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Abstract

Digital elevation models (DEMs) represent the topography that drives surface flow and
are arguably one of the more important data sources for deriving variables used by
numerous hydrologic models. A considerable amount of research has been conducted
to address uncertainty associated with error in digital elevation models (DEMs) and the5

propagation of error to derived terrain parameters. This review brings together a dis-
cussion of research in fundamental topical areas related to DEM uncertainty that affect
the use of DEMs for hydrologic applications. These areas include: (a) DEM error; (b)
topographic parameters frequently derived from DEMs and the associated algorithms
used to derive these parameters; (c) the influence of DEM scale as imposed by grid cell10

resolution; (d) DEM interpolation; and (e) terrain surface modification used to generate
hydrologically-viable DEM surfaces. Each of these topical areas contributes to DEM
uncertainty and may potentially influence results of distributed parameter hydrologic
models that rely on DEMs for the derivation of input parameters. The current state of
research on methods developed to quantify DEM uncertainty is reviewed. Based on15

this review, implications of DEM uncertainty and suggestions for the GIS research and
user communities emerge.

1 Introduction

The general purpose of this review is to examine the nature, relevance and manage-
ment of digital elevation model (DEM) uncertainty in relation to hydrological applica-20

tions. DEMs provide a model of the continuous representation of the earth’s elevation
surface. This form of spatial data provides a model of reality that contains deviations
from the truth, or errors. The nature and extent of these errors are often unknown
and not readily available to users of spatial data. Nevertheless, DEMs are one of the
most important spatial data sources for digital hydrologic analyses as they describe the25

topography that drives surface flow. Use of DEMs in hydrologic studies is ubiquitous,
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however uncertainty in the DEM representation of terrain through elevation and derived
topographic parameters is rarely accounted for by DEM users (Wechsler, 2003). DEM
uncertainty is therefore of great importance to the hydrologic community.

This paper reports on representative literature on DEM uncertainty as applied to
hydrologic analyses1. To understand how to address and manage DEM uncertainty,5

specifically in relation to hydrologic applications, it is necessary to recognize the com-
ponents and characteristics of DEMs that contribute to that uncertainty. This paper
provides a review of research in each of these fundamental areas which includes: (a)
DEM error; (b) topographic parameters frequently derived from DEMs and the asso-
ciated algorithms used to derive these parameters; (c) the influence of DEM scale as10

imposed by grid cell resolution; (d) DEM interpolation; and (e) terrain surface modifica-
tion used to generate hydrologically-viable DEM surfaces. Each of these topical areas
contribute to DEM uncertainty and potentially influence results of distributed parameter
hydrologic models that rely on DEMs for the derivation of input parameters. The cur-
rent state of research on methods developed to quantify DEM uncertainty is reviewed.15

Based on this review, implications of DEM uncertainty and suggestions for the research
and GIS user communities emerge.

In the past decade DEM data has become increasingly available to spatial data users
due to the decrease in data and computer costs and the increase in computing power.
DEMs produced from technologies such as Light Detection and Ranging (LiDAR) and20

IFSAR (Interferometric Synthetic Aperture Radar sensor) are more readily available.
These remotely-sensed DEM production methods provide users with high resolution
DEM data that have stated vertical and horizontal accuracies in centimeters, making
them more desirable, yet costly in both dollars and processing requirements. DEM
users with limited budgets can obtain DEMs from government sources or conduct field25

surveys using global positioning systems (GPS) and interpolate DEMs for smaller study

1Given the burgeoning nature of this literature, it regrettably has not been possible to cite
every publication on this topic. An attempt has been made to give examples of studies related
to focal variables.
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areas. No matter the source, DEM products provide clear and detailed renditions of
topography and terrain surfaces. These depictions can lure users into a false sense of
security regarding the accuracy and precision of the data. Potential errors, and their
effect on derived data and applications based on that data, are often far from users’
consideration (Wechsler, 2003).5

In colloquial terms, error has a negative connotation indicating a mistake that could
have been avoided if enough caution had been taken (Taylor, 1997). However, errors
are a fact of spatial data and are not necessarily bad as long as they are understood
and accounted for. There has been much discussion in the literature regarding philoso-
phies (Fisher, 2000), ontologies (Worboys, 2001), and definitions (Heuvelink, 1998;10

Refsgaard et al., 2004) of spatial data uncertainty. For the purposes of this discussion
of DEM uncertainty, the term error refers to the departure of a measurement from its
true value. Uncertainty is a measure of what we do not know about this error and its
impact on subsequent processing of the data. In the spatial realm, errors and resulting
uncertainty can never be eliminated.15

Our responsibilities as DEM data users and researchers are to accept, search for
and recognize error, strive to understand its nature, minimize errors to the best of
our technical capabilities, and obtain a reliable estimate of their nature and extent.
Based on these understandings, the tasks are to develop and implement methods to
quantify and communicate the uncertainty associated with the propagation of errors in20

spatial data analyses. The research reported in this paper brings together knowledge
about the components and characteristics of DEM uncertainty specifically related to
hydrologic applications

2 DEM error

Errors in DEMs generate uncertainty. DEM errors are related to various DEM sources,25

structures and production methods, and are generally categorized as either systematic,
blunders or random (USGS, 1997). Systematic errors result from the procedures used
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in the DEM generation process and follow fixed patterns that can cause bias or artifacts
in the final DEM product. When the cause is known, systematic bias can be eliminated
or reduced. Blunders are vertical errors associated with the data collection process
and are generally identified and removed prior to release of the data. Random errors
remain in the data after known blunders and systematic errors are removed.5

Sources of DEM errors have been described by Burrough (1986); Wise (1998) and
Heuvelink (1998). Numerous studies have evaluated error and accuracy of various
DEM products. These include DEMs produced from synthetic aperture radar (SAR)
(Wang and Trinder, 1999), the Shuttle Radar Topography Mission (SRTM) (Suna et al.,
2003; Miliaresis and Paraschou, 2005), USGS DEMs (Berry et al., 2000; Shan et al.,10

2003), and comparisons of various DEM production methods (Li, 1994). Methods to
assess and reduce DEM error have been developed (Li, 1991; Lopez, 2002; Hengl et
al., 2004). DEM errors have been related to production methods and terrain complexity;
increased errors have been correlated with terrain complexity.

DEM accuracy is usually quantified using the RMSE statistic. While a valuable quality15

control statistic, the RMSE does not provide an accurate assessment of how well each
cell in a DEM represents a true elevation. Furthermore, the RMSE is based on the
assumption of a normal distribution (Monckton, 1994), which is often violated in the
case of the DEM. DEM quality can be assessed by conducting ground truth surveys
that can be time intensive and costly.20

It has been suggested that assessment of DEM uncertainty requires more informa-
tion on the spatial structure of DEM error – beyond that provided by the RMSE. DEM
vendors have been urged to provide additional DEM quality information such as “maps
of local probabilities for over or underestimation of the unknown reference elevation val-
ues from those reported in the DEM, and joint probability values attached to different25

spatial features.” (Kyriakidis et al., 1999, p. 677). The reality is that information beyond
the RMSE will not be provided to DEM users nor will most users take the time or spend
the money to obtain such data sets in order to conduct DEM error assessment (Wech-
sler, 2003). Because information on sources of error are not readily available, it is often
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difficult, if not impossible, to recreate the spatial structure of error for a particular DEM.
Knowledge about the spatial structure of error is an important component for gaining
an understanding of where errors arise and uncertainty is propagated. Methods should
accommodate detailed DEM error information when available, yet provide mechanisms
for addressing uncertainty in the absence of this information.5

3 Computation of topographic parameters for hydrologic analyses

The DEM provides a base data set from which topographic attributes are digitally
generated. The raster grid structure lends itself well to neighborhood calculations
which are frequently used to derive these parameters. Primary surface derivatives
such as slope, aspect and curvature provide the basis for characterization of landform10

(Evans, 1998; Wilson and Gallant, 2000). These terrain attributes are used exten-
sively in hydrologically-based environmental applications and are derived directly from
the DEM. The routing of water over a surface is closely tied to surface form. Flow di-
rection is derived from slope and aspect. From flow direction, the upslope area that
contributes flow to a cell can be calculated, and from these maps, drainage networks,15

ridges and watershed boundaries can be identified. Topographic, stream power, radi-
ation, and temperature indices are all secondary attributes computed from DEM data.
Wilson and Gallant (2000) provide a detailed review of the DEM-derived primary and
secondary topographic attributes. Research has demonstrated that DEM-derived to-
pographic parameters are sensitive to both the quality of the DEMs from which they20

are generated (Bolstad and Stowe, 1994; Wise, 2000) and the algorithms that are
used to produce them. This section discusses the calculation of certain topographic
parameters from DEMs.

Numerous algorithms exist for calculating topographic parameters. For example,
slope is calculated for the center cell of a 3×3 matrix from values in the surrounding25

eight cells. Algorithms differ in the way the surrounding values are selected to com-
pute change in elevation (Skidmore, 1989; Carter, 1990; Guth, 1995; Dunn and Hickey,
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1998; Hickey, 2001). Different algorithms produce different results for the same derived
parameter and their suitability in representing slope in varied terrain types may differ.
The slope algorithm developed by Horn (1981) and currently implemented in ESRI GIS
products is thought to be better suited for rough surfaces (Horn, 1981; Burrough and
McDonnell, 1998). The slope algorithm presented by Zevenbergen and Thorne (1987),5

currently implemented in the IDRISI GIS package (Eastman, 1992), is thought to per-
form better in representing slope on smoother surfaces (Zevenbergen and Thorne,
1987; Burrough and McDonnell, 1998).

The routing of flow over a surface is an integral component to the derivation of subse-
quent topographic parameters such as watershed boundaries, and channel networks.10

Many different algorithms have been developed to compute flow direction from gridded
DEM data and are referred to as single or multiple flow path algorithms. The single
flow path method computes flow direction based on the direction of steepest descent
in one of the 8 directions from a center cell of a 3×3 window (Jenson and Domingue,
1988), a method referred to as D8. The D8 algorithm is the flow direction algorithm that15

is provided within mainstream GIS software packages (such as ESRI GIS). However,
the users in the hydrologic community recognize that the D8 approach oversimplifies
the flow process and is insufficient in its characterization of flow from grid cells. In re-
sponse, researchers have developed multiple flow path methods that distribute flow in
all possible down-slope directions, rather than just one; see for example (Quinn et al.,20

1991; Costa-Cabral and Burgess, 1994; Wolock and McCabe, 1995; Tarboton, 1997;
Zhou and Liu, 2002). Multiple flow path methods attempt to approximate flow on the
sub-grid scale. Multiple flow path functions are currently not part of standard GIS pack-
ages and are therefore not readily available to DEM users. Desmet and Govers (1996)
compared six flow routing algorithms and determined that single and multiple flow path25

algorithms produce significantly different results. Thus any analysis of contributing ar-
eas such as watersheds or stream networks will be greatly affected by the algorithm
implemented. Other approaches to deriving channel networks and watershed bound-
aries have been developed such as those that incorporate additional environmental
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characteristics (Vogt et al., 2003).
Unfortunately, GIS packages do not differentiate between rough and smooth surfaces

when applying a slope or provide users with ay options when it comes to derivation of
terrain parameters. Users cannot choose a particular method; only one algorithm for
derivation of parameters such as slope, aspect and flow direction is embedded in a par-5

ticular GIS software package. This lack of flexibility in software capability introduces the
likelihood of further error transferred to derived topographic parameters. Additional re-
search on the appropriateness of certain algorithms for various terrain types is needed.
Future GIS software packages should accommodate research needs by providing flex-
ibility in the algorithms available to users. Software vendors will hopefully integrate the10

research produced by the hydrologic community in order to yield “smarter” GISs that
are capable of evaluating a DEM, and then apply an appropriate algorithm to specific
areas based on terrain characteristics and complexity.

4 DEM resolution and scale for representing topography

Theobald (1989) noted that “. . . seldom are errors described in terms of their spatial15

domain, or how the resolution of the model interacts with the relief variability” (p. 99).
This continues to be a concern.

The raster GIS grid cell data structure makes it possible to represent locations as
highly defined discrete areas. The grid cell size imposes a scale on raster GIS analy-
ses. It is also a representation of the spatial support which in geostatistics refers to the20

area over which variables are measured (Heuvelink, 1998; Dungan, 2002). The size
of a grid cell is commonly referred to as the grid cell’s resolution, with a smaller grid
cell indicating a higher resolution. DEM accuracy has been shown to decrease with
coarser resolutions that average elevation within the support (Li, 1992). Smaller grid
cell sizes allow better representation of complex topography and these high resolution25

DEMs are better able to refine characteristics of complex topography. This has led
many DEM users to seek the highest DEM resolutions possible, increasing the costs
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associated with both data acquisition and processing. However, is higher resolution
necessarily better? To what extent is the grid cell resolution a factor in the propagation
of errors from DEMs to derived terrain parameters?

The literature has established that the grid cell size of a raster DEM significantly af-
fects derived terrain attributes (Kienzle, 2004). The impact of grid cell resolution on ter-5

rain parameters has been related to both topographic complexity and the nature of the
algorithms used to compute terrain attributes. A variety of algorithms have been used
to compute slope from grid-DEMs using various grid cell resolutions. In each case, as
the DEM resolution became finer the calculated maximum slope became larger (Carter,
1990; Chang and Tsai, 1991; Jenson, 1991; Bolstad and Stowe, 1994; Gao, 1997; Yin10

and Wang, 1999; Toutin, 2002; Armstrong and Martz, 2003). This effect is related to
the topography’s complexity. If topography is complex, greater discrepancies can be
expected between grid cells.

Grid resolution has been shown to impact the accuracy of hydrologic derivatives in
the following applications: topographic index (Quinn et al., 1991; Quinn et al., 1995;15

Valeo and Moin, 2000), drainage properties such as channel networks and flow ex-
tracted from DEMs (Garbrecht and Martz, 1994; Wang and Yin, 1998; Tang et al.,
2001; Lacroix et al., 2002), the spatial prediction of soil attributes (Thompson et al.,
2001), computation of geomorphic measures such as area-slope relationships, cu-
mulative area distribution and Strahler stream orders (Hancock, 2005), flow, direction20

calculations (Usul and Pasaogullari, 2004), modeling processing of erosion and sedi-
mentation (Schoorl et al., 2000), computation of soil water content (Kuo et al., 1999)
and output from the popular rainfall-runoff model TOPMODEL (Saulnier et al., 1997;
Brasington and Richards, 1998).

DEM resolution has also been shown to directly impact hydrologic model predictions25

from TOPMODEL (Wolock and Price, 1994; Zhang and Montgomery, 1994; Band and
Moore, 1995; Quinn et al., 1995), the SWAT model (Chaplot, 2005; Chaubey et al.,
2005), and the Agricultural Nonpoint Source Pollution (AGNPS) (Vieux and Needham,
1993; Perlitsh, 1994). The Water Erosion Prediction Project (WEPP) model, however,
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was not sensitive to coarser resolution DEMs unless the resolution compromised wa-
tershed delineation (Chochrane and Flanagan, 2005).

Research has demonstrated that higher resolution is not necessarily better when it
comes to the computation of DEM derived topographic parameters (Wechsler, 2000;
Zhou and Liu, 2004). Higher resolution DEMs generate larger slope values. This can5

be attributed to the nature of the slope algorithm in which the grid cell resolution is effec-
tively the “run” in the rise-over-run formula. Smaller grid cells therefore compute larger
slope values. Research to determine an appropriate grid cell resolution for particular
analyses has also been undertaken (Albani et al., 2004; Kienzle, 2004). However, se-
lection of an appropriate resolution will depend on characteristics of the study area and10

nature of the analysis.
The repeated outcomes of the effects of grid cell resolution in various hydrologic ap-

plications suggest that grid cell resolution will remain an important factor in our under-
standing, assessment and quantification of the propagation of DEM errors to hydrologic
parameters and resulting uncertainty in related modeling applications.15

Variability at scales larger than those captured by the grid cell area, referred to as
sub-grid variability, exists, but has for the most part, been ignored. To date, sub-grid
information is either unavailable or lost through interpolation techniques. However, as
technologies progress and more and more data becomes available from DEM produc-
tion methods (such as LiDAR which produces millions of data points used for DEM20

interpolation), sub-grid information could be retained. Methods to differentiate data
from noise will need to be developed. This additional information could become a
useful component for future DEM uncertainty estimations.

5 Interpolation

Some researchers generate surfaces for areas not covered by existing data or in situ-25

ations where the surface must be of greater accuracy or more detailed resolution than
existing data. Based on a survey of DEM users, seventeen percent indicated that they
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generate their own DEM surfaces data (Wechsler, 2003). The proliferation of LiDAR
data requires users to interpolate DEMs from millions of delivered points. A detailed
review of various interpolation approaches can be found in (Burrough, 1986; Wood,
1996; Burrough and McDonnell, 1998). Often little is known about the error either oc-
curring during or generated as a result of the interpolation process (Desmet, 1997).5

The accuracy of surfaces generated by interpolation is difficult to assess, unless a sur-
face of known higher accuracy is available for comparison. This latter situation is rare
because the presence of a high accuracy surface precludes the need for interpolation.
A validation procedure can be applied in the absence of higher accuracy data whereby
interpolation points are removed and saved as a validation data set for comparison10

with the interpolated surface. Usually, a “good” surface is one that is found to most
closely match the input data, as quantified using the RMSE computed from validation
data obtained from the same data source (Maune, 2001). The relative accuracy of
self-generated surfaces is linked to both the interpolation method and the grid cell size
selected for interpolation. It is necessary to recognize the combined influence of these15

factors on the accuracy of the resulting surface.
Uncertainty associated with interpolation procedures has been a focus of practition-

ers and researchers in the geostatistical community (Dubois et al., 1998). Off-the-shelf
GIS packages allow users to perform interpolation using a variety of interpolation meth-
ods, most notably inverse distance weighing, spline and Kriging. Other methods have20

been developed (Bindlish and Barros, 1996; Doytsher and Hall, 1997; Shi and Tian,
2006). However, relatively few studies explicitly address the impact that different inter-
polation methods have on a resulting DEM. Wood and Fisher (1993) and Wood (1996)
applied visualization techniques to identify DEM interpolation errors. Desmet (1997)
investigated the effect of interpolation on precision (accuracy of the predicted heights)25

and shape reliability (degree of fidelity in the spatial pattern of topography) expressed
by derived topographic parameters. Wise (1998) investigated the effect of interpolating
DEMs from contours using different algorithms. Differences in results were attributed
to the complex interactions between algorithms for both interpolation and derivation of
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DEM-derived topographic parameters (Wise, 1998). Erxleben et al. (2002) evaluated
the accuracy of snow water equivalents derived from DEMs generated using four inter-
polation methods. Kienzle (2004) tested the quality of DEMs interpolated at different
resolutions and identified an optimum grid cell size that was determined to be between
5–20 m depending on terrain complexity.5

Additional research would assist in increasing our understanding of the impact that
DEM interpolation methods have on propagation of error to derived parameters and
uncertainty. Validation and cross validation techniques can provide a mechanism for
quantifying accuracy and developing models for the spatial structure of DEM error,
which in turn can be used to quantify uncertainty as it propagates to derived parameters10

and the models that use them.

6 Surface modification for hydrologic analyses

Overland flow routing through grid cells of a DEM requires a DEM without disruptions.
DEMs often contain depressions that result in areas described as having no drainage,
referred to as sinks or pits. These depressions disrupt the drainage surface, which15

preclude routing of flow over the surface. Sinks arise when neighboring cells of higher
elevation surround a cell, or when two cells flow into each other resulting in a flow
loop, or the inability for flow to exit a cell and be routed through the grid (Burrough and
McDonnell, 1998; ESRI, 1998). Hydrologic parameters derived from DEMs, such as
flow accumulation, flow direction and upslope contributing area, require that sinks be20

removed. This has become an accepted and common practice.
To use a DEM as a data source in hydrologic analyses, sinks must be removed,

a “necessary evil” according to Burrough and McDonnell (1998) and Rieger (1998).
Sinks, however, can be real components of the surface. For example in large scale
data where surface hummocks and hollows are of importance to surface drainage flow,25

sinks are accurate features. With the advent of high resolution (submeter grid cell)
DEMs it is possible that sink filling operations will be costly not only in processing time,

2354

http://www.hydrol-earth-syst-sci-discuss.net
http://www.hydrol-earth-syst-sci-discuss.net/3/2343/2006/hessd-3-2343-2006-print.pdf
http://www.hydrol-earth-syst-sci-discuss.net/3/2343/2006/hessd-3-2343-2006-discussion.html
http://www.copernicus.org/EGU/EGU.html


HESSD
3, 2343–2384, 2006

Uncertainties
associated with
digital elevation

models

S. Wechsler

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

EGU

but in removing naturally occurring features of the terrain surface.
Naturally occurring sinks in elevation data with a grid cell size of 100 m2 or larger are

rare, although they could occur in glaciated or karst topography (Mark, 1988; Tarboton
et al., 1993). To date, sinks have been treated as artifacts of the DEM creation method
and eliminated by various techniques. However, with the proliferation of high resolution5

(<0.25 m2) DEMs, sinks that represent naturally occurring features of the topography,
such as hummocks and hollows, that are found in glaciated terrain, should not be
treated as artifacts.

A number of methods have been described for eliminating depressions in DEMs
(O’Callaghan and Mark, 1984; Jenson and Domingue, 1988; Hutchinson, 1989; Jen-10

son, 1991; Rieger, 1998; Martz and Garbrecht, 1999). Off-the-shelf GIS packages
such as the ESRI suite of software use a sink filling approach based on the D8 single
flow direction flow routing method first described by Jenson and Domingue (1988) and
Jenson (1991). This sink filling approach raises the sink elevation to that which enables
flow linkage. This approach has the disadvantage of assuming that all depressions are15

due to an underestimation of elevation in the sink, rather than the overestimation of
surrounding cells, and flow routing is based on the D8 single-direction flow algorithm
discussed previously. Other algorithms have been developed that incorporate the mul-
tiple flow path approach that more adequately addresses the nature of depressions
(Rieger, 1998; Martz and Garbrecht, 1999).20

While research has focused on the development of sink filling methods, little attention
has been paid to either the appropriateness of a particular sink filling algorithm or to the
impact of the sink filling operation on DEMs and derived parameters. Wechsler (2000)
investigated the impact of DEM errors and the sink filling procedure on representation
of elevation and derived parameters using a Monte Carlo simulation technique. The25

effect of sink filling was quantified directly for elevation and slope and indirectly for the
TI. While there was no significant difference between elevation from filled and unfilled
DEMs, a significant bias was observed in the slope parameter. The sink filling pro-
cedure raised the elevation of cells where sinks were found, increasing elevations in
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these areas, resulting in a larger positive bias for elevation. Raising these elevations in
turn decreased slope estimators in these areas, leading to negative bias for slope. Sink
filling did not appear to have a significant impact on the calculation of the topographic
index. These findings have implications for watershed studies conducted in lower lying,
flatter areas such as agricultural watersheds5

Lindsay and Creed (2005) investigated the occurrence of depressions in remotely
sensed DEMs representing varying terrain types (flat to mountainous). As would be
expected, the number of depressions found was related to grid cell resolution, and flat
areas experienced more depressions than high-relief landscapes. They found that flat
areas, valley bottoms and highly convergent topography were most likely to experience10

depressions.
In addition to the process of sink filling, hydrologists frequently undertake another a

method of surface modification referred to as stream burning, to generate “hydrologi-
cally enforced” DEMs (Maune, 2001). The method integrates vector representation of
hydrography with the interpolation of the DEM. This automatic adjustment of the DEM15

has been incorporated into the ANUDEM package (Hengl et al., 2004; Hutchinson,
2006). The impact of this surface modification procedure on derived parameters has
not been addressed in the literature.

7 Distributed Parameter Hydrologic Models

“GIS do not “create” information. However there appears to have developed an implicit20

reliance on GIS to provide information adequate to parameterize physically based dis-
tributed hydrological models, often at spatial resolution and accuracy levels that are
unrealistic given the original source of spatial data.” (Band and Moore, 1995, p. 419).

GISs are designed to represent environmental features, such as topography, which
drive dynamic hydrologic (and other environmental) processes. Although they are not25

designed to serve as dynamic modeling tools (Reitsma and Albrecht, 2005) the ability
of the GIS to represent the distributed nature of data sets lends itself well as a platform
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for integrating distributed hydrologic models.
Topography is the driving force behind the hydrologic response of a watershed.

Hydrologic processes are represented by and analyzed using hydrologic models.
Many hydrologic models are distributed in nature; terrain representation is divided into
smaller areas or grid cells within which hydrologic processes are simulated. The raster5

grid structure allows flow to be routed through the watershed via grid cells. This struc-
ture integrates well with distributed parameter hydrologic models that are designed to
accept grid-based inputs such as derived topographic parameters. Grid-based DEMs
have been used ubiquitously to generate input parameters such as slope gradient, as-
pect, curvature, flow direction and upslope contributing area, for distributed parameter10

hydrologic models (Johnson and Miller, 1997; Saghafian et al., 2000; Armstrong and
Martz, 2003).

The use of a GIS to generate input parameters for distributed parameter models en-
ables a watershed to be analyzed at higher resolutions than would be practical using
manual methods. The distributing of hydrologic information imposes an inherent scale15

on hydrologic analyses that must be recognized. The effect of this scale is often not
acknowledged and the results of the effects of this scale are neither quantified nor con-
sidered when presenting results from various hydrologic models. Sensitivity analyses
are frequently performed by hydrologists on model inputs such as hydrograph estima-
tions, and Manning’s roughness coefficients. However, they are rarely performed on20

DEM-derived attributes such as slope, aspect and flow direction. This leads to a num-
ber of questions such as: What is the appropriate grid cell resolution for a hydrologic
analysis? How does uncertainty propagate from the DEM to input parameters and
through the models?

As discussed above, outputs from distributed parameter hydrologic models such as25

WEPP, SWAT, AGNPS and TopModel have been shown to be highly sensitive to grid
cell size. Lagacherie et al. (1996) evaluated the propagation of error in topographic
parameters through a hydrologic model to simulate flood events. Variations in outputs
were documented and were not linear. Differences in DEM vertical accuracies were
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shown to impact the accuracy of runoff predictions from the soil-hydrology-vegetation
model (DHSVM) (Kenward et al., 2000).

Hydrologic models are complex. Identifying sources of error in DEMs is difficult
enough. Understanding their propagation to topographic parameters compounds the
problem. Understanding how the errors in these parameters in turn affect physically5

based models continues to be a challenge. Practitioners often undertake hydrologic
analyses with a hope that error propagation to hydrologic parameters is minimal when
combined within hydrologic models. However, is it safe to make this assumption without
assessing or reporting the uncertainties associated with input parameters, especially
those derived from DEMs? Research has indicated that even small discrepancies can10

have a meaningful impact on the results of hydrologic models, and could influence
the way hydrologic information, as represented by hydrologic models is evaluated and
interpreted. Users of hydrologic models must be aware of the influence that both the
DEM and GIS software have on the calculation of various model parameters. The
task ahead is to develop accepted methodologies for quantifying and communicating15

propagation of these errors to results of hydrologic analyses.

8 DEM uncertainty simulation

“Even with an understanding of the size and texture of spatial data uncertainty, it is not
possible to determine what is actually “out there” as long as there is any amount of
uncertainty. All that can be achieved is the generation of representations of what may20

potentially be there, and the use of these potential realizations to develop a stochastic
understanding of how spatial data uncertainty affects a geographic information appli-
cation of any complexity” (Ehlschlaeger, 1998, p. 6).

The previous sections identified issues associated with DEM error and the use of
DEMs in hydrologic analyses. The next section describes approaches to address DEM25

uncertainty.
There are four general approaches to addressing DEM uncertainty. These include
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(1) reporting descriptive statistics or accuracy statistics such as the Root Mean Square
Error (RMSE), (2) creation of error maps (3) visualization techniques and (4) application
of simulation techniques to model DEM error propagation. While the RMSE accuracy
statistic provides a general indication of DEM quality, it is a summary statistic and
does not provide information on the spatial structure, nature and extent of DEM errors.5

DEM error cannot be characterized by just one number (Heuvelink, 2002). An error
map approach that requires a source of higher accuracy data can add information by
indicating the spatial structure of DEM errors. However, it may be unreasonable to
expect that DEM users will have access to higher accuracy data from which an error
map can be computed. Visualization techniques may be valuable in conveying the10

implications of potential inaccuracies inherent in DEM data sets, however they are often
not accompanied by quantitative results. On their own, these first three approaches are
not sufficient approaches to the characterization of DEM uncertainty. However, when
used in conjunction with simulation techniques the combination presents a powerful
means to portray results of uncertainty analyses.15

8.1 Stochastic simulation

A stochastic representation of uncertainty provides a distribution of potential answers,
from which a “good” answer can be chosen, given some predefined criteria. The
stochastic approach to DEM error modeling requires a number of equally probable
realizations upon which selected statistics are performed. Uncertainty is quantified by20

evaluating the statistics associated with the range of outputs. Stochastic simulations
provide a series of random equiprobable maps. Simulation does not ensure that a
“real” map is generated from the process, but provides a distribution of results within
which we can state the “true” map lies (Chrisman, 1989; Journel, 1996). Much re-
search has focused on the use of stochastic simulation techniques to propagate error25

and quantify uncertainty in spatial data (Heuvelink et al., 1989; Openshaw et al., 1991;
Goodchild et al., 1992; Brunsdon and Openshaw, 1993; Veregin, 1994). While various
simulation techniques are available (Deutsch and Journel, 1998), Monte Carlo simu-
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lation has been most commonly applied to assess DEM uncertainty, possibly due to
its simplicity in approach and general applicability. This technique assumes that the
DEM is only one realization of a host of potential realizations. Surfaces are randomly
perturbed to create new DEM realizations that yield a probability distribution of pos-
sible outcomes. An alternative to Monte Carlo simulation is an approach that applies5

an analytical model of error propagation based on a Taylor Series expansion (see for
example Albani et al., 2004; Bachmann and Allgower, 2002; Heuvelink, 1998; and
Heuvelink et al., 1989). For the purposes of this review, methods based on the Monte
Carlo simulation approach are discussed.

8.2 DEM error simulation: case atudies10

“...there is no inherent reason why conditional simulation should not be used as rou-
tinely for uncertainty analysis as kriging is used for interpolation. It is unlikely, however,
that conditional simulation will become available in the GIS environment until a substan-
tial demand has been established...this is likely to require the gradual accumulation of
case studies in the literature...” (Englund, 1993 p. 437).15

The high frequency of studies that use Monte Carlo simulations to assess uncertainty
indicates that this is a preferred method for quantifying DEM uncertainty and its propa-
gation to DEM-derived surfaces. Resulting case studies differ in approaches applied to
generate random error fields, and particular DEM derivatives assessed. Approaches
to random field generation reflect two different philosophies about the nature of DEM20

error: heuristic versus empirical. The empirical approaches assume that the spatial
structure of DEM error is available and can be integrated into random field generation.
This requires access to a higher accuracy data source from which this information can
be derived. The heuristic approaches assume that no prior knowledge of DEM error is
available; higher accuracy data can be difficult and costly to obtain. In the absence of25

this information, random fields can be approximated by the accuracy statistic (RMSE)
provided with DEM metadata. As the following case studies demonstrate, progress
has been made in demonstrating the applicability and effectiveness of these varied ap-
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proaches to error propagation within a Monte Carlo Simulation. However the two error
propagation approaches indicate that an agreed approach to a “best practice” is as of
yet unresolved.

8.2.1 Heuristic random fields

The heuristic approach to error propagation is based on the RMSE provided with a5

DEM data set. In this approach, any value in the DEM has the possibility of being the
stated elevation, or any value within a normally distributed range of the RMSE. Random
error fields with a mean of zero and a standard deviation equivalent to the RMSE are
generated and added to the original DEM to create a DEM realization. Multiple realiza-
tions of the DEM provide a Gaussian distribution that better represents the DEM under10

uncertain conditions (Hunter and Goodchild, 1997; Fisher, 1998). However, Tobler’s
First Law of Geography – everything is related to everything else, but near things are
more related than distant things – cannot be ignored (Tobler, 1970). Elevation is spa-
tially autocorrelated, and therefore, it is understood that elevation errors are spatially
autocorrelated.15

In one of the earliest studies, Goodchild (1980) outlined a procedure for generating
errors with specified spatial autocorrelation as measured by the Moran’s “I” statistic.
Later studies built on this approach. Lee et al. (1992) found that floodplain delin-
eations were significantly affected by DEM error. Fisher (1993) simulated the impact of
DEM error on viewshed analyses using this method and determined that DEM-derived20

viewsheds may overestimate the ”true” viewshed. Davis and Keller (1997) modified
the Goodchild (1980) approach to model uncertainty in slope stability prediction. The
modified method was used to increase spatial autocorrelation in error field generated
by variogram analyses. The authors suggested that this method could be improved by
incorporating autocorrelation at different levels of aggregation based on slope classes,25

user defined windows or slopes. Hunter and Goodchild (1997) applied a spatially au-
toregressive random field method that incorporates spatial autocorrelation of DEM er-
ror. This method was compared with completely random, uncorrelated error fields to
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assess the effect of these error representations on slope and aspect calculations. The
authors concluded that an error model ought to be based on an assumption of spa-
tial dependence of error; however, completely random fields could be applied in the
absence of a higher accuracy surface from which to obtain this information. The Good-
child (1980) method was also adapted by Veregin (1997) to incorporate slope in the5

iterative swapping approach. In this approach, slope served as an underlying indicator
of the spatial distribution of DEM error. Flow paths derived from DEMS using the D8
method were found to be sensitive to DEM errors, especially in areas of low slope.

Murillo and Hunter (1997) applied the spatially autocorrelation iterative swapping
method to evaluate the effect of DEM error on prediction of areas susceptible to land-10

slides. While uncertainty associated with some model input such as choice of slope
classes and slope algorithms were acknowledged it was not addressed. Uncertainty
results were communicated through visualization via map output. Wechsler (2000) and
(Wechsler and Kroll, 2006) compared simulations resulting from four different methods
of random fields that included completely random (mean of 0 and standard deviation15

equal to the RMSE) and three different filter methods that increased the spatial autocor-
relation of the error fields. Wechsler (2000) applied this method to evaluate the effects
of DEM uncertainty on sink filling, topographic parameters calculated at different reso-
lution, and topographic parameters computed for different terrain types. Although less
sophisticated than the iterative swapping method to achieving spatial autocorrelation,20

the methodology was implemented directly via an extension to a commonly used GIS
software package. Widayati et al. (2004) implemented the error propagation methods
presented by Wechsler (2000) to evaluate the propagation of elevation error on flat and
varied slopes and differing grid resolutions. Slope error was found to be sensitive to
the spatial dependence of DEM error. Cowell and Zeng (2003) assessed uncertainty25

in the prediction of coastal hazards due to climate change. Uncertainty in the DEM
was represented by random, normally distributed error fields. As error was increased,
model output uncertainty decreased due to the nature of the normal distribution of the
error fields used. Yilmaz et al. (2004) evaluated uncertainty in flood inundation which
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was represented probabilistically based on results of a Monte Carlo simulation using
completely random fields with a normal distribution based on the RMSE.

More recently, a “process convolution” or spatial moving averages approach to the
generation of random error fields was used to evaluate the delineation of drainage
basins that were found to be very sensitive to DEM uncertainty (Oksanen and Sar-5

jakoski, 2005a). The approach was applied to both slope and aspect derivatives and
demonstrated that completely random uncorrelated random error fields may be a valid
mechanism for representing DEM error (Oksanen and Sarjakoski, 2005b).

Methods for assessing DEM uncertainty through simulation and error propagation
have not been fully integrated into assessing hydrologic model output with the excep-10

tion of Zerger (2002) who investigated the effect of DEM uncertainty on a storm surge
model. The DEM was interpolated using ANNUDEM, and random error fields were
spatially autocorrelated. DEM errors impacted low inundation scenarios. This spatial
uncertainty was communicated using visualization through risk maps.

8.2.2 Empirical random fields15

Another school of thought on error propagation assumes that the RMSE alone is an
insufficient indicator of DEM error, and that additional knowledge of the spatial struc-
ture of error in a particular DEM is required for uncertainty modeling in a Monte Carlo
simulation. Approaches have been developed that incorporate higher accuracy data,
such as that garnered from a higher accuracy DEM or GPS survey, to develop a model20

of the spatial structure of error, which in turn is used to generate DEM realizations.
Ehlschlaeger and Shortridge (1996) developed a model that creates random fields

with a Gaussian distribution that matches the mean and standard deviation derived
from a higher accuracy data source. Spatial autocorrelative characteristics of spa-
tially dependent uncertainty are accounted for in the algorithm that was applied to a25

least-cost-path application. Kiriakidis et al. (1999) present a geostatistical approach
to DEM realizations that incorporate autocorrelation information derived from residuals
obtained from higher accuracy sources. Holmes et al. (2000) applied this approach to
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the prediction of slope failure. Endreny and Wood (2001) evaluated the effect of DEM
error on flow dispersal area predictions using six different algorithms. Error fields were
spatially autocorrelated based on an error matrix derived from an assessment of dif-
ferences between the test USGS 30 m DEM and a higher resolution 10m SPOT DEM.
Uncertainty results were communicated using probability maps. Ehlschlaeger (2002)5

introduced a method for generating error fields that accounts for both the spatial au-
tocorrelation of error and incorporates information about DEM characteristics such as
topological shapes in the error model. Canters et al. (2002) evaluated the effects of
DEM error on a landscape classification model. Random error fields were spatially
correlated using error characteristics derived from a ground truth survey. While uncer-10

tainty caused by image classification was found to be more significant than DEM error,
transition zones were particularly sensitive to DEM error. Van Niel et al. (2004) applied
Monte Carlo simulation to assess the impact of DEM uncertainty on slope, aspect, net
solar radiation, topographic position and topographic index. The error in these DEM-
derived parameters was propagated to results of a vegetation model. DEM error was15

assessed by comparison with a higher accuracy data source obtained from a GPS
survey and used to filter normally distributed random error fields.

Each of these case studies demonstrates the applicability of the Monte Carlo simu-
lation approach to error propagation and uncertainty assessment in DEMs and DEM-
derived data. The remaining challenge is to provide these approaches as tools that20

DEM users can readily access through GIS software packages. There will be occa-
sions when a DEM user has access to a higher accuracy data source for generating
information on the spatial structure of error, and there will be occasions when that infor-
mation is unavailable. The ultimate DEM uncertainty toolbox should provide simulation
approaches that accommodate both these scenarios as part of its error propagation25

methodology.
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9 Integrating and communicating DEM uncertainty

“. . . The absence of facilities within GIS software for handling the effects of input data
uncertainty and possible error propagation by GIS operations creates a question mark
over the safe utilization of many aspects of the technology. . . ” (Openshaw et al., 1991,
p. 78).5

Methods have been developed that transfer information from a GIS into external er-
ror propagation analysis tools (see for example Heuvelink, 1998; Hwang et al., 1998).
Output from these external systems is either returned to the GIS for mapping and vi-
sualization or exported to graphic charts or statistical tables. Attempts have also been
made to integrate uncertainty simulation tools within a GIS (Wechsler, 2000; Wechsler10

and Kroll, 2006). However, a viable DEM uncertainty toolbox that incorporates various
simulation approaches, and considers the fundamental areas that contribute to DEM
uncertainty described herein has not yet been realized. What are the essential compo-
nents of a viable DEM uncertainty toolbox and what form should it take? How should
simulation results be quantified and communicated?15

9.1 User interfaces: Decision Support Systems

Assessment of the multiple fundamental factors that contribute to DEM uncertainty and
their propagation to topographic parameters and hydrologic models is complex. The
ability of a user to interact with and explore possible outcomes is crucial for informed
decision making. Spatial decision support systems (SDSS) provide a mechanism for20

integrating data exploration and assessing model outcome to facilitate informed deci-
sion making and can serve as a mechanism for achieving this interaction with DEM
users. An SDSS is generally comprised of a spatial database and a user-defined inter-
face that accesses GIS analysis and modeling capabilities. Multiple Criteria Decision
Models (MCDM) are a type of SDSS that allow users to make decisions with multiple25

alternatives (Jankowski et al., 2001; Ascough et al., 2002).
Current GIS interfaces provide limited support for spatial data exploration and un-
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certainty assessment. However, many GIS user interfaces can now be modified and
enhanced through object-oriented programming that allows users to develop tools to
assess model results and assist in decision making based on these results. Such
direct integration of decision support tools that incorporate uncertainty theory within
a GIS has been achieved on a limited basis. Wechsler (2000) and (Wechsler and5

Kroll, 2006) integrated a toolbox within a GIS to allow users to simulate the effects of
DEM error on elevation, slope, upslope area and the topographic index. While results
were not carried through to a particular hydrologic modeling effort, and used simple
error propagation techniques, the approach demonstrated how these tools can be in-
tegrated as pull-down-menus into mainstream GIS. Aerts et al. (2003) developed an10

SDSS external to a GIS to assess the impact of DEM uncertainty on a cost-path analy-
sis for ski run development. Although uncertainty associated with specific model input
parameters such as slope cannot be culled out, and the product is not specifically
part of a GIS package, the research successfully demonstrates the efficacy of such an
approach. Gunther (2003) developed a software program called SLOPEMAP, that in-15

tegrates with two commonly used terrain analysis packages (ArcView GIS and Surfer)
to derive geologic information from a DEM for assessment of rockslide susceptibility.
Debruin and deWit (2005) developed a method to streamline the evaluation of grids
within a stochastic simulation. This computer application demonstrates progress in the
use of Monte Carlo simulations on desktop computers. Currently some GIS packages20

have limitations on the number of grids that can be assessed simultaneously. Other ef-
forts to develop GIS-based decision support tool are notable. Wise et al. (2001) report
on the results of the successful integration of a GIS-based user interface for statistical
spatial data analysis. Durañona and Lopez (2000) developed a toolbar to detect errors
in a DEM. Crosetto and Tarantola (2001) present general procedures for assessment of25

uncertainty within a GIS-based flood forecasting model. Each of these studies demon-
strates the viability of the SDSS as a mechanism for addressing DEM uncertainty, and
integrating that knowledge with specific distributed parameter hydrologic models. The
manner in which results of these simulations can be communicated is varied.
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9.2 Visualization

“A number of visualization tools need to be developed to portray error at the same time
as the original data. The increasing use of computer displays and the development of
stochastic models of error present the opportunity for doing just this.” (Fisher, 1994 p.
181).5

Results of methods to assess DEM uncertainty must be effectively communicated
in order to be integrated and applied. Cartographic representations are the primary
method of communicating results from GIS-based spatial analyses, and the main com-
municative output provided by GISs. DEM uncertainty can be visualized in a number of
ways including static tables or graphs, error maps of residuals between a DEM and a10

higher accuracy data source, error matrices, static maps or map animations of realiza-
tions from Monte Carlo Simulations (Wood, 1996; Davis and Keller, 1997; Ehlschlaeger
et al., 1997; Ehlschlaeger, 1998). Other efforts have integrated tools within the GIS in-
terface. This section discusses progress in these areas.

Visualization techniques have been applied to evaluate and convey the potential15

inaccuracies inherent in DEM data sets such as DEM error (Acevedo, 1991), interpo-
lation accuracy (Wood and Fisher, 1993; Wood, 1996) and results of DEM uncertainty
simulations (Hunter and Goodchild, 1995). Spear et al. (1996) conducted a survey
to investigate the effectiveness of different visualization techniques in conveying DEM
interpolation uncertainty. Map animations have been used to visualize uncertainty in20

image classification (Zhang and Stuart, 2001) and a slope stability model Davis and
Keller (1997). Jankowski et al. (2001) investigated the role of maps as visual tools in
the data exploration and decision making process. A user interface was developed that
allows users to interactively visualize the results of certain input assumptions. While a
DEM was not part of this particular analysis, the approach could be followed to develop25

methods to assess DEM uncertainty.
Visualization of uncertainty alone may not be an efficient method for communicating

uncertainty to the decision maker. Quantitative estimates of error and their conse-
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quences, if available, should be either incorporated into the visualization or reported.
What should a hydrologically-based DEM uncertainty SDSS toolbox look like and how
should results be communicated? Research and technology demonstrate that the in-
tegration of simulation research with hydrologic models is possible. Cartographic re-
search continues to focus on communication approaches. Distributed hydrologic mod-5

els vary extensively and therefore uncertainty results will vary based on the distributed
model applied. A modular DEM error assessment system would be capable of break-
ing up the component uncertainties and assessing the impact of error on model outputs
(see for example Fig. 1). For such a system to be successful, continued research is
required to assess the human component, to determine to what extent and in what10

format users are willing to accept, address and manage error.

10 Conclusions

How users and decision makers react to and work with error and uncertainty and results
based on uncertain data continues to present a challenge (Heuvelink and Burrough,
2002). The following pronouncement aptly summarizes the state of this domain of15

research and applications:
“. . . Although considerable progress has been made in the theory and practice of

data quality and error propagation in numerical modeling with GIS, there is still a long
way to go before we have a coherent and comprehensive toolkit for general applica-
tion. The ideal future. . . in which both data quality assessment and error propagation20

are essential ingredients for an intelligent GIS, has not yet been reached. . . .it is also
essential to convince our colleagues in the user community that these new methods
and procedures are being developed to help them make better decisions and not just
to make life difficult. The sociology of how people deal with the problems of spatial
data quality also needs to be addressed, and just as with the development of improved25

methods, this forms an important challenge for the coming years. . . ” (Heuvelink and
Burrough, 2002, p. 113).
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While not exhaustive, this comprehensive review attempts to identify the fundamental
issues associated with DEMs as applied to hydrologic applications. This review brings
together a discussion of research in topical areas related to DEM uncertainty that affect
the use of DEMs for hydrologic applications.

Research has established that DEMs contain errors that propagate to derived topo-5

graphic parameters. Such errors are influenced by DEM resolution and interpolation
methods. DEMs used for hydrologic applications are frequently further modified by
either filling depressions or burning streams. These areas: DEM error, topographic
parameter generation, grid cell resolution, interpolation and hydrologic modifications
are all essential considerations when undertaking an assessment and quantification10

of DEM uncertainty, and should be considered in the development of an uncertainty
toolbox integrated within an spatial decision support system (SDSS).

DEM uncertainty simulation methodologies have been developed and some assess-
ments of the effect of DEM uncertainty on specific hydrologic models have been eval-
uated in case studies. Although progress has been made, these approaches are far15

from being implemented as a spatial decision support system for DEM users. The
paradigm of an “uncertainty button” (Goodchild et al., 1999) or uncertainty toolbox pro-
vided by vendors and implemented by users is not yet a reality. Yet is such an invention
even a viable option? Sentiment has been expressed that due to the complexity of the
topic, an uncertainty toolbox is a fantasy. Uncertainty assessment is thought to require20

too much processing time and considerable prior knowledge is required of the DEM
users (Heuvelink, 2002). DEM users are not likely to be willing to spend time on uncer-
tainty assessment (Wechsler, 2003) unless it becomes a simplified and cost-effective
exercise that can be justified in “billable hours”.

The call for a DEM uncertainty toolbox echoes that of previous researchers and the25

GIS community. This has not yet been satisfactorily achieved in the decade-or-so since
it was first suggested, probably due to a combination of technology limitations, software
limitations and DEM user limitations. However, as a discipline, the hydrologic GIS user
community is ready to progress in this area. Technology limitations are continuing to
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be overcome; computer processing power has increased and Monte Carlo simulations
on raster grids can now be performed on most desktop computers.

Yes, DEM uncertainty assessment and management is complex and challenging,
yet it is a mandatory undertaking to the progression of hydrologic science. In hydro-
logic modeling, sensitivity analyses are frequently performed on certain non-spatial5

model parameters as part of model calibration activities. Guidelines for assessing data
uncertainty in essential components of river basin studies have been proposed (van
Loon and Refsgaard, 2005), yet sensitivity analyses are not routinely performed on
hydrologic model parameters derived from DEMs. The uncertainties associated with
DEM-derived model inputs must be addressed in order to have confidence in model10

predictions, and for decisions based on modeling output to hold up in court, should
they go that far. DEM errors and resulting uncertainty may not have an influence on
specific hydrologic model results, but is it appropriate to make this assumption without
testing it?

This paper presents a challenge to the entire GIS community which includes ven-15

dors, researchers, educators, and users: communicate, educate, develop and imple-
ment. Awareness of uncertainty must be raised within the broader GIS community. The
perception of uncertainty and error as “bad” must be altered. The expressed futility due
to the complexity of the issues can be overcome.

Educators must instill the concept of GIS as a fact of spatial data that must and can20

be acknowledged and addressed. This could begin with a bottom-up effort initiated by
GIS software developers. They could provide users with choices in both algorithms
and approaches to deriving parameters frequently used in hydrologic analyses, specif-
ically slope and flow direction. This simple modification would raise user awareness
regarding the existence of these different algorithms, and could be an important first25

step toward an intelligent GIS that can accommodate uncertainty. Once these options
are integrated into mainstream GIS, users will become more receptive to the concept
of multiple plausible answers to an analysis rather than one grid as the “correct” deriva-
tive from a DEM. Future software developments might include a GIS that can sense
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differentiation in terrain complexity. Specific grid cell resolutions and terrain attribute
algorithms could then be applied to areas of the DEM as appropriate rather than taking
a “one size fits all” approach. Methods to determine an appropriate grid cell resolution
for interpolating a terrain surface can be integrated and computed in the background,
so that users can either choose a resolution or use one that has been “suggested” by5

behind-the scene computations and data exploration in the intelligent GIS. Ultimately,
the DEM uncertainty toolbox would provide a mechanism for users to simulate the ef-
fect of DEM error (whether higher accuracy data is available, or not) derive a series of
plausible outcomes for particular distributed parameter hydrologic models, and com-
municate model results visually and quantitatively given DEM uncertainty. Perhaps10

once these buttons become part of the DEM processing “toolbox”, users may become
more receptive to using an SDSS that allows users to simulate DEM uncertainty and
incorporate uncertainty output into analytical results that inform decision makers with
greater accuracy.

DEM error exists and results of analyses that rely on DEM data will always have a15

component of uncertainty. Uncertainties in DEMs and DEM related applications are
bound to increase as GIS becomes an increasingly mature science; this is a sign of
progress rather than limitation in technology (Dungan, 2002) but must be managed
effectively by the GIS community. The field of geographic information systems is pro-
gressing toward geographic information science. The technology is applied to invoke20

the scientific method – hypothesize, experiment, ask spatial questions and explore
observations. As the GI-Science movement progresses from the academic/research
communities to the practitioner/user communities, developers will be expected to inte-
grate research, such as that reviewed here, into DEM uncertainty assessment tools.
Research has demonstrated ways to account for and communicate DEM uncertainty25

through simulation modeling and visualization. Software vendors could incorporate
these modeling and visualization methods into products through SDSS interfaces.
SDSS interfaces should be designed in response to research on: How do users in-
teract with uncertain data? What type of interface will users be most receptive to; what
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are the requisite components of an uncertainty toolbox? In what format(s) are users
willing and able to accept and incorporate results of uncertainty; and how we can be
more responsible in communicating results? To ensure the success and integration of
these interfaces additional research on how consumers behave in relation to DEM error
and uncertainty and their consequences in hydrologic applications will be required.5

Our ability to represent and quantify the impact of DEM influences the confidence
we have in our knowledge about hydrologic processes and the utility of hydrologic ap-
plications based on DEM technology. Ultimately an understanding of DEM error and
quantification of resulting uncertainty is essential for the advancement of hydrologic
science. This can be achieved through increasing the awareness of DEM uncertainty,10

making innovations in software and developing more precisely tailored hydrologic ap-
plications that incorporate components or outcomes from a DEM uncertainty SDSS
toolbox.
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Fig. 1. Spatial model of a DEM uncertainty SDSS toolbox.
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