/Sutcliffe index.

Variable Parameter 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004

TP ME (mg l−1) −0.02 0.01 −0.02 −0.01 −0.02 −0.13 −0.01 0.02 0.10 0.05
MAPE (%) 30.2 21.6 18.4 28.0 14.8 29.9 18.6 27.1 41.7 24.4
Efficiency (–) 0.70 0.42 0.82 0.71 0.96 0.69 0.81 0.81 0.02 0.43

TN ME (mg l−1) 0.18 −0.15 −0.33 0.07 0.30 0.08 0.17 0.02 0.12 0.05
MAPE (%) 25.2 18.6 18.1 17.6 19.2 15.8 20.1 10.5 13.0 20.7
Efficiency (–) −0.19 0.10 0.03 −0.26 0.10 0.55 0.36 0.57 0.80 0.54
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Table 4. Assumed reduction of TP emissions from the Spree catchment (ESpree) and all other
subcatchments (EOther) and its effect on the average TP concentration of the Havel River CHavel
at monitoring station 2 (see Fig. 1). The initial values for the base scenario P0 are averages
over 13 years.

Scenario ESpree EOther ETotal CHavel
P0 6.2 g/s 4.2 g/s 10.4 g/s 0.23 mg/l

∆ESpree ∆EOther ∆ETotal ∆CHavel
P1 0.0% −13.0% −5.2% −3.7%
P2 −50.0% −13.0% −35.2% −23.8%
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Fig. 1. The Havel River downstream of the city Berlin with its major inflows (in bold). Labels
A–F and numbers are used throughout the text for reference purposes.
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Fig. 2. Interaction between the transport, the hydrodynamic and the catchment model(s). Dot-
ted arrows indicate the exchange of boundary conditions while solid arrows mark external input
data.
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The 95% confidence interval is indicated by dotted lines.
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Fig. 4. Observed and simulated TP concentration of the Havel River at Ketzin (label 1 in Fig. 1)
for the time period of model calibration (1995–2000) and four additional years.
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Fig. 5. Estimates of the rate constant kTN (d−1) used for approximating the retention of total
nitrogen by a first order kinetics. The values were identified by model calibration in 1995–2000.
Refer to Fig. 1 for labels.
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Fig. 6. Cumulated load of total nitrogen (kilotons) at the downstream end of the river network
(monitoring station 2 in Fig. 1) as computed from observed data and model simulations.
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Fig. 7. Left: Simulated change in average TN concentrations ∆CTN at monitoring station 2 (see
Fig. 1) resulting from the use of altered retention parameters kTN starting from calibrated values
(Fig. 5). Right: Change in average TP concentrations ∆CTP at the same monitoring station as
simulated with net phosphorus retention rates rTP for June–October varied from −50 to +50%
around the mean values shown in Fig. 3.
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Fig. 8. Monthly averages of TP concentration (columns) at the downstream boundary of the studied river

section (label 2 in Fig. 1) for the scenarios P0, P1 & P2. Lines illustrate the proportional change in average

concentrations (∆ TP) associated with the scenarios P1 & P2.
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section (label 2 in Fig. 1) for scenario N0 & N1. The dashed line marks the proportional change in average

concentration (∆ TN) associated with scenario N1.

20

Fig. 8. Monthly averages of TP concentration (columns) at the downstream boundary of the
studied river section (label 2 in Fig. 1) for the scenarios P0, P1 and P2. Lines illustrate the
proportional change in average concentrations (∆ TP) associated with the scenarios P1 and
P2.
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Fig. 9. Monthly averages of TN concentration (columns) at the downstream boundary of the
studied river section (label 2 in Fig. 1) for scenario N0 and N1. The dashed line marks the
proportional change in average concentration (∆ TN) associated with scenario N1.
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