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Abstract

The paper presents a methodology for the estimation of uncertainty of inundation ex-
tent, which takes account of the uncertainty in the observed spatially distributed infor-
mation and implements a fuzzy evaluation methodology. The Generalised Likelihood
Uncertainty Estimation (GLUE) technique and the 2-D LISFLOOD-FP model were ap-5

plied to derive the set of uncertain inundation realisations and resulting flood inunda-
tion maps. Conditioning of the inundation maps on fuzzified Synthetic Aperture Radar
(SAR) images results in much more realistic inundation risk maps which can better de-
pict the variable pattern of inundation extent than previously used methods. It has been
shown that the methodology compares well to traditional approaches and can produce10

flood hazard maps that reflect the uncertainties in model evaluation.

1 Introduction

A large proportion of the world population is at risk of flooding and needs reliable es-
timation of potential extent of flood inundation. In many cases this risk is estimated
with the help of flood inundation models, which have to be evaluated in order to be15

proven reliable. Suitable data for evaluating flood inundation models may exist in the
form of internal hydraulic measurements such as discharge and stage, ground sur-
veyed inundation extent measurements or aerial photographs and remotely sensed
images (Horritt and Bates, 2003; Pappenberger et al., 2005, 2006a, b). Continuous
data such as local discharge and stage measurements may be quantitatively com-20

pared with model predictions using statistical methods based upon the sum of squared
errors or more advanced techniques to provide an evaluation on how well the model
is performing, with respect to internal flow hydrographs (Aronica et al., 1998; Hunter
et al., 2005a; Romanowicz and Beven, 2003). However, while it is reassuring to know
that an inundation model is a good predictor of internal hydraulic properties this does25

not necessarily imply that the model is always a good predictor of inundation extent

2244

http://www.hydrol-earth-syst-sci-discuss.net
http://www.hydrol-earth-syst-sci-discuss.net/3/2243/2006/hessd-3-2243-2006-print.pdf
http://www.hydrol-earth-syst-sci-discuss.net/3/2243/2006/hessd-3-2243-2006-discussion.html
http://www.copernicus.org/EGU/EGU.html


HESSD
3, 2243–2277, 2006

Fuzzy set calibration
of flood inundation

models

F. Pappenberger et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

EGU

(Pappenberger et al., 2005). A key element of any evaluation process is that model
performance should be calibrated or conditioned on criteria that are closely linked to
the purpose of the modelling exercise. This implies that inundation models are best
conditioned on inundation extent data. However, in principle, physically based models
should still be able to reproduce all available measurements with a reasonable accu-5

racy (for a further discussion see Pappenberger et al., 2006b).
Remotely sensed images, most notably those obtained using Synthetic Aperture

Radar (SAR) sensors, are capable of recording inundation extent across large areas
of floodplains. Due to the specular backscattering characteristics of a radar pulse
on plain water surfaces and the resulting low signal return, the use of SAR data in10

inundation modelling is rather straightforward, and space-borne SAR data thus provide
a promising approach to the evaluation of 2-D inundation models (Horritt et al., 2001).
Moreover, due to their all weather, day and night capabilities, SAR sensors present
obvious advantages over optical instruments in flood management applications.

As yet there is no commonly accepted or general standard methodology for perform-15

ing comparisons on 2-D spatial data (Hagen, 2003; Schumann et al., 2005). Indeed,
this is hopefully how it will remain, as any evaluation methodology should be designed
according to the task. For example, the Nash-Sutcliffe criterion is used by many rainfall-
runoff studies as a standard to evaluate flow hydrographs, despite its repeatedly quoted
inadequacy (for example Beran, 1999; Wagener et al., 2003). Previous 2-D inundation20

based modelling exercises have adopted a discrete matching scheme based on sep-
arating cells into binary categories of wet or dry (Aronica et al., 2002; Bates and De
Roo, 2000; Horritt and Bates, 2001; Hunter, 2006). This approach requires the data to
be divided into discrete categories separated by sharply defined boundaries, a process
that can only be successfully applied if there is a high degree of confidence in the data25

(Cheng et al., 2001). In inundation modelling there is often considerable uncertainty in
interpreting the true extent of inundation from satellite data because of the variations in
backscattering and image speckle that can arise from features like waves and emergent
structures and vegetation (Horritt et al., 2001; Matgen et al., 2004). Uncertainties will
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also arise from the interpretation of inundation extent from model predictions. Rather
than being able to delineate a crisp shoreline it is normally only possible to determine a
zone within which we expect any shoreline to lie. Representing inundation data by dis-
crete, binary inundation maps might then lead to variations in model fit within the zone
of uncertainty that encloses the true shoreline (Fig. 1). One way of constraining perfor-5

mance variations that may arise from forcing uncertain data to take discrete values is
by implementing fuzzy mapping techniques that enable the retention of information on
the level of confidence at which data categories are represented (Cheng et al., 2001;
Hagen, 2003; Power et al., 2001). Fuzziness has previously been incorporated into
a number of performance measures during inundation modelling exercises (Aronica10

et al., 1998; Pappenberger et al., 2005; Romanowicz and Beven, 2003) but to date
has not been used to address spatial uncertainties in the evaluation of 2-D inundation
models.

The objective of this paper is to present a methodology for the estimation of un-
certainty of flooding, which uses fuzzy set approaches to describe the uncertainty in15

the observed spatially distributed information inherent in a satellite image conditioning
the model predictions. The methodology applies Generalised Likelihood Uncertainty
estimation technique together with 2-D LISFLOOD-FP model to derive the possibility
distribution of inundation extent along the 8 kilometre long reach of River Alzette in
Luxemburg, used as a case study.20

2 Description of methodology and case study

2.1 The Alzette study area

The area considered in this study is an 8 kilometres long reach of the Alzette River
in Luxembourg, along which the river meanders gently across a floodplain that ranges
from approximately 250 metres to one kilometre in width (Fig. 2). Cross-sectional25

surveys which include information on both channel width and depth were available at
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74 locations along the reach. Upstream stage measurements are routinely recorded
and allow the estimation of approximate upstream hydrographs via rating curves. A
medium scale (1 in 5 years) flood event took place in January 2003. Discharge with the
peak around 67 m3s−1 and the extent of inundation was recorded by Envisat satellite
at a time close to this estimated peak discharge to provide a suitable 2-D data set5

for evaluating model performance with respect to inundation extent. The ENVISAT
Advanced Synthetic Aperture Radar (ASAR) scene (spatial resolution of 12.5 m) is
acquired at an incidence angle of 35◦ and in alternating polarisation mode (VV/VH).
The ASAR on board ENVISAT, operating at C-band (5.3 GHz), is an advanced version
of SAR instruments on board the ERS-1 and ERS-2 satellites as it features enhanced10

capability in terms of coverage, range of incidence angles, polarisation, and modes of
operation (ESA, 2004).

2.2 Implementing LISFLOOD -FP for the Alzette catchment

The 2-D flood inundation model used in this study, LISFLOOD-FP, was developed in
view of the need for a model of flood plain dynamics that could be readily integrated15

with high resolution GIS topographic data for comparatively rapid evaluation against re-
motely sensed inundation data (Hunter et al., 2005a). The advantages and disadvan-
tages of this particular model are not discussed here as they are of minor importance
for the objective of this paper which concentrates on a methodology of evaluating un-
certain spatial flood inundation maps. Other approaches, such as TRIM2D, could have20

been used (for a discussion of various raster based models see Leopardi et al., 2002).
The reader is referred to Hunter et al. (2005b) for a detailed description of the model
and its implementation.

LISFLOOD-FP requires a variety of information. Digital Elevation Maps (DEM’s)
were initially obtained for the area at resolutions of 2, 20, 50 and 100 m in view of25

recommendations of Hardy et al. (1999) that a range of resolutions should at first be
examined to determine sensitivity. During preliminary testing the time (in excess of 6 h
on a standard Pentium 2 Ghz, 512 MB 533 MHz DDR2 SDRAM) taken to evaluate the
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full flood event hydrograph at the scale of the 20 m DEM was considered inappropriate
for the multiple runs that would be required during a full uncertainty analysis. Conse-
quently, the 50 m DEM, which resulted in simulations of approximately 30 min under
similar conditions, was selected. This resolution is sufficient for the demonstration of
the concept of using uncertain inundation observations and is consistent with the find-5

ings of Bates and De Roo (2000) that a 50 m resolution grid marked optimal efficiency
during their inundation modelling exercises for floodplains with a similar spatial scale
and that only limited additional performance could be gained from going down to finer
resolutions (although we believe this is data and reach specific). Channel information
from the cross-sectional surveys was used in the model setup. Use of the kinematic10

wave equation within LISFLOOD-FP meant that a constraint was imposed so that the
channel slope in the downstream direction could never be negative.

2.3 Uncertainty analysis

A common feature of inundation models and, indeed many other complex environmen-
tal models, is that the values of specific input variables (e.g. discharge, topographic15

data) and factors (particularly distributed parameters e.g. frictional coefficients) can
rarely be known sufficiently well to produce model predictions that agree unequivo-
cally with available evaluation data (Beven, 2006; Beven and Binley, 1992; Beven and
Freer, 2001). Pappenberger and Beven have discussed the implications of not taking
account of these issues. Analysis of flood risk is, therefore, best embedded in an un-20

certainty framework. Additional uncertainties in model predictions may also arise from
the structure of the chosen model, the nature of imposed boundary conditions and
from errors that arise from the approximation process used in the numerical solution
of the differential equations (Kavetski et al., 2006; Pappenberger et al., 2005). Model
uncertainty analysis in this paper is embedded into a Monte Carlo (MC) Framework.25

MC approach consists of running repeated simulations of a model using a range of
values for each, uncertain, input parameter. In practice any optimum parameter set
is rarely consistent across different validation data sets and, rather than revealing a
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single obvious global performance optimum, calibration exercises more normally re-
veal a complex pattern of fit across a given model parameter space (e.g. Horritt and
Bates, 2001; Romanowicz and Beven, 2003; Romanowicz et al., 1996). The fact that
there may well be a large number of parameter sets across the parameter space that
are able to map model predictions to the observed data to an acceptable level of per-5

formance has given rise to the concept of equifinality in hydrologic modelling (Beven,
2006). Uncertainty analysis techniques, such as GLUE (Generalised Likelihood Un-
certainty Estimation) methodology of Beven and Binley (1992), accept the notion of
equifinality and attempt to estimate the level of confidence that can be placed upon a
range of model predictions rather than concentrating on a single “optimum” prediction.10

The description of the GLUE procedure in application to flood inundation uncertainty
estimation is given in Romanowicz and Beven (2003); Romanowicz et al. (1996), and
Pappenberger et al. (2006b).

2.4 Allocating prior parameter distributions in GLUE

The initial stage of the GLUE procedure involves choosing a model and delineating15

the parameter space that is to be mapped by both listing the uncertain input variables
and parameters and specifying their ranges and distributions (a summary is given in
Table 1). The channel and floodplain friction are known to be a major source of uncer-
tainty in flood inundation models (Aronica et al., 1998, 2002; Horritt and Bates, 2001;
Pappenberger et al., 2005) and were permitted to vary across a wide range of feasible20

values, which acknowledges the error due to the raster size. The channel friction was
allowed to vary between 0.01 and 0.2 and the floodplain friction between 0.05 and 0.3.
The downstream boundary condition was approximated by uniform flow and therefore
required the additional specification of a roughness value. Channel widths along the
reach were allowed to vary by ±10% from the values obtained from the channel sur-25

veys. In order to replicate the uncertainty that is believed to be inherent in using stream
hydrographs as model inputs (Pappenberger et al., 2006b), a set of 20 contrasting hy-
drographs was prepared that were consistent with the available stage data via rating
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curves. The influence of uncertainty in representation of flood plain and channel geom-
etry depends on the role the floodplain plays in the routing of the flow (see discussion
in Werner et al., 2005a). For example, Aronica et al. (1998) indicate the importance
of this model factor, whereas Werner et al. 2005b) and IRMA (IRMA, 2002) seem to
prove the opposite. In this example, we concentrate on the uncertainty in the channel5

cross-section and not the floodplain geometry as we assume that the channel con-
veyance and the embankment height are the major controls for the flood extent in this
river reach. The depth of the channel bed and the slope have been derived from 73
cross-sections, which have been included in the LISFLOOD-FP model. The model ap-
proximates the channel conveyance from channel cross-sections similar to traditional10

one dimensional model codes and interpolates between these break-lines. Unfortu-
nately, it was not possible to introduce independent errors for the channel depth on
all 73 cross-sections measured due to computational constraints. Therefore, only two
parameters have been used to specify this uncertainty. For each model simulation an
error of the channel depth has been assigned to the first cross-section. The errors15

of the following cross-sections have been derived from a normal distribution with the
error of the preceding cross-section as a mean. A positive slope has been enforced
by re-sampling until this condition has been met. Thus only two parameters needed to
be specified: the initial error and a variance. This paper does not use one single mean
error for the depth of all channel cross-sections as we believe that this error is more20

variable and not necessarily always constraint from one section to the other.
The prior parameter distributions for the 7 parameters (see Table 1) were all chosen

to be either log or uniform with the only exception being that the channel and floodplain
frictional coefficients were correlated so that the former could never exceed the latter
(see Table 1). A log distribution was chosen to extend the parameter sampling range25

for more than two decimal places. A series of ∼28 000 simulations was performed
using parameter values chosen at random from the designated ranges and results
were saved as water depth maps at the time of satellite overpass. The total number of
simulations has been sufficient to approximate the response surface without exceeding
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the acceptable time of computational.

2.5 Discrete spatial performance measures

A number of commonly used performance measures for the evaluation of inundation
extent using a discrete, binary, matching system were computed in order to provide a
basis with which the measure introduced in this paper could be compared. Cells that5

were categorised as either inundated or not inundated on both observed and predicted
maps were grouped together to form a contingency table (Table 2) from which various
criteria were evaluated using the formulae listed beneath the table. This is a common
approach in the evaluation of spatial predictions in meteorological models1 and is now
beginning to be applied in inundation modelling (Hunter, 2006; Schumann et al., 2005).10

Some degree of confusion has arisen from both the sheer number of proposed mea-
sures and the fact that some of the measures have been used under different names,
thus, necessitating a careful examination of the formulas used in previous studies be-
fore making comparisons. The reader is referred to Hunter (2006) for an excellent
in-depth discussion of the various measures.15

In order to evaluate the discrete, binary performance criteria it was necessary to
convert the model predicted water depths into a discrete binary inundation map. In
common with the approach adopted in previous studies (e.g. Aronica et al., 2002) only
cells with predicted depths greater than 10 cm were assumed to be inundated in order
to reflect uncertainties in the exact shoreline location. For these discrete measures, the20

Envisat satellite image was converted to a binary inundation map using a statistically
derived “snake” algorithm (Horritt et al., 2001) that creates an estimate of the shoreline
location. This algorithm has been used to make the results of this study compara-
ble with previous publications (see Hunter, 2006; Hunter et al., 2005a and references
therein). The “snake” image was then converted to a 50 m resolution raster grid for25

direct comparison with the model predicted inundation maps. Finally, for this study,

1http://www.metoffice.com/research/nwp/publications/nwp gazette/mar02/verif.html
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performance was averaged only across the set of cells that were subject to change
in at least one model realisation, hence, disregarding all cells that were correctly pre-
dicted to be either wet or dry in all realisations. This group of cells represents the
largest area that can be considered to be at risk of mis-prediction in the complete set
of model realizations. This approach is comparable to the use of flood extent data5

in one dimensional approaches (see e.g. Pappenberger et al., 2006b; see e.g. Roux
and Dartus, 2006). There is significant uncertainty in the classification of inundation
from SAR imagery. In what follows, this uncertainty is taken into account in model
evaluation.

2.6 Creating a fuzzy inundation map from the SAR data10

In order to apply fuzzy performance measures it was necessary to create fuzzy in-
undation maps from both the remote SAR data and the model predictions. The gen-
eration of the fuzzy map from the SAR data is based on the approach of Matgen et
al. (2004) in which different backscattering properties were mapped to different cate-
gories of membership in inundation possibility that reflect different levels of confidence15

(high, medium, low and “no”) in any particular area of the floodplain being inundated.
Matgen et al. (2004) applied a simple threshold approach to quantify a fuzzy member-
ship function of flooding along each cross-section which expresses the uncertainty of
flooding extent. Profiles of pixel values at several cross sections of the river floodplain
are drawn and confronted with the GPS control points of the maximum lateral flood20

extent. This allows the threshold value of the radar backscattering coefficient to be de-
termined for the binary classification of flooded and non-flooded pixels. This approach
provides the reference flood map. To reflect our lack of knowledge about the real flood
extent, the threshold value of the radar backscattering is slightly changed to delineate
other plausible flood maps. This uncertainty in inundation extent can be used directly25

in the creation of a fuzzy inundation map once the data have been converted into a
raster map at the required resolution.
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On a fuzzy map each cell is assigned a membership vector, V , of the form

V =
(
λhigh, λmedium, λlow, λno

)
(1)

each element, λ, of which refers to one of the inundation categories on the map. The
value assigned to each element is chosen to reflect the degree of belonging to that
category with a value of 1 representing total membership and a value of 0 represent-5

ing no membership. Spatial data in which the categories are considered to be totally
disparate can be represented by a system of crisp vectors (Cheng et al., 2001; Hagen,
2003) in which the original map category is represented by a value of 1 and all other
categories by 0. Under the system depicted in Eq. (1), a cell classified as having a
medium possibility of inundation would be represented as10

VCRISPmedium
= (0, 1, 0, 0) . (2)

The use of crisp vectors in a fuzzy system should be reserved only for cells in which
there is little or no uncertainty in the categorization of that cell. The categories on the
SAR inundation map are related in an ordinal sequence. Under these circumstances,
relationships between categories can be represented by introducing fuzzy category15

vectors (Hagen, 2003), in which the values assigned to the individual elements of the
vector reflect the level of similarity that an element is believed to bear to the original
map category, which itself retains a value of 1. For example, a cell located entirely
within the high inundation category on the SAR map is more closely related to the
medium inundation category than to the low and similarly more closely related to the20

low than the “no” categories. Such a cell could be represented by the fuzzy category
vector

VCAThigh
= (1, 0.6,0.3,0) (3)

and the set of fuzzy category vectors that was used to populate the SAR map was

VCAT =
{
V
CAThigh

, VCATmedium
, VCATlow

, VCATno

}
, (4)25
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where

VCAThigh
= (1, 0.6,0.3,0) ,

VCATmedium
= (0.6,1, 0.6,0.3) ,

VCATlow
= (0.3,0.6,1,0.6) ,

VCATno
= (0, 0.3,0.6,1) .5

The system for assigning fuzzy category vectors had to be modified for cells in which
more than one category existed on the original SAR map. A simple formula was used
to weight the vectors according to the fractional area of the cell that was covered by
different categories.

VCAT=h (1, 0.6, 0.3,0)+m (0.6, 1, 0.6,0.3)+l (0.3, 0.6, 1, 0.6)+n (0,0.3, 0.6, 1) (5)10

where the coefficients h, m , l and n are the fractional areas covered by high, medium,
low and no inundation categories respectively. In our example the modeled output
and observed data do not share the same resolution. Although the same resolution
is desirable, it was not possible due to computational demands. This problem could
have been overcome by re-projecting the flood outline on a finer geometry (under con-15

sideration of the additional uncertainties) or by integrating these uncertainties into the
evaluation measure. This is addressed by fuzzifing the model predictions as described
in the following section.

2.7 Fuzzifying the model predictions

The model predictions consist of raster maps of water depth across the floodplain.20

However, our model predictions are based on 50 meter cells, which currently ignore any
sub-heterogeneity of the surface geometry. This can be partially overcome, by either
applying the model on a finer scale, re-projecting the model results on a finer topogra-
phy or introducing storage-conveyance relationships as in Romanowicz et al. (1996).
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Moreover, co-registration errors between modeled and inundated maps will exist. Fun-
damentally, a commensurability problem in the comparison of measured data and ob-
served data remains (Beven, 2006). Only rarely will the modeled data be of same
spatial and temporal resolution as the observed data. Therefore, in this paper we de-
velop a methodology which can take account of this commensurability error and can5

be easily transferred to future applications.
LISFLOOD-FP predictions consist of a single depth value based upon the mean

elevation within each raster cell. By using a fine resolution (2 m) DEM to generate a
set of statistics (see Fig. 3) relating to the terrain distribution within each 50m DEM
cell, it was possible to gain an estimate of the likely extent of inundation within the cell.10

This allowed the construction of a subjective function (Fig. 3) by which the intercept of
the locally predicted water surface on the terrain distribution across a cell is used to
allocate a fuzzy category vector of the same type shown in Eq. (4). If the predicted
water depth for a cell is positive then the fuzzy category vector can be determined
from that cell alone but if the predicted water depth is zero the water level has to be15

extrapolated from the mean water elevation in adjoining cells. The function illustrates
the belief that if the whole of a cell is predicted to be inundated to a depth greater than
10 cm then there is a high possibility of that cell being inundated. Similarly, if the whole
of a cell lies above the predicted water level in the immediate vicinity then it is assumed
to have zero possibility of inundation. Medium and low inundation probabilities were20

subjectively assigned to differing ranges of partial inundation. The function illustrated
in Fig. 3 can easily be modified if required to provide, for example, a scalar inundation
likelihood index of between 0 (zero possibility of inundation) and 1 (very high possibility
of inundation) or to further weight the membership values within each fuzzy category
class. For example, a category of very high respective membership values of (1, 0, 0,25

0) could be assigned to cells for which the depth prediction implies inundation of the
whole of the cell by 0.5 m or more. For the purposes of this study the fuzzy category
representation of the model predictions shown in Fig. 3 was deemed sufficient. Figure 4
illustrates a section of the fuzzy model map obtained from a single LISFLOOD-FP
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realization.

2.8 Computing a global fuzzy performance measure

Model performance within each cell for each realisation was evaluated using the stan-
dard similarity function of Hagen (2003) that enables the comparison of two fuzzy cat-
egory cells. For two fuzzy vectors VA and VB (of the form in Eq. (1) that represent the5

same cell location on maps A and B respectively

S(VA, VB) =
[∣∣∣Aλhigh

, Bλhigh

∣∣∣
min

,
∣∣∣Aλmedium

, Bλmedium

∣∣∣
min

,
∣∣∣Aλlow

, Bλlow

∣∣∣
min

,
∣∣∣Aλno, Bλno

∣∣∣
min

]
max

(6)

S is therefore the maximum value within the set obtained by evaluating the minimum of
the two fuzzy vectors VA and VB on an element by element basis. S lies between 0 for
cells that are totally dissimilar in category across the whole of the cell and 1 for cells10

that are identical in category across the whole of the cell. As a consequence of the
similarity values used to populate the system of fuzzy category vectors in this study,
small differences (one order of category or less) between observed and model predic-
tions for a cell will lead to S values of 0.6 or greater. Within the zone of uncertainty
around expected shorelines such values may be considered a satisfactory measure15

of fit especially when one considers the uncertainties in the boundary locations be-
tween inundation categories that will result from using a function such as that in Fig. 3.
Conversely, S values less than 0.6 can be regarded as indicators of poor model per-
formance for a cell. When plotted spatially the range of similarity values produced in
a fuzzy comparison typically reveals more structure to the pattern of fit than discrete,20

non-fuzzy, comparisons (Power et al., 2001).
A global fuzzy performance measure, GS , for each model realisation was obtained by

averaging the standard similarity values obtained by comparing fuzzy SAR and fuzzy
model maps across all cells, i , within a designated area of the raster maps. For this
study GS was averaged across all cells that possessed a standard similarity value, S,25

of less than 1 in at least one of the model realisations, which represents the whole of

2256

http://www.hydrol-earth-syst-sci-discuss.net
http://www.hydrol-earth-syst-sci-discuss.net/3/2243/2006/hessd-3-2243-2006-print.pdf
http://www.hydrol-earth-syst-sci-discuss.net/3/2243/2006/hessd-3-2243-2006-discussion.html
http://www.copernicus.org/EGU/EGU.html


HESSD
3, 2243–2277, 2006

Fuzzy set calibration
of flood inundation

models

F. Pappenberger et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

EGU

the area that was prone to change across the set of realisations. For a designated
inundation prone area of n cells

GS=

n∑
i=1

S
(
VOBS,i, VMOD,i

)
n

. (7)

2.9 Sensitivity Analysis

Factor or parameter sensitivity analysis should be part of every uncertainty analysis5

of flood inundation models. It enhances the understanding of model results by illus-
trating which factors are the most important and suggesting the factors which should
receive greater attention to reduce model uncertainty. In this paper the SOBOL-SDP
(Ratto et al., 2004) will be applied. The method defines factor sensitivity by variances.
If the uncertainty of input factors can be approximated by independent distributions,10

then sensitivity indices can be related to the decomposition of the total unconditional
variance (Sobol, 1993). The decomposition can be shown in an ANOVA like way:

V =
∑
i

Vi +
∑
i<j

Vi j + ... + V1,2,3,...,n (8)

V is the total variance, Vi is the variance contribution due to effects of the random
variable Xi . Higher order terms show the variance contribution between two or more15

random variables. Each partial variance is normalised with respect to the total uncon-
ditional variance and allows sensitivity indices to be obtained:

Si=
Vi
V ,1 ≤ i ≤ n (9)

Si is called the main effect. The reader is referred to Saltelli et al. (2004) for a more
comprehensive discussion.20
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3 Results and Discussion

This section will initially discuss the results of the comparison of the proposed fuzzy
evaluation methodology with the traditional measure of fit. It then proceeds to present
the results of the uncertainty analysis and resulting flood hazard maps.

3.1 Comparison of fuzzy performance measure to classical performance measures5

A subset of traditional measures has been used in this comparison. There is a blurred
correlation between the fuzzy performance measure, GS , and most of the discrete,
binary inundation measures (Fig. 5). This expresses the additional error source this
measure is accounting for. It is apparent that GS has a smaller range than traditional
scores. In artificial tests (not displayed here) this range was much larger and thus is a10

result of the specific characteristics of this domain. The correlations between the fuzzy
performance measure and all other measures are as expected. Therefore, it can be ar-
gued that the measure behaves “well” in comparison to traditional approaches. Most of
the scatter plots display a similar two dimensional pattern, however, the individual plots
have different point densities. Comparisons of plots between the various measures are15

shown by Schumann et al. (2005) and Hunter (2006) and are not part of this analy-
sis. Schumann et al. (2005) and Hunter (2006) have both recommended the Modified
Threat Score as the measure with the most potential in the discrete evaluation of 2-D
inundation models. However, in their analysis of the performance measure has been
computed using maps that were created using the SNAKE algorithm (Horritt, 1999) to20

extract the flood outlines. The SNAKE algorithm as well as the Modified Threat Score
favours the same type of flooding pattern (large areas in contrast to a fragmented
floodplain). It has to be highlighted that Hunter (2006) also suggests the use of other
measures and describes the applicability and limitation of each measure individually.
For example, he rejects the use of the Accuracy measure, as it provides a too optimistic25

assessment of the flood model, and the application of the Pierce Skill Score as it does
not properly penalise over-prediction. In that paper the usefulness/applicability of each
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measure is evaluated according to the individual physical implications. Hunter (2006)
emphasizes a key point: a performance measure should be used according to the
purpose of the model and the quality of the available data. However, the traditional
measures ignore both data quality and incommensurability issues and are therefore
inappropriate reflections of the information content. The purpose of the modelling ex-5

ercise is here defined as getting the average performance of the entire flood domain,
which can be questioned as a modelling goal for a flood risk model (for a discussion
see Pappenberger et al., 2006a).

Figure 5 demonstrates that the novel fuzzy performance measure can give similar
results to the traditional measures, while taking account of the error in the evaluation10

data.

4 Parameter uncertainty

In Fig. 6 the parameter uncertainty of the LISFLOOD-FP model is plotted. On the y-
axis is the fuzzy measure performance and on the x-axis are the parameters. Each dot
represents one simulation. The Floodplain Roughness, River width, Inflow Magnitude15

and the Initial error on first cross-section indicate an equifinality in fitting the (non-error
free) observations. The Channel Roughness, Outflow Roughness and the Standard
deviation for cross-section error seem to have some tendency towards an optimum at
lower values. Possible explanations for these patterns are given in Table 3. However,
no convex surfaces can be observed in these projections. The model is responding in20

a highly complex way to the sampled parameters and the sample size seems to be still
too low. Indeed, the outflow roughness has two distinct “optimal” simulations at higher
values, which would have been most probably not found in an optimisation framework.
It is apparent from the model implementation that certain parameters such as channel
roughness and cross-section depth should compensate for each other. However, it25

was not possible to establish higher order correlations of the sort that a low inflow is
compensated by a higher roughness value. This maybe either explained by undetected
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numerical errors, by the complexity of the used model or by the effect of the error in the
observations.

The variance of a mean line through the dotty plots of Fig. 6 is the first order sen-
sitivity. Table 4 summarizes the result of the SOBOL analysis for each performance
measure. With all performance measures only two parameters exhibit any sensitivity5

(Standard deviation for cross-section error and Roughness Channel). However, the
sensitivities are very small as has already been seen in Fig. 6.

The example of river width demonstrates that parameter equifinality depends, as ex-
pected, on the performance measure chosen. It should not be concluded from this
table that one performance measure is better for certain kinds of calibration (e.g. op-10

timisation) as the meaning of each performance measure has to be the predominant
selection factor. This table mainly illustrates that the new fuzzy performance measure
compares well to the traditional measures and thus gives us further assurance regard-
ing its adequacy.

4.1 Flood inundation maps15

Spatial predictions of inundation extent are best illustrated by generating 2-D maps that
depict the likelihood of inundation across a floodplain. This can be achieved by weight-
ing the cells of each behavioural realisation in proportion to the global performance of
that realisation (Aronica et al., 2002). In order to generate an inundation possibility
map conditioned on GS Eq. (7), Eq. (10) was applied to each fuzzy category in turn20

(see Eq. 4).

V flood
i =

∑
j

(
Si ,j × GSj

)
∑
j
GSj

(10)

where V f lood
i is the likelihood or possibility of flooding in cell i , Si ,j is the standard sim-

ilarity value for cell i in realisation j and GSj is the global similarity value for realisation
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j,as defined in (7).
The resulting map was defuzzified by multiplying each layer by the similarity value

(Eq. 11) and taking the maximum resulting value:

P flood
i = max

[(
1 × VMOD,ihigh

)
,
(

0.6 × VMOD,imedium

)
,
(

0.3 × VMOD,ilow

)
,
(

0 × VMOD,ino

)]
(11)

Finally, the resulting map was normalised (Fig. 7) to give a relative indication of flood5

hazard. We have refrained from making this map look polished e.g. through smoothing
or contours as this map best reflects the resolution of the modelling exercise, although
for communication with lay users such a map may have to be processed.

A close examination of Fig. 7 reveals that, even after the conditioning on observations
and choice of behavioural models, the predicted flood hazard is not always highest in10

the cells which contain river reaches. This seems to be an unexpected result as the
river channel is always the lowest point locally. However, it is part of the implementation
of the LISFLOOD model that water in the channel is routed independently from the
floodplain, but allows for interaction between the two without the channel itself being
directly part of the floodplain cell. This means that there can be water in the channel15

but not on the surrounding flood plain. Moreover, in LISFLOOD the cell topography
is averaged over the area of the cell and thus does not necessarily reflect the lowest
elevations in a particular cell. In addition, a cell which has a depth of inundation of
less than 100 mm (this could be altered and improved by a finer resolution) at the
end of a time step is treated as still dry for the purposes of calculating the exchange20

between floodplain cells and between floodplain and river reaches. For these reasons it
is possible that where the discharge is predominantly within the river, the cell containing
the river might be treated as not inundated.

It can also be seen that some areas predicted as having a high inundation hazard
are “disconnected” from the river (for example within the circle labeled 1 in Fig. 7). This25

might again be a result of the way in which LISFLOOD is implemented as outlined
above, or possibly as a result of inundation from different directions in different model
parameterisations, such that any particular pathway leading to flooding of that area
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does not have a particularly high hazard, especially if this is due to depths of less than
10 cm in the intervening area. It also is surprising that the downstream part of this
section of river does not have a higher flood risk as it was clearly flooded in this event
(circle number 2 in Fig. 7). Earlier studies (Pappenberger et al., 2006b) indicate also
low hazard in this area. We therefore, conclude that this may be intrinsic in the data5

used to set up the model leading to a low predicted risk despite the fact that this area
was actually flooded. This is indicative of the general problem of flood hazard mapping
in that it is very difficult to reproduce the observed inundation extent in all areas of the
floodplain.

This example map demonstrates that it is possible to derive a flood hazard map from10

a performance measure which takes account of incommensurability and observational
error. The advantage of this methodology over traditional approaches is that it can
take account of the errors more explicitly. The disadvantage is that it is computationally
more demanding.

5 Conclusions15

A new fuzzy based technique to analyze the spatial predictions of flood inundation
models is explored that explicitly recognizes the uncertainty in the observed data and
includes commensurability error in the model evaluation. Raster maps consisting of
fuzzy category vectors can provide a more accurate representation of SAR images
than discrete binary category maps as they enable the retention of information relating20

to the likelihood of inundation at any location on a floodplain. When combined with a
suitable function that fuzzifies the predictions of a 2-D inundation model, a performance
measure based on fuzzy map comparison techniques can be applied. A practical ap-
plication of the technique to a short section of the Alzette River, Luxembourg reveals a
strong correlation between the novel fuzzy based measure and existing discrete mea-25

sures. The methodology has been shown to be particularly useful when uncertain
remote sensing information exists. We want to note here that no performance measure
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should be used in isolation and should ideally be embedded into a multi-objective cal-
ibration framework in order to capture the capability of each measure to evaluate the
performance of various features. Therefore future research should include measured
water levels and eye witness accounts as it has been indicated by research elsewhere
that these have a higher discriminatory power than inundation patterns (Mignot et al.,5

2006; Werner et al., 2005a; Werner, 2004). Moreover, the role of different defuzzifica-
tion methods has to be investigated.
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Table 1. Parameters included in the uncertainty analysis and ranges sampled.

Parameter Sampling Range Distribution

Floodplain Roughness 0.05–0.3 Log
Channel Roughness 0.01–0.2 Log
River width +–10% Uniform
Outflow Roughness 0.01–0.4 Log
Inflow Magnitude (chosen among a set 1–20 Uniform
of 20 contrasting hydrographs)
Initial error of channel depth on the first cross-section +–15 cm Uniform
Standard deviation for cross-section error, 0.01–0.1 Uniform
with mean taken from previous cross-section
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Table 2. A contingency table for evaluating discrete binary inundation extent with the vari-
ous performance measures used in the study defined below largely taken from Schumann et
al. (2005).

Contingency table Observed

Inundated Not inundated

Forecast
Inundated a c
Not inundated b d

1=Hit: a÷(a + b)
2=Accuracy: (a+d)÷n(n=number of cells)
3=False alarm rate: c ÷(c + d)
4=Odds: (hit÷(1-hit))÷(f /(1-f))
5=Threat score or F2 of Aronica et al. (2002): a ÷ (a+b+c)
6=Modified threat score: (a–c)÷(a+b+c)
7=Bias:(a+c)÷(a+b)1

8=Pierce Skill score: (Hit–False alarm rate)
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Table 3. Possible explanation for the equifinality and optima of the model factors.

Parameter Equifinality Explanation

Roughness Yes Floodplain roughness has been shown to be
insensitive in earlier applications of this model (Hunter, 2006).
Thus it may be intrinsic in the model structure.
The channel is probably the main conveyance area for this model reach.

Channel Roughness No The model structure forces the channel to
be the main conveyance area, therefore, some sensitivity can be expected.
The sensitivity of in bank flow to peak
flow conditions has been illustrated by Roux and Dartus (2006).

River width Yes Variation may be too small in comparison with the channel roughness.
Outflow Roughness No The inundation at the downstream end is probably a main control factor of

the performance measure.
However, this tendency is in the broad spread and not in the maximum values

Inflow Magnitude Yes This equifinality may be explained by a dominating/compensating effect of
channel roughness in connection with channel depth. However,
no two-dimensional relationships
could be detected. It could be also due to undetected numerical errors.

Initial error on first cross-section Yes The depth of the upstream cross-section
is not important for the inundation extent.

Standard deviation for cross-section error No Channel depth controls the time of over-topping and
therefore has significant influence on the amount of water on the flood-plain.
The preference for small errors may lie in the implementation of the numerical solution.
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Table 4. Summary of estimation of 1st order sensitivity after the Sobol measure (without quanti-
fying non-linear interacting sensitivities). Only the roughness of the channel exhibits sensitivity.

Performance Measure Standard deviation of cross-section error Roughness Channel Other Parameters

Hit Rate Sensitive (SOBOL: 0.08) Sensitive (SOBOL: 0.17)

1st order sensitivity is close to zero

Accuracy Sensitive (SOBOL: 0.06) Close to zero
False Alarm Rate Close to zero Sensitive (SOBOL: 0.16)
Odds Close to zero Close to zero
Threat Score Sensitive (SOBOL: 0.07) Sensitive (SOBOL: 0.17)
Modified Threat Score Sensitive (SOBOL: 0.05) Close to zero
Bias Sensitive (SOBOL: 0.07) Sensitive (SOBOL: 0.29)
Pierce Skill Score Sensitive (SOBOL: 0.07) Sensitive (SOBOL: 0.13)
Fuzzy Measure Sensitive (SOBOL: 0.1) Close to zero
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Maps A & C:Binary Global Fit = 0.8925
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Mismatch

Match

Maps B & C: Binary Global Fit = 0.835

Fig. 1. An example of map comparison using a discrete, binary matching system. Maps A,
B and C can be regarded as interpretations of the same data set in which there is uncer-
tainty in the category status across zones delineated. The lower maps show how the global
fit (assessed as the ratio of matching cells to the total number of cells) cannot represent the
uncertainty in cell status. The match between A and B may be an overestimate due to coinci-
dental matching of categories within the zones of uncertainty while the match between B and
C may be an underestimate due to poor matching of cells within the uncertainty zones.
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Fig. 2. The study area. The Alzette River and adjacent buildings superimposed upon a 50 m
resolution DEM of the floodplain; and a General location map.
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Fig. 3. A function relating model predicted water depths to fuzzy, inundation possibility, category
vectors. The LISFLOOD predicted depth value from a cell or, if dry, from adjoining cells is used
to calculate the water level across a cell and the intercept of this water level on the terrain
statistics surface is used to allocate fuzzy category vectors.
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Fig. 4. A diagram illustrating the transformation from model results for a single LISFLOOD-
FP realisation (a) to the fuzzy interpretation map of inundation categories (b) arising from the
use of the subjective function illustrated in Fig. 3. Only the high inundation possibility layer is
illustrated. The cell size is 50 m.
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Fig. 5. Correlation plots between fuzzy global performance and selected discrete binary per-
formance measures for the full set of LISFLOOD-FP realisations .
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Fig. 6. Dotty plots of the model results. On the y-axis is the model performance and the x-axis
the model parameters. Each dot represents one model simulation. The inflow magnitude has
been derived from 20 distinct rating curves, which have been sorted after magnitude at the time
of the observation taken with 20 representing the maximum.
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Fig. 7. An inundation likelihood map for Alzette created from conditoning LISFLOOD-FP on a
fuzzy representation of the SAR data using the fuzzy performance measure.
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