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Abstract

Advances in meso-scale numerical weather predication make it possible to provide
rainfall forecasts along with many other data fields at increasingly higher spatial reso-
lutions. It is currently possible to incorporate high-resolution NWPs directly into flood
forecasting systems in order to obtain an extended lead time. It is recognised, however,5

that direct application of rainfall outputs from the NWP model can contribute consider-
able uncertainty to the final river flow forecasts as the uncertainties inherent in the
NWP are propagated into hydrological domains and can also be magnified by the scal-
ing process. As the ensemble weather forecast has become operationally available,
it is of particular interest to the hydrologist to investigate both the potential and im-10

plication of ensemble rainfall inputs to the hydrological modelling systems in terms of
uncertainty propagation. In this paper, we employ a distributed hydrological model to
analyse the performance of the ensemble flow forecasts based on the ensemble rainfall
inputs from a short-range high-resolution mesoscale weather model. The results show
that: (1) The hydrological model driven by QPF can produce forecasts comparable with15

those from a raingauge-driven one; (2) The ensemble hydrological forecast is able to
disseminate abundant information with regard to the nature of the weather system and
the confidence of the forecast itself; and (3) the uncertainties as well as systematic bi-
ases are sometimes significant and, as such, extra effort needs to be made to improve
the quality of such a system.20

1 Introduction

With advances in numerical weather prediction (NWP) in recent years as well as an
increase in computing power, it is now possible to generate very high resolution rainfall
forecasts at the catchment scale and therefore, more flood forecasting systems are
tending to utilise quantitative precipitation prediction (QPF) from high-resolution NWPs25

in order to extend the forecast lead time. This is particularly true in the flash flooding
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area where the model performance is highly dependent on the rapid availability of
knowledge of rainfall distribution in advance (Ferraris et al., 2003). Many efforts have
been made to utilise the QPF in the context of real-time flood forecasting in which one
or more “state-of-the-art” QPFs stemming from different methods are to be integrated
into the whole system (e.g. Bartholmes and Todini, 2005; De Roo et al., 2003; Kobold5

and Sušelj , 2005; Verbunt et al., 2006; Xuan et al., 2005; Xuan and Cluckie, 2006).
However, the effects of QPF uncertainty on the whole system can be easily appreciated
either intuitively or by case studies (Xuan et al., 2005). Indeed, recent research on
integrating QPF directly into the real-time flood forecasting domain reveals that direct
coupling of the QPF with the hydrological model can result in large bias and uncertainty10

which can result in not only severe underestimation (Bartholmes and Todini, 2005;
Kobold and Sušelj , 2005) but over predicting as well, especially for mountainous areas
(Verbunt et al., 2006) .

It is logical to divide such a coupling system into two components, the weather mod-
elling system (NWP) and hydrological modelling system, through which the uncertain-15

ties from weather domain can be propagated into final system output space.

1.1 The weather model component

The weather models, which are routinely run in national weather centres, have such a
coarse spatial resolution that hydrological models have difficulty applying the result
from them as an effective input. The so-called downscaling procedure is needed20

to bridge the scale gap between the large-scale weather forecast domains and
catchment-sized flood forecasting domains. In this study, a dynamical-downscaling
approach is applied to resolve the dynamics over 2 km grids. The forecasts/analyses
from global weather models are used to settle the initial and lateral boundary conditions
(IC/LBC) of a mesoscale model that is able to benefit from the resolvable terrain fea-25

tures and physics at higher resolutions. This sort of mesoscale model is often referred
to as a local area model (LAM).
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Lorenz (1963, 1993) introduced the concept that the time evolution of a nonlinear,
deterministic dynamical system, to which the atmosphere (essentially a boundary layer
process) and the equations that describe air motion belong, are very sensitive to the
initial conditions of the system. The uncertainties inherited in the larger scale model,
which provides the parent domain with the IC and LBC, can also be propagated to5

the nested mesoscale models. Given the large number of degrees of freedom of the
atmospheric phase state, it is impractical to directly generate solutions of the proba-
bilistic equations of initial states (Kalnay, 2002). The ensemble forecast method, runs
the model separately over a probabilistically generated ensemble of initial states, each
of which represents a plausible and equally likely state of the atmosphere, and projects10

them into future phase space. As such the future state-space can be represented by
the statistics of the ensemble.

1.2 The hydrological model component

The hydrological model, like weather models, is subject to the same factors regarding
the uncertainty sources in weather modelling systems. For a stand-alone hydrologi-15

cal model, although uncertainties in data inputs, e.g., measurements or observations,
have been regarded as one of the main sources of uncertainty, the model structure and
parameterisations have drawn more attention from hydrologists (Wagener et al., 2001).
Simply speaking, the uncertainty related to hydrological modelling is categorised as:
that from the inability to obtain the state of the system and that due to inefficient mod-20

elling of reality.
As for the coupling system discussed here, it is important to recognise that the rainfall

input uncertainty may always outweigh the impact of the model structure, owing to the
fact that the inputs are not directly measured; rather, they are the direct outputs and
already include a certain amount of uncertainty which can be magnified by a particular25

coupling process.
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1.3 The objective of this study

Considerable research effort has been made on both NWP based QPF and the appli-
cation of NWP in flood forecasting (see Smith and Austin, 2000). The objective of this
paper, however, is to address uncertainties of the ensemble hydrological forecasting
driven by the high resolution ensemble rainfall forecast from the NWP, and to under-5

stand the implication of the spatio- and temporal- variability of rainfall forecast applied
in the flood forecasting environment. To achieve this, we employ a simple distributed
hydrological model to investigate the distribution effect of rainfall forecasts and a high
resolution rainfall ensemble prediction system to provide rainfall forecasts at the catch-
ment scale. A densely-gauged catchment with sufficient data records was chosen to10

run the simulations, and this will be discussed in the following sections.

2 The catchment and models setup

2.1 The Brue catchment

The Brue catchment, located in South West of England, UK, is an ideal experimental
site for research on weather radar, quantitative precipitation forecasting and rainfall-run15

off modelling, as it has been facilitated with a dense rain gauge network as well as the
coverage by three weather radars. Numerous studies (Bell and Moore, 2000; Moore
et al., 2000; Pedder et al., 2000; Cluckie et al., 2000) have been conducted regard-
ing the catchment, notably during the period of the Hydrological Radar EXperiment
(HYREX) which was a UK Natural Environment Research Council (NERC) Special20

Topic Program. Figure 1 shows the locations of the Brue catchment and the gauging
stations. The River Brue rises in clay uplands in the east of the catchment. The major
land use is pasture land on clay soil and there are some patches of woodland in the
higher eastern catchment, which form part of the unique landscape of the Somerset
Levels and Moors.25

3215

http://www.hydrol-earth-syst-sci-discuss.net
http://www.hydrol-earth-syst-sci-discuss.net/3/3211/2006/hessd-3-3211-2006-print.pdf
http://www.hydrol-earth-syst-sci-discuss.net/3/3211/2006/hessd-3-3211-2006-discussion.html
http://www.copernicus.org/EGU/EGU.html


HESSD
3, 3211–3237, 2006

Uncertainty analysis
of hydrological

ensemble forecasts

I. D. Cluckie et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

EGU

The catchment has a drainage area of 135 km2 with the average annual rainfall of
867 mm and an average mean river flow of 1.92 m3/s, for the period from 1961 to
1990. Besides weather radar, there is a dense raingauge network which comprises
49 Cassella 0.2 mm tipping-bucket raingauges, having recording time resolution of 10 s
(Moore et al., 2000). The network provides at least one raingauge in each of the 2 km5

grid squares that lie entirely within the catchment. Datasets from HYREX are available
through the British Atmospheric Data Centre (BADC) for the period from 1993 to 2000.
With the abundant data in this region, the rainfall-runoff model used in this study was
able to reasonably model the hydrological behaviour of the catchment.

2.2 The hydrological model10

A simplified grid-based distributed rainfall-runoff model (GBDM), which is based on the
kinematics wave approach, is chosen in this study. A brief introduction of the model is
given in Appendix A. This model has been successfully applied in different catchments
of Taiwan (e.g. Yu and Jeng, 1997; Yu et al., 2001). In this study, this model was
calibrated and verified using 17 historical storm events over the Brue catchment. The15

shuffled complex evolution (SCE) method (Duan et al., 1992, 1993, 1994), which is a
general-purpose global optimisation strategy designed to solve the various response
surface problems in calibrating a non-linear simulation model, was utilised to calibrate
the model parameters.

2.3 The short-range ensemble rainfall prediction system20

A short-range ensemble QPF system was used to produce ensemble rainfall forecasts
that can be ingested into the hydrological model to generate the hydrological river flow
forecasts. The ensemble QPF system was initially implemented in the FLOODRELIEF
project and has been used in several case studies (Xuan et al., 2005). The system
consists of: the mesoscale weather model. PSU/NCAR mesoscale model (MM5) (Dud-25

hia et al., 2003), the global analyses/forecast datasets from the European Centre for
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Medium-range Weather Forecasts (ECMWF) (Persson, 2003), the model physics se-
lector and a post-processing system. Using the ensemble approach, the system is
capable of representing uncertainties due to perturbations in initial and boundary con-
ditions and the efficiency of the model structure.

In this study, the system was configured to produce ensembles over a short time5

range, i.e., 24 h. The model structure was not perturbed in terms of changing physics
parameterisations, as previous research revealed that uncertainties of rainfall forecasts
due to parameterisations are not always significant compared with those from inaccu-
racy of initial and/or boundary conditions (Xuan et al., 2005). The ensembles comprise
only the direct downscaling of perturbed background fields from ECMWF, i.e., the fifty10

members of the ECMWF ensemble prediction system, and one operational forecast
member which represents the best estimate of the atmospheric state.

In order to reach the spatial scale comparable to the rainfall-runoff modelling system,
four nests have been used with the inner-most one having resolution of about 2 km and
covering a region around 100 km by 100 km (Fig. 2). The domains were deliberately set15

so that the target catchment was well centred inside all the nests in order to largely re-
duce the effects of spatial distortion owing to different map projections used in weather
models and rainfall-runoff models.

3 The simulations

The simulation of this study contains two parts, i.e., the conventional calibration and20

verification of GBDM in respect of the raingauge data; and the simulation with rainfall
ensemble inputs to the calibrated hydrological model. We hereby give a brief descrip-
tion of the conventional calibration process and draw more attention to the simulation
with ensemble rainfall inputs.
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3.1 Calibration of GBDM

The distributed hydrological model used in this study, GBDM, has been calibrated with
13 historical storm events and verified using 4 (see Table 1) that occurred over the Brue
catchment from year 1993 to 2000 covering different seasons.

The parameters of GBDM can be categorised as two groups, i.e., those physically-5

based parameters which can be generated directly from topographic, soil, and vegeta-
tion maps, and those that need to be calibrated from historical rainfall and flow data.
Three calibration parameters (CS , CC and Ch, see Appendix A) have been calibrated
by applying both an optimisation technique and an objective function. In this study, the
SCE method was adopted for model calibration. The SCE method is a general-purpose10

global optimisation strategy designed to solve the various response surface problems
encountered in calibrating a non-linear simulation model. Details can be found in Duan
et al. (1992, 1993, 1994) .

3.2 The processing of rainfall inputs

Like most hydrological models, the GBDM uses the raingauge data for its calibration15

and verification. Although the model is grid based and has a grid size of 500 m in this
case, the rainfall value for each grid is actually obtained using the Thiessen polygon
method. When the rainfall forecasts are used to drive the hydrological model, the
rainfall values from the weather model were first subject to a projection transformation
(from Lambert Conformal projection to National Grid Reference of the UK), and then20

linear interpolation is adopted to transfer the rainfall from 2 km weather model grids to
the hydrological grids which have a 500 m grid size.

It has been long recognised that there are always considerable uncertainties regard-
ing the NWP forecast of rainfall locations and timings. In order to account for the fact
that the rainfall distribution was not correctly positioned, a “best match” approach was25

introduced to find out the location of the forecast that best resembled the rainfall pattern
in the catchment. A similar method (Ebert and McBride, 1993) has been used to verify
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the weather forecast of precipitation and other spatially distributed variables where it is
found that the model performance was not sufficiently evaluated by the grid-by-grid cri-
teria, e.g., critical success index (CSI), false alarm ratio (FAR), etc.. This approach in-
volves three steps, which are: (1) Extract grid mask of the catchment which represents
the shape of the catchment and the relative position of each grid within catchment. (2)5

Find out the distribution of rainfall accumulation over catchment grid for a given period
of time. A 24 h rainfall accumulation from rain gauges was adopted as a reference dis-
tribution. (3) Within the weather model domain, move the catchment grid mask in both
x (East-West) and y (South-North) direction step by step. For each step, calculate the
correlation coefficient of the rainfall forecast extracted by the mask and the reference10

distribution obtained in the previous step. Therefore, a series of correlation coefficients
value are obtained in respect of different offsets of x and y . After this searching proce-
dure, a best matched area has been identified and the data values within this area are
available for future processing.

Another common problem relates to the application of the QPF to a hydrological15

model, where the final forecast can be severely underestimated if applied with a hydro-
logical model calibrated using point rainfall from the raingauges. As the grid value for
the weather model output represents a box-average of the grid where the sub-grid dy-
namics always play an important role in contributing great amount of spatial variability
even within a small grid (2 km in this case), there is a high chance of a gauge-calibrated20

hydrological model producing a simulation much lower in magnitude than if the rainfall
forecast was applied directly. Again, we use a 24 h rainfall accusation to adjust the rain-
fall forecast bias, which is performed through the following procedure: (1) Obtain the
total catchment rainfall over the specified 24 h period, which will be used as a reference
value. (2) Get the ratio of the amount obtained in step (1) to the total catchment rainfall25

value for weather model in the same period. (3) Adjust hourly rainfall value from the
weather model by the factor obtained in step (2). It should be noted this simple bias
correction is a sort of “posterior” method; it is used here for evaluation only and is not
suitable for forecasting.
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3.3 Test events of ensemble forecasts

The storm events No. 15 and No. 16 were selected to do uncertainty analysis. Both
these events are also the ones for verification of the GBDM with conventional rain
gauge inputs. While No. 15 contains several sub-events, No. 16 seems to have one
single continuous event which lasts for a longer period of time.5

The original verification results from these events are shown in Fig. 3. It can be seen
that the model performed very well for event 16 but under-predicted the main flow peak
of event 15. One reason for this is that the GBDM has difficulty identifying the transition
state of the catchment in the interval in-between two consecutive heavy rainfall inputs.

In order to evaluate the uncertainty of the rainfall forecasts regarding the location,10

the results of the best match in terms of maximum correlation coefficient are plotted
in Fig. 4. Under the current configuration, the catchment mask can move within the
MM5 innermost domain with a maximum distance in x and y direction of about 80 km.
The origins in Fig. 4 are the initial settings, i.e., the original position of catchment.
The highest value Rmax and the lowest one Rmin from all the “best-matched” ensemble15

members are also depicted in the figure for both events.
Figures 5 and 6 give the 24 h ensemble rainfall forecasts over the catchment in forms

of box plots (Wilks, 1995). Note that in terms of areal rainfall, the median values of
the ensembles still resemble each other after undergoing the location correction as
mentioned above.20

The ensemble rainfall forecasts are then ingested into a time window of 24 h for
both events. For event 15, the ensemble rainfall forecast was initialised on 18 Decem-
ber 1999 12:00 UTC and the hourly rainfall forecasts were produced up to 19 Decem-
ber 1999 12:00 UTC, corresponding to the time window from the 34th step to the 57th
step. The original rainfall values within this window have then been substituted by the25

ensemble rainfall forecasts. The same procedure was also applied to event 16 but with
a time start of 1 February 2000 12:00 UTC and the corresponding window from step
14 to step 37. The ensemble forecasts are displayed in Fig. 7 and Fig. 8 where the
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shaded areas represent the spread of all ensemble members between the quantiles
q0.1 and q0.9. Also shown are the control forecasts, based on the “best estimate” rain-
fall forecast results. Note that the rainfall values here are referred to the average of all
ensemble members.

4 Discussion5

4.1 The direct application of the rainfall ensemble

As shown in Figs. 7 and 8, for both events the direct ingestion of the rainfall ensem-
ble to the hydrological model results in strong bias – a severe underestimation of river
flow. Although the river flow ensemble does express a considerable spread, it fails to
encompass either the observed value, or the original forecast with rain gauge inputs.10

As shown in Figs. 5 and 6, the difference of hourly catchment average rainfall between
rainfall forecasts and the gauge network can be easily appreciated and again it rep-
resents the weather model’s limitation in predicting spatial variability. The temporal
distribution of catchment average rainfall, on the other hand, resembles that from rain-
gauges for event 15 and therefore the hydrographs generated by the ensemble mean15

are similar to the original, although they underestimate the latter.

4.2 The dispersion of location and its implications

The introduction of the best match rainfall field pattern in Sect. 3.2 provides a new
prospective on the uncertainty of the QPF regarding location. Although this method
is defined by the maximum correlation between the rainfall forecast and the reference20

one, it also reveals the spatial relationship of all ensemble members. We can safely
argue that members that agree with each other must have locations close to each
other in the “best match” map as in Fig. 4; therefore the dispersion of those locations to
some extent can be seen as a indicator of the agreements among ensemble members
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and as such, imply the spread of the trajectories of members in the model’s phase
space. However, it is worth noting that due to the high nonlinearity of the precipitation
process, the correlation coefficient in a linear sense can reveal only small fraction of
the behaviour of ensemble forecasts. Interestingly, the rainfall ensemble provides a
contrasting dispersion result for event 15 and event 16. There are several cluster-like5

areas for event 16 where several members are supposed to produce similar results,
while a quite dispersive set was obtained for event 15 where no clear pattern could be
found.

4.3 Location correction and bias adjustment

Two distinct results are produced after applying location correction and bias adjustment10

to both events. For event 16, the corrected version has clearly improved the quality of
flow forecasts – the flow ensemble has successfully covered the observation, as shown
in A2. As to event 15, the correction actually has not made things better as can be seen
from Fig. 6 where the median forecast has under-predicted the river flow even with the
average catchment rainfall being corrected to the level of the raingauge.15

One important effect regarding the implication of the rainfall pattern can be found
if the flow ensembles are compared with the results of the catchment average rainfall
ensembles which are shown in Fig. 5 and Fig. 6. The temporal evolution of rainfall
forecast in terms of the spatial average follows closer to the gauge value for event
15 than event 16. This is of particular interest because it reveals that the ensemble20

members probably have not captured or approached the rainfall pattern that really
happened even if the catchment average rainfall looks similar to the real one. The
maximum correlation coefficient for this event, as seen in Fig. 4, is much lower than for
event 16, which agrees with this speculation.
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5 Summary and conclusions

A distributed hydrological model has been employed, together with a short-range rain-
fall ensemble, to produce hydrological ensemble forecasts which are then supposed to
represent uncertainties both inherited in the system and cascaded through the model
chain. The study draws attention to the meteorological model and hydrological model5

boundary through which the transport of uncertainties can be investigated with the
help of (1) the mesoscale ensemble short-range rainfall forecasts which can expose
the uncertain nature of weather systems; and (2) the distributed hydrological modelling
system which is capable of reflecting effects of spatial/temporal variability of rainfall in-
puts. The study catchment benefits from a dense raingauge network and provides a10

reasonable reference for testing the performance as well as the uncertainty effects.
It can be concluded from the study that: (1) ensemble hydrological forecasting driven

by ensemble rainfall forecasts, can produce comparable results in respect of gauge-
driven forecasts, together with the ability to reveal the uncertain nature of the mod-
elling system. The ensemble rainfall inputs, however, need to be well adjusted for bias15

in rainfall amount and properly shifted to match the rainfall pattern; (2) considerable
uncertainty can be propagated from weather domains where a more chaotic weather
system is concerned. In this case, even the short-range rainfall ensemble can end
up with a substantially wide-spread that may completely fail the hydrological ensemble
requirements as the uncertainties become unacceptable after the coupling process;20

(3) the proposed “best matching” procedure is supposed to be a practical indicator for
not only the quality of the ensemble rainfall forecast, but reflecting the uncertain na-
ture of the ensemble itself; and (4) the inability of the weather models to resolve the
sub-grid scale precipitation features still needs to be addressed. The bias, specifically
the common underestimates of rainfall at fine scale, can result in unrealistic low river25

flow forecasts; this has to be properly dealt with separately, not simply attributed to
the system’s uncertainties. Despite these difficulties the development of coupled mod-
els which allow the propagation of uncertainty are an important development in flow
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forecasting systems.

Appendix A

Brief summary of GBDM model

A1 Abstraction loss5

Infiltration is assumed to dominate the abstraction losses during storm and it is esti-
mated by Horton equation.

fp(t) = fC + (f0 − fC) exp−ktr (A1)

Where fp(t) denotes the infiltration capacity, f0 represents the initial infiltration capacity,
fC is the final infiltration capacity, k denotes the decay constant, and tr is the time.10

We set the actual cumulative infiltration equal to the integrated Horton’s equation, to
adjust the deficiency of the Eq. (A1), which always decreases with time even if the
rainfall stops. Each storm event has its own antecedent condition and optimal initial
infiltration capacity, so a calibrated parameter Ch is used here to obtain the optimal
initial infiltration parameters (Yu and Jeng, 1997).15

A2 Flow governing equation

Non-linear conceptual approaches were used for calculating overland flow and channel
flow routing. The continuity and storage equations are written as:

I −Q = dS/dt (A2)

S = K ·Qm (A3)20
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I , Q and S are input, output and storage at a grid. K and m are parameters. To consider
the simplest case of overland flow in a grid with length L, width w and water depth y ,
the volume of water stored in the grid is:

S = wyL (A4)

The discharge, Q, given by Manning’s equation is5

Q =
1.0
n

wy5/3S1/2
b (A5)

Substituting Eq. (A4) into Eq. (A5) to eliminate the water depth y gives

S =
N0.6w0.4L

S0.3
b

Q0.6 (A6)

Here, Sb is the slope and N is the Manning’s roughness coefficient. Equation (A6) is
the same as Eq. (A3) with10

m = 0.6 (A7)

K = N0.6w0.4S−0.3
b L (A8)

Hence the storage coefficient K in Eq. (A8) is a function of Manning’s roughness coef-
ficient N and the slope. As the actual value of N and Sb may involve some uncertainty,
a lumped parameter, C, is introduced adjust the storage coefficient, and is calibrated15

from the historical data.

(Ki )opt = C(Ki ) = C(N0.6w0.4
i LS−0.3

b ) (A9)

The spatial variability of the storage coefficient can be obtained by using the Manning’s
coefficient N and the slope at each grid element as shown in Eq. (A9), although a
lumped parameter C is calibrated for all grid elements. Notably, two separate parame-20

ters Cs and Cc were used for overland flow and channel flow.
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The catchment was divided into a 500 by 500 m grid-based mesh. Based on the
soil map, the referenced parameters values of fo, fc and k are determined for each
grid cell to estimate the infiltration loss. The roughness of the ground surface, which
depends on the surface cover, has an influence on the storage coefficient and the runoff
behaviour was determined by remote sensing image. The topography within each grid5

cells, including flow direction, surface slope, and flow length, was determined from
digital elevation model (DEM).
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Table 1. The verification of GBDM with four history storm events.

Event No. Date Coefficient of model efficiency (CE)

14 23 Oct 1999 09:00–28 Oct 2000 08:00 0.88
15 17 Dec 1999 04:00–21 Dec 1999 03:00 0.69
16 31 Dec 2000 23:00–5 Feb 2000 14:00 0.92
17 2 April 2000 15:00–7 April 2000 14:00 0.87
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Fig. 1. The Brue catchment and the mesh configured for GBDM model (the horizontal and
vertical axes refer to the Easting and Northing in National Grid Reference co-ordinates).
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0 350 km
0 10 km

Fig. 2. The domain configuration of the MM5 (left with each domain indicated by dash-dot lines)
and the detailed view of domain 4 (right, the Brue catchment shown with colour shade near the
centre).

3231

http://www.hydrol-earth-syst-sci-discuss.net
http://www.hydrol-earth-syst-sci-discuss.net/3/3211/2006/hessd-3-3211-2006-print.pdf
http://www.hydrol-earth-syst-sci-discuss.net/3/3211/2006/hessd-3-3211-2006-discussion.html
http://www.copernicus.org/EGU/EGU.html


HESSD
3, 3211–3237, 2006

Uncertainty analysis
of hydrological

ensemble forecasts

I. D. Cluckie et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

EGU

6
4
2
0

0 20 40 60 80 100
0

20

40

60

3
2
1
0

0 20 40 60 80
0

20

40

60

4
3
2
1
0

0 20 40 60 80 100
0

10

20

30

40

3
2
1
0

0 20 40 60 80 100
0

20

40

60

Fig. 3. The verifications of events No. 14 A2, No. 15 A2, No. 16 A2 and No. 17 A2 where the
red lines are observed discharge series and the blue lines represent forecast values in m3/s.
The hourly areal rainfall is shown on the top with the unit of mm. The horizontal axes refer to
the time relative to the starting point in hours.
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Fig. 4. The shift of mask frame to get the highest correlation coefficient between the rainfall
ensemble members and the observed catchment rainfall distribution for events No. 15 A2 and
No. 16 A2, where the horizontal and vertical axes are shifting in East-West and South-North
directions respectively in km. The Origins are the initial locations without shifting.
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Fig. 5. The box plots of the ensemble forecast of event 15 – A2 the initial ensemble; A2 the
best matching ensemble; A2 the scaled-up initial ensemble and A2 the scaled-up version of
the best-matching ensemble. The lower and upper bounds of the boxes are corresponding to
quantiles q0.1 and q0.9 respectively. The lines in colour are: the observed rainfall (red), the
median of the ensemble (blue) and the control forecast (green). The horizontal and vertical
axes are the forecast time in hours and the hourly catchment-averaged rainfall in mm.
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Fig. 6. The same as Fig. 5, but for event 16.
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Fig. 7. The results of the flow ensemble forecast for event 15 which include: A2 the initial
ensemble without any correction of rainfall; A2 the ensemble with “best-matched” rainfall; A2 the
ensemble with the amount scaled and A2 the scaled-up version after matching. The observed
values are shown in red line and the ensemble medians are in blue. The shaded area are the
ensemble spreads in between quantiles q0.1 and q0.9 of the members.
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Fig. 8. The same as Fig. 7 but for event 16.
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