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Abstract

In the present paper we describe some methods for verifying and evaluating probabilis-
tic forecasts of hydrological variables. We propose an extension to continuous-valued
variables of a verification method originated in the meteorological literature for the anal-
ysis of binary variables, and based on the use of a suitable cost-loss function to evalu-5

ate the quality of the forecasts. We find that this procedure is useful and reliable when
it is complemented with other verification tools, borrowed from the economic literature,
which are addressed to verify the statistical correctness of the probabilistic forecast.
We illustrate our findings with a detailed application to the evaluation of probabilistic
and deterministic forecasts of hourly discharge values.10

1 Introduction

Probabilistic forecasts of hydrological variables are nowadays commonly used to quan-
tify the prediction uncertainty and to supplement the information provided by point-
value predictions (Krzysztofowicz, 2001; Ferraris et al., 2002; Todini, 2004; Montanari
and Brath, 2004; Siccardi et al., 2005; Montanari, 2005; Tamea et al., 2005; Beven,15

2006). However, probabilistic forecasts are still less familiar to many people than tra-
ditional deterministic forecasts, a major problem being the difficulty to correctly and
univocally evaluate their quality (Richardson, 2003). This is especially true in the hy-
drological field, where the development of probabilistic forecast systems has not been
accompanied by an analogous effort towards the proposition of methods to assess20

the performances of these probabilistic forecasts. In contrast, the usual choice when
evaluating probabilistic predictions of hydrologic variables has been to adopt verifica-
tion tools borrowed from the meteorological literature (e.g., Georgakakos et al., 2004;
Gangopadhyay et al., 2005).

However, this meteorological-oriented approach has two drawbacks: first, most of25

the methods developed by the meteorologists were originally proposed for the proba-
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bilistic predictions of discrete-valued variables, and the adaptation of these techniques
to deal with continuous-valued variables can reduce the discriminating capability of the
verification tools (e.g., Wilks, 1995; Jolliffe and Stephenson, 2003). For example, a
continuous-valued forecast can always be converted into a binary prediction by using a
threshold filter (e.g., Georgakakos et al., 2004): this allows one to use verification tools5

developed for binary variables, but it also reduces the amount of information carried by
the forecast, and the usefulness of its verification. A second problem with the usual hy-
drological approach to probabilistic forecast evaluation is that it disregards some other
available tools: more specifically, other verification methods exist, proposed in the last
decade in the economic field (e.g., Diebold et al., 1998), but these methods have been10

usually ignored by the hydrologists, notwithstanding their relevance for the problem
under consideration.

The purpose of this paper is to overcome these two problems and to provide an ef-
ficient approach to probabilistic forecast verification; in order to do that, we first need
to describe some existing forecast verification tools. We do not have the ambition of15

fully reviewing the vast literature in the field, and we will limit ourselves to describe
some methods, which in our opinion are the most suitable for application in the hy-
drological field (Sect. 2). This serves as a basis for developing, in Sect. 3.1, a simple
cost-loss decision model which allows one to operationally evaluate a probabilistic fore-
cast of a continuous-valued variable. We then consider in Sect. 3.2 the approach of the20

economists to forecast evaluation, and discuss its merits and drawbacks, with special
attention to its applicability to hydrological predictions. The two approaches are com-
pared in Sect. 4 through an example of application to the forecast of hourly discharge
values. Finally, in Sect. 5 the conclusions are drawn, aimed at providing some guide-
lines for the use of probabilistic forecast evaluation methods in the hydrologic field.25
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2 General issues in forecast verification

Before describing the tools for verifying a probabilistic forecast, we need some defini-
tions. Suppose that a time series of measurements of a variable x is available, sampled
at regular intervals, {xi}, i=1, .., N. A portion of the time series of size n, which we call
“testing set”, is forecasted, obtaining an estimate x̂i of the actual value xi . The predic-5

tions are carried out using the information available up to a time step i−h, where h is
the lead time, or prediction horizon, of the forecast. Three different kinds of forecasts,
with increasing level of complexity, can be carried out: if the result of the prediction is
a single value for each predicted point, one has a deterministic forecast, x̃i ; if the pre-
diction consists of an interval [Li (p), Ui (p)] wherein the future value xi is supposed to10

lie with coverage probability p, one has an interval forecast (Chatfield, 2001; Christof-
fersen, 1998); finally, if the whole probability distribution of the predictands, pi (x̂i ), is
estimated, one has a probabilistic forecast (Abramson and Clemen, 1995; Tay and
Wallis, 2000).

A second important discrimination regards the form of the variable under analysis: x15

can be a a continuous-valued variable, which is the most typical case in hydrology; or a
discrete-valued variable, i.e. a variable that can take one and only one of a finite set of
possible values (the typical case is the prediction of rainfall versus no rainfall events).
When the predictands and forecasts are discrete but not binary variables, a further
distinction occurs between ordinal and nominal events, depending on the presence of a20

natural order between the classes wherein x is partitioned (see Wilks, 1995, for details).
The available verification tools depend upon the kind of forecast and predictands under
analysis, as presented in Table 1. In all cases, the verification process requires that
the obtained forecasts (x̃i , or {Li (p), Ui (p)}, or pi (x̂i )) are compared to the real future
values, xi , for all points belonging to the testing set. We will now rapidly describe some25

of the verification tools available in the different situations, separating the cases when
the predictand is a discrete variable from those when it is a continuous one.
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2.1 Discrete-valued predictands

Most of the methods for the analysis of discrete binary or multicategory predictands
originate from the meteorological literature (see Wilks, 1995, or Jolliffe and Stephen-
son, 2003, for a detailed review). Consider a situation in which the variable x can be
partitioned into k mutually exclusive classes, C1, ..., Ck . Verification of deterministic5

forecast of discrete predictands (row two, columns two to four in Table 1) requires the
representation of the results through a contingency table, i.e. a table whose (r, c) cell
contains the frequency of occurrence of the combination of a deterministic forecast
falling in class Cr and an observed event in class Cc. Verification in this case is carried
out by defining a suitable score to summarize in a single coefficient the information10

contained in the contingency table. Examples of these scores are the hit rate and the
threat score for binary variables (Wilks, 1995), the so-called G statistic for multicate-
gory ordinal variables (Goodman and Kruskal, 1954; Kendall and Stuart, 1977, p. 596),
and the Pearson’s coeffiecient of contingency (Goodman and Kruskal, 1954; Kendall
and Stuart, 1977, p. 587) for multicategory nominal variables. As for the interval fore-15

casts of discrete variables (row three, columns two to four in Table 1), these are seldom
performed, due to inherent difficulty of combining the fixed coverage probability of the
interval prediction and the coarse domain of the discrete variable.

We now turn to the probabilistic forecast of discrete variables, and consider the case
of a k-classes ordinal variable (row four, column four in Table 1). The probabilistic fore-20

cast of the i -th point in the testing set, xi , has now the form of a vector {pi ,1, ..., pi ,k},
where pi ,j>0 (with j=1, .., k) represents the probability assigned to the forecast x̂i
falling in class Cj . Analogously, one can define the vector {oi ,1, ..., oi ,k}, with oi ,j=1
if xi ∈ Cj , and oi ,j=0 in the reverse case. A commonly adopted verification tool in
this case is the Ranked Probability Score (Murphy, 1970, 1971; Epstein, 1969; Wilks,25

1995) which takes the form
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RPS =
1
n

n∑
i=1

{
k−1∑
m=1

[
Pi ,m − Oi ,m

]2

}
(1)

where Pi ,m=
∑m

j=1 pi ,j is the cumulative distribution function (cdf) of the forecasts x̂i ,
while Oi ,m=

∑m
j=1 oi ,j is the corresponding cdf of the observations xi (which actually

degenerates into a step function, taking only 0 and 1 values). The rationale behind the
use of the RPS as a verification tool for ordered multicategory predictands lies in the5

fact that it is sensitive to distance, i.e. it assigns a higher score to a forecast which is
“less distant” from the event, or class, which actually occurs (see Murphy, 1970). In
the particular case when k=2 (binary predictand, row four, column two in Table 1) the
ranked probability score reads

RPS|k=2 =
1
n

n∑
i=1

[
Pi ,1 − Oi ,1

]2 =
1
n

n∑
i=1

[
pi ,1 − oi ,1

]2
(2)

10

which is called the Brier score. Finally, the rather uncommon case of multicategory
nominal variables is usually treated by converting the contingency table into binary
tables (see Wilks, 1995).

2.2 Continuous-valued predictands

Consider now the situation when the variable to forecast is a continuous one (column15

five in Table 1). When the prediction is deterministic, the assessment of the quality
of the forecast requires that a suitable discriminant measure between the forecasted
and observed values is calculated, a good prediction being the one that minimizes the
discrepancy. Commonly used measures are the mean squared error,

MSE =
1
n

n∑
i=1

[
x̃i − xi

]2 , (3)
20
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and the mean absolute error,

MAE =
1
n

n∑
i=1

|x̃i − xi | . (4)

Before considering the main point of the paper in Sect. 3 (verification of probabilistic
forecasts of continuous variable), we consider the case of an interval forecast of the
form {Li (p), Ui (p)} (Table 1, row three, column five). Define an indicator function Ii5

which is equal to 1 if xi ∈ {Li (p), Ui (p)}, while Ii=0 in the reverse case. Standard eval-
uation methods of interval forecasts consist in comparing the actual coverage 1

n

∑n
i=1 Ii

of the interval, to the hypothetical coverage p. A likelihood ratio test for the hypothesis
1
n

∑n
i=1 Ii=p is proposed by Christoffersen (1998) to verify the (unconditional) cover-

age of the interval. However, this test has no power against the alternative that the10

events inside (or outside) the interval come clustered together. This shortcoming can
be avoided by verifying that the Ii values form a random sequence in time; we refer to
Christoffersen (1998) for a discussion of this problem and a description of an appropri-
ate joint test of coverage and independence.

3 Verification tools for probabilistic forecasts of continuous variables15

The main focus of the present paper is on the evaluation of probabilistic forecasts of
continuous variables, which are frequently the object of investigation in the hydrological
field. Two approaches to the problem are considered. The first one is adapted from
analogous methods developed by the meteorologists when dealing with binary vari-
ables (Murphy, 1969; Wilks, 1995; Palmer, 2000; Richardson, 2003), and it is based20

on the comparative evaluation of the forecasts in terms of their operational value, or
economic utility. This approach requires that the decision-making process of individual
users is considered, and a cost-loss function is specified by the forecaster; the evalu-
ation of the forecast involves a single statistic which measures the overall value of the
prediction. Details on this approach are presented in Sect. 3.1. The other approach25
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is preeminently used by the economists (e.g., Diebold et al., 1998; Berkovitz, 2001;
Noceti et al., 2003), who avoid to measure the overall quality of the prediction and
concentrate on the evaluation of the formal correctness of the uncertainty description
provided by the probabilistic forecast. Suitable statistical tools are developed for this
purpose, as detailed in Sect. 3.2.5

3.1 Determining the operational value of probabilistic predictions

As mentioned, the approach of the meteorologists to probabilistic forecast evaluation
requires the definition of a cost-loss function to determine the value of the forecast.
This approach has been originally proposed by Murphy (1969) and Epstein (1969) for
the evaluation of probabilistic forecasts of discrete-valued variables. The modification10

of this framework to deal with the evaluation of probabilistic forecasts of continuous-
valued variables represents one of the purposes of this paper.

Suppose that the forecast user knows that the cost of the precautionary actions to
guarantee protection against an hypothetical event χ is C(χ ), where C(·) is an increas-
ing function. The variable χ represents a sort of design value, that is fixed by the15

decision maker based on the forecast outcome: if the prediction is deterministic, χ
is necessarily equal to the point forecast, χ=x̃; if the prediction is probabilistic, then
the χ value can be chosen among the possible forecast outcomes. In particular, the
decision-maker will take a decision that minimizes the total expenditure of money. In
order to do that, also the economic losses L, due to the actual occurrence of an event20

x, need to be defined: L is supposed to be zero if the observed event is lower than
the design event, x<χ (in fact, in this case the precautionary actions guarantee protec-
tion), and to increase with (x−χ ) when x>χ . The overall cost-loss function is the sum
of the cost and loss terms, and depends on both the observed and the design event,
CL(x, χ )=C(χ )+L(x, χ ).25

An example can help to follow the reasoning: consider the case when x is the water
stage at a given point along a river, and χ is the design value selected by the decision-
maker on the basis of the information provided by the forecaster. The larger is χ , the
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more impactive and expensive are the necessary precautionary actions (emission of
flood warnings, closure of roads and bridges, temporal flood proofing interventions,
people evacuation, etc.); this explains why C(χ ) is taken as an increasing function of χ .
If x overcomes χ , some losses will also occur; as the distance between the observed
and hypothesized values, (x−χ ), increases, the losses become more and more rele-5

vant, including disruption of cultivated areas, inundation of civil infrastructures, flooding
of inhabited areas, loss of human lives, etc. As a consequence, L(x, χ ) is an increasing
function of (x−χ ) when x>χ .

Once the cost-loss function is defined, it is still necessary to determine the optimal
design value, χ ∗, i.e. the value that minimizes the total expenses. However, the future10

value x is obviously not known, which complicates the optimization problem. This is
where the probabilistic prediction turns out to be useful: in fact, the decision maker can
use the probabilistic forecast p(x̂) to represent the probability distribution of the future
events, f (x). Under this hypothesis, he/she will be able to calculate the expected ex-
penses CL(χ )=

∫
allx̂ CL(x̂, χ )p(x̂)dx̂, and to take the decision χ ∗ that minimizes CL(χ )15

(e.g., Diebold et al., 1998; Palmer, 2000; Richardson, 2003). The decision χ ∗ will de-
pend upon the probabilistic forecast through p(x̂), and a better prediction will decrease
the actual expenditure of money CL(x, χ ∗)=C(χ ∗)+L(x, χ ∗). This provides a general
framework for the comparison of probabilistic forecasts based upon their operational
value.20

We proceed in our description by specifying the above procedure for the case of a
simple cost-loss function, which we propose here to evaluate probabilistic forecasts
of hydrologic variables. We suppose C(χ ) is a linear function, C(χ )=c·χ , where c is
a constant, and L(x, χ ) is stepwise linear, L(x, χ )=H(x−χ )·l ·(x−χ ), where H(·) is the
Heavyside function, and l is a constant (note that l>c, since otherwise one would25

spend more money to guarantee protection than what is eventually lost, and would
have no interest in prediction). The cost-loss function reads

CL(x, χ ) = c · χ + H(x − χ ) · l · (x − χ ). (5)
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A linear transformation of Eq. (5), obtained by subtracting c·x and dividing by l/2,

ρξ(x, χ ) = 2ξ(χ − x) + 2H(x − χ ) · (x − χ )

= |χ − x| + 2(ξ − 0.5)(χ − x). (6)

is a completely equivalent cost-loss function (a similar function is used by Epstein
(1969) and by Murphy (1970) when dealing with binary or multicategory variables),5

but it is more suitable to evaluating predictions. In fact, it depends on a single param-
eter, the cost-loss ratio ξ=c/l<1, and it attains a null value when χ=x, i.e. when the
hypothetical value is equal to the actually occurred one (perfect forecast).

An example of such cost-loss function is reported in Fig. 1, continuous line, where it is
compared to an absolute value cost loss-function, ρabs(x, χ )=|x−χ |, and to a quadratic10

cost-loss function, ρquad(x, χ )=(x−χ )2. The main difference is in the fact that the ρξ
function assigns different weights to under-design and to over-design, which is more
appropriate when environmental (hydrological) variables are predicted. In this case, ξ
values lower than 0.5, giving rise to cost-loss functions similar in shape to the one in
Fig. 1, are to be preferred: in fact, the losses are expected to be much greater than the15

costs of protection. Also note that the ρξ function is the generalization of the absolute
value cost-loss function, as ρξ converges to ρabs when ξ=0.5 (this is another reason
why it is convenient to use ρξ rather than CL from Eq. 5).

Once the loss function is defined, one can search for the optimal design value χ ∗. By
taking the expected value of Eq. (6), one obtains20

ρξ(χ ) = 2ξ
(
χ −

∫
allx̂

x̂p(x̂)dx̂
)
+ 2

∫ ∞

χ
(x̂ − χ )p(x̂)dx̂, (7)

whose derivative with respect to χ , equated to zero, provides the optimal decision χ ∗

P (χ ∗) = 1 − ξ ⇒ χ ∗ = P −1 (1 − ξ) (8)

that depends only on the cumulative distribution function of the forecasts, P (·), and
on the cost loss ratio ξ<1. Of course, the same result would have been obtained by25
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using Eq. (5) as the cost-loss function (this is why the two formulations are equivalent).
In contrast, if a similar procedure is adopted with the absolute value or the quadratic
cost-loss function (Fig. 1), the median and the mean of the forecasts distribution are
respectively selected as the design values χ ∗.

The total expenses will now amount to ρξ(x, χ
∗)=|χ ∗−x|+2(ξ−0.5)(χ ∗−x), and the5

operational value of different predictions will be found from the averaged ρ(x, χ ∗) values
over the n points in the testing set,

EC(ξ) =
1
n

n∑
i=1

ρξ(xi , χ
∗
i ) =

1
n

n∑
i=1

{
|P −1

i (1 − ξ) − xi |+

2(ξ − 0.5)(P −1
i (1 − ξ) − xi )

}
. (9)

The lower is the obtained EC(ξ) value (EC stands for “expected cost”), the more valu-10

able is the forecast. Note that, when the prediction is deterministic, P (x)=H(x−x̃), and,
as mentioned, χ ∗=x̃ for any ξ. In this case Eq. (9) reads

ECdet(ξ) =
1
n

n∑
i=1

{|x̃i − xi | + 2(ξ − 0.5)(x̃i − xi )} , (10)

which is a discrepancy measure similar to the mean squared error and mean absolute
error defined in Eqs. (3) and (4).15

A difficulty with Eq. (9) is that the expected cost depends on the cost-loss ratio ξ; dif-
ferent predictions can thus be ranked in different manners by different users, implying
that there cannot be an universally accepted “best” probabilistic prediction. This can be
especially problematic, since the cost-loss function is seldom known, and, even when
it is simplified as in Eq. (6), it may be difficult to set a specific value for the cost-loss20

ratio ξ. Our preferred solution is therefore to avoid fixing a ξ value, but rather to graph-
ically represent how the expected costs, associated to different forecasting systems,
change with ξ. Special attention should be paid to the EC(ξ) curves in the part of the
diagram where ξ<0.5, corresponding to situations where the losses are very relevant
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compared to the costs of the precautionary actions. We also propose to re-scale the
EC(ξ) curves with respect to the cost of a “climatologic” mean-value deterministic pre-
diction, x̃i=x=

1
n

∑n
i=1 xi . By setting this value in Eq. (10) one obtains that the expected

cost of the climatologic prediction is the mean deviation δ= 1
n

∑n
i=1 |xi−x|. Our proposal

is to plot EC(ξ)/δ versus ξ, in order to be able to directly determine the value of the5

forecast under analysis compared to the mean-value prediction: if EC(ξ)/δ is lower
(larger) than one, the forecast is more (less) valuable than the climatologic prediction.
An example of application of this procedure is reported in Sect. 4.

The idea of plotting the EC(ξ) curve is new (however, Palmer, 2000, and Richard-
son, 2003 use a similar graph for determining the value of probabilistic predictions of10

discrete variables); more frequently, the meteorologists face the difficulty of setting an
exact value for ξ by supposing that ξ is a random variable with a uniform U(0, 1) distribu-
tion (e.g., Murphy, 1969), and then taking the average value of EC(ξ) over the possible
ξ values. This corresponds to calculating the area EC below the EC(ξ) curves,

EC =
∫ 1

0
EC(ξ)dξ =

1
n

n∑
i=1

∫ 1

0
ρξ(xi , χ

∗
i )dξ. (11)

15

Since the integral and summation terms interchange, we can concentrate on a single
addendum in the summation and elide the subscripts i for simplicity:

T =
∫ 1

0
ρξ(x, χ

∗)dξ =
∫ 1

0
{|P −1(1 − ξ) − x| + (12)

+2(ξ − 0.5)(P −1(1 − ξ) − x)}dξ.

Substituting y=P −1(1−ξ) one has20

T =
∫ ∞

−∞
{|y − x| + [1 − P (y)](y − x)}p(y)dy =∫ ∞

−∞
2[H(y − x) − P (y)](y − x)p(y)dy. (13)
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Using the formula for integration by parts, and considering that H(y−x)−P (y)=0 when
y→±∞, one obtains

T =
∫ ∞

−∞
[H(y − x) − P (y)]2dy, (14)

i.e. that
∫1

0 ρξ(x, χ
∗)dξ is equivalent to the continuous ranked probability score,

CRPS=
∫∞
−∞[H(y−x)−P (y)]2dy , which is sometimes used to assess the performances5

of probabilistic forecasts of continuous variables (Hersbach, 2000). As a consequence,
EC in Eq. (11) is also equivalent to CRPS (Hersbach, 2000, Eq. 5). This equivalence
is not surprising: in fact, the CRPS is the limit of the ranked probability score in Eq. (1)
for an infinite number k of zero-width classes (see Hersbach, 2000), and the RPS was
obtained by applying to discrete variables a cost-loss function which is similar to ρξ10

in Eq. (6) (Murphy, 1969, 1970). However, the manner how we obtained the CRPS
in Eq. (14) is novel, and allows one to better understand what are its qualities and
drawbacks. In particular, Eqs. (12) to (14) demonstrate that the CRPS is averaged
over different cost-loss ratios, and, as such, its indications can be misleading, due to
the excessive weight assigned in its calculation to expenses correspondent to ξ values15

larger than 0.5, which are rather unrealistic in the hydrologic field. In our opinion, it is
better to evaluate the different predictions by plotting the EC(ξ)/δ curves, rather than
trying to summarize all information in a single statistic.

3.2 Statistically-oriented evaluation of probabilistic forecasts

The economists criticize the approach based on the evaluation of the forecasts through20

the use of cost-loss functions for the fact that the evaluation turns out to be user-
dependent rather than objective: in fact, two users with different cost-loss functions
may rank in a different manner two forecasts. Moreover, they argue that the cost-loss
function is seldom known, which introduces an undesired element of uncertainty in the
evaluation (Diebold et al., 1998). The followed approach is therefore to leave aside con-25

siderations on the operational value of the probabilistic forecast, and simply verifying if
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the forecast is correct under a statistical viewpoint. A correct probabilistic forecast of xi
is one whose probability density function pi (x̂i ) coincides with the true distribution of xi ,
fi (xi ). Even if fi (xi ) is not known (the distribution changes with i , and only one sampled
value is available), it is feasible to build up a test of the hypothesis H0 : pi (x̂i )≡fi (xi ).
The test is based on the probability integral transform, zi=Pi (xi ), that consists in eval-5

uating the cumulative distribution function of the predictions in correspondence to the
observed value xi (Berkovitz, 2001). Under the hypothesis H0, the distribution of zi
is uniform, U(0,1). If one applies the probability integral transform to all points in the
testing set, a sample of zi values is obtained. If the probability forecast is correct, the
zi values are mutually independent and identically U(0,1) distributed. The test of the10

hypothesis H0 can therefore be split into an independence test and a goodness-of-fit
test of the U(0,1) hypothesis.

As for the independence, the usual suggestion is to look at the autocorrelation func-
tion of the zi ’s and of their powers z2

i , ..., z
m
i (e.g., Diebold et al., 1998). This produces

some proliferation of the test statistics (one for each considered power), with possible15

problems of interpretation of the results. Our proposal is to use instead the Kendall’s
τ test of independence (Kendall and Stuart, 1977). Consider the sequence z1, ..., zn,
and their associated ranks R1, ..., Rn, i.e. their position in the ordered vector of the zi ’s.
Kendall’s τ test of independence is based on the statistic

τ = 1 −
4Nd

(n − 1)(n − 2)
, (15)

20

where Nd is the number of discordances, i.e. the number of pairs (Ri , Ri+1) and
(Rj , Rj+1) that satisfy either Ri<Rj and Ri+1>Rj+1, or Ri>Rj and Ri+1<Rj+1.

Under the null hypothesis of independent values and with n>10, the standardized
statistic

τst =
τ
στ

= τ ·

√
9n(n − 1)

2(2n + 5)
(16)

25

2158

http://www.hydrol-earth-syst-sci-discuss.net
http://www.hydrol-earth-syst-sci-discuss.net/3/2145/2006/hessd-3-2145-2006-print.pdf
http://www.hydrol-earth-syst-sci-discuss.net/3/2145/2006/hessd-3-2145-2006-discussion.html
http://www.copernicus.org/EGU/EGU.html


HESSD
3, 2145–2173, 2006

Probabilistic forecast
verification

F. Laio and S. Tamea

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

EGU

has a normal distribution with null mean and unitary variance (Kendall and Stuart,
1977), which allows one to easily determine the limit values for the independence test.
For example, the 95% test of independence will be passed if τst is below 1.645 (one-tail
test).

Consider now the uniformity hypothesis: many goodness-of-fit tests for this hypothe-5

sis exist (D’Agostino and Stephens, 1986; Noceti et al., 2003). However, Diebold et al.
(1998) argue that it is better to adopt a less formal graphical method, based on an
histogram representation of the density of the zi ’s. We agree that the graphical repre-
sentation is more revealing, but prefer a probability plot representation that does not
require a subjective binning of the data. The probability plot is a plot of the zi values10

versus their empirical cumulative distribution function, Ri/n. The shape of the result-
ing curve reveals if the data are approximatively uniform, in which case the (zi , Ri/n)
points are close to the bisector of the diagram. Kolmogorov confidence bands can also
be represented on the same graph in order to provide a more formal test of uniformity.
The Kolmogorov bands are two straight lines, parallel to the bisector and at a distance15

q(α)/
√
n from it, where q(α) is a coefficient, dependent upon the significance level of

the test α (e.g., q(α=0.05)=1.358, see D’Agostino and Stephens, 1986). The test is
passed when the curves remain inside these confidence bands.

The probability plot representation does not only tell if the uniformity test is passed or
not, but also provides a tool to investigate the causes behind deviations from uniformity.20

In fact, the shape of the curves in the probability plot (see Fig. 2) is suggestive of the
encountered problem, since the steepness of the curves is larger where more zi points
concentrate. In the case of the continuous line in Fig. 2, for example, the zi points are
concentrated in the vicinity of the end points 0 and 1. This corresponds to having the
real xi values that fall, more frequently than expected, on the tails of the distribution25

of the forecasts. As a consequence, the probabilistic prediction is “narrow”. Similar
considerations apply to the other curves in Fig. 2. The probability plot representation
has already been used by De Gooijer and Zerom (2000); in contrast, it should not be
confused with the apparently similar attributes diagram (Wilks, 1995), which is a tool
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for the verification of probabilistic predictions of binary variables.
When using this approach to forecast verification, one ends out with results concern-

ing with the formal correctness of the probabilistic prediction; however, these results do
not imply that the prediction is good: there can exist a prediction that passes the inde-
pendence and uniformity tests, but has no operational value. In our opinion, the method5

should therefore necessarily be used together with some other method, like those de-
scribed in Sect. 3.1, allowing one to understand if the prediction is really valuable or
not.

A final comment is necessary regarding multi-step-ahead predictions (i.e., char-
acterized by a prediction horizon h6=1). In this case, serial correlation in the zi10

series is expected up to a lag h−1 (Box and Jenkins, 1970), and the indepen-
dence and goodness-of-fit tests should be applied separately to the h subseries
{z1, z1+h, z1+2h, ...}, {z2, z2+h, z2+2h, ...}, ..., {zh, z2h, z3h, ...} (Diebold et al., 1998). One
obtains h τst statistics and h probability plots for each prediction. The global tests will
be obtained from the combination of the tests performed on each of the subseries:15

however, the combination is complicated by the fact that the h subseries are mutually
(not internally!) dependent. When the samples being tested are correlated, the correct
significance level to have a global α-level test should be between α (linearly dependent
samples) and α/h (independent samples). In our opinion the correlation between the
subseries is strong, and it is thus better to perform the tests on the h subseries with20

a significance level α, instead of using a level α/h for each sub-test as suggested by
Diebold et al. (1998).

4 Application and discussion

The verification tools described in the previous sections are applied to the probabilis-
tic forecasts of a discharge time series, obtained with a prediction method developed25
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by Tamea et al. (2005) and Laio et al. (2006)1 and based on local polynomial regres-
sion techniques (Farmer and Sidorowich, 1987; Fan and Gijbels, 1996; Cleveland and
Loader, 1996; Porporato and Ridolfi, 1997; Regonda et al., 2005). We use this predic-
tion method as a mean to exemplify the described verification techniques. We therefore
refer to Tamea et al. (2005) and Laio et al. (2006)1 for a description of the prediction5

method, and concentrate on the scope of the present work, which is the analysis of the
forecast verification tools. For the comprehension of the following of the paper it is suf-
ficient to consider here the prediction as the outcome of a black-box method, requiring
as an input the time series of past values of discharge (and concurring average precip-
itation over the basin). The method produces predictions for the points in the testing10

set, provided that a set S of model parameter values is assigned by the forecaster.
We use in our verification exercise four different types of predictions, all based on

the mentioned local polynomial regression method. Two forecasting techniques are
deterministic and two are probabilistic, as detailed hereafter.

1. Best deterministic prediction: it is the point forecast obtained by selecting the15

parameter set Sbest that produces the “best” deterministic predictions when the
method is applied to the calibration set, i.e. to a set of discharge values selected
for cross-validation purposes (see Tamea et al., 2005).

2. Ensemble forecast: it is a probabilistic forecast obtained by selecting, through
cross-validation, q parameter sets rather than a single one (we use in the following20

example q=100). Each of these sets is separately used in the prediction method,
obtaining q different predictions for each point xi in the testing set. The empirical
distribution function of this sample of q predictions is taken as representative of
the distribution characterizing the ensemble forecast.

3. Probabilistic forecast: the same as before, but with a suitable parameter uncer-25

1Laio, F., Ridolfi, L., and Tamea, S.: Probabilistic prediction of real-world time series: a local
regression approach, Phys. Lett. A, in review, 2006.
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tainty representation attached to each member in the ensemble. This is obtained
by using the k residuals of the local polynomial regressions (k is one of the pa-
rameters belonging to the S set); these residuals are opportunely converted into
out-of-sample errors and then summed up to the point predictions in the ensemble
(see Tamea et al., 2005, and Laio et al., 20061). A large sample of x̂i ,j , j=1, .., q ·k5

values is obtained, whose empirical distribution function is taken as the estimate
of pi (x̂i ).

4. Median prediction: it is a deterministic prediction obtained by taking, for each
point in the testing set, the median of the above defined probabilistic prediction
pi (x̂i ) as the estimator of x̃i .10

The prediction methods have been applied to the discharge time series of the Tanaro
river, in the northwest of Italy. The catchment basin at the gauge station of Farigliano
has an extension of 1522 km2 and an elevation ranging from 235 to 2651 m above the
sea level. The hourly discharge time series has been measured from 1997 to 2002.
The testing set covers the period between 14 November 2002 and 27 November 2002,15

and corresponds to an important flood event. The mean rainfall over the catchment is
used as an endogenous variable for the prediction. The mean rainfall is determined
from the data collected by eleven rain gauges located on the basin. Both hydrometric
and pluviometric data have been collected by the Regional Agency for the Protec-
tion of the Environment (ARPA-Piemonte), and are the same already used by Tamea20

et al. (2005) (we refer to that paper for a graphical representation of the prediction out-
comes). Prediction horizons of one and six hours (corresponding to h=1 and h=6) are
considered in the following examples.

In Fig. 3 the expected cost from Eq. (9), re-scaled by using the mean deviation δ, is
represented as a function of the cost-loss ratio ξ for the four predictions listed above.25

Note that the EC(ξ)/δ values are much lower than 1, both for the 1-h ahead prediction
(Fig. 3a) and for the 6-h ahead prediction (Fig. 3b), demonstrating that all forecasting
methods are very competitive with respect to the climatological prediction. The quality
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of the four prediction methods can now be comparatively evaluated: the lower is the
expected cost of a forecast, the higher is its operational value. It is clear from Fig. 3
that the two probabilistic methods outperform the deterministic ones, in particular in
the part of the diagram that is more important when dealing with flood events (large
expected losses compared to the costs, i.e. low ξ values).5

It is also interesting to comment on the shape of the four curves in the diagram: the
relation between the expected cost and ξ turns out to be linear when the prediction
is deterministic; in fact, by setting P −1

i (1−ξ)=x̃i in Eq. (9), one obtains the equation
of a straight line, whose slope is two times the bias of the prediction, 1

n

∑n
i=1(x̃i−xi ),

and whose intercept with the ξ=0.5 vertical line is the MAE of the forecast, a measure10

of the spread of the prediction errors. As expected, both the (negative) bias and the
spread of the errors increase when the prediction horizon passes from 1 to 6 h. The
median prediction is better than the best deterministic prediction for ξ<0.5, which is
mainly due to the beneficial effect of taking an ensemble of predictions rather than a
single one (see Georgakakos et al., 2004; Tamea et al., 2005; Regonda et al., 2005).15

On the same diagram the probabilistic predictions tend to have a parabolic shape,
with null (or very low) values at the extremes and a maximum for ξ≈0.5. The reason for
the low values at the extremes is the following: when ξ=0 the cost of the precaution-
ary actions is null, and one can therefore always take an action that protects against
any possible occurring flood. Analytically, when ξ=0, one has P −1

i (1−ξ)=max(x̂i ) and20

EC(ξ=0)= 1
n

∑n
i=1 {|max(x̂i )−xi |−(max(x̂i )−xi )}; the only terms contributing to the ex-

pected cost are therefore those when the actually occurred value xi is greater than the
maximum predicted value, max(x̂i ), which never happens for the more reliable proba-
bilistic prediction, and only rarely for the ensemble prediction.

When ξ=1 the cost of the precautionary action is equal to that of the eventually25

occurring losses; there is thus no convenience to take any action, i.e. the design value
χ in Eq. (6) can be set to zero (actually, to min(x̂i )). As a consequence, ρξ=1 and
EC(ξ=1) are also null (or very low). In this second case the total cost would in reality be
different from zero, due to the losses, but the passage from Eq. (5) to Eq. (6) produces
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this fictitious result. However, this is not a relevant incongruence, since both extremes
ξ=0 and ξ=1 correspond to unrealistic situations when the decision to be taken is
obvious, and the forecast is useless. It is not then the shape of the single curve on
the diagram that is of interest, but the relations between the curves for fixed ξ values.
Considering this aspect, it can be noted how the probabilistic prediction provides more5

valuable results than the ensemble prediction, in particular for the more relevant low ξ
values.

As a further detail, the continuous ranked probability score values are the follow-
ing: at h = 1, CRPS=10.1 m3/s for the best deterministic prediction, CRPS=8.8 m3/s
for the ensemble prediction, CRPS=7.7 m3/s for the probabilistic prediction, and10

CRPS=10.2 m3/s for the median prediction. At h=6, the corresponding values are
41.7 m3/s (best), 25.8 m3/s (ensemble), 23.6 m3/s (probabilistic), and 31.1 m3/s (me-
dian). These values correspond to the areas below the curves in Fig. 3, multiplied
by the mean deviation δ=181.7 m3/s. Also these results confirm the superiority of the
probabilistic method, even if, as mentioned, the relevance of the CRPS index is doubtful15

when dealing with hydrological applications.
We now turn to the application of the statistically-oriented forecast verification tools:

since these methods are targeted at evaluating probabilistic predictions only, the com-
parison will be limited to the ensemble and probabilistic predictions methods. As men-
tioned, the verification of the probabilistic forecast is a two step process, requiring to20

apply the transformation zi=Pi (xi ) and then separately test the independence and the
uniformity of the zi ’s. The standardized Kendall’s τst statistic in Eq. (16) is calculated,
obtaining τst=1.38 (ensemble) and τst=−3.17 (probabilistic) for h=1. Both values are
not significant at the 5% level, i.e. the independence test is passed. For h=6, six
subseries {z1, z7, z13, ...}, {z2, z8, z14, ...}, ..., {z6, z12, z18, ...} are constructed, and six25

different τst values (for each prediction) are obtained. The independence test is passed
if the maximum among these values is not significant at the α level. The obtained val-
ues are τst=3.11 (ensemble) and τst=0.90 (probabilistic), i.e. the independence test
is passed at the 5% level by the probabilistic prediction, but not by the ensemble pre-
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diction (note that the test would not be passed even when the significance level was
reduced to α/h=0.008, as suggested by Diebold et al., 1998).

The uniformity of the zi ’s is then verified by plotting the data versus their empirical
cumulative distribution (see Fig. 4). Using Fig. 2 as a guide to evaluate the results, it is
clear that the ensemble method provides predictions that are very narrow around the5

central value. In contrast, the forecasts obtained through the probabilistic method are
very reliable (the points remain inside the Kolmogorov bands with 5% significance). A
(slight) negative bias is detected at h=6 (Fig. 4b), as apparent from the fact that the
points lie below the bisector of the diagram (compare to Fig. 2). The results for h=6
refer to six different curves, due to the mentioned separation of the testing set in six10

subseries. The Kolmogorov bands are larger in Fig. 4b with respect to Fig. 4a for that
same reason; in fact, when testing separately the 6 sub-series, the actual size of the
samples is n/6 and the acceptability limits become larger.

5 Conclusions

We have here compared different strategies for evaluating the performances of prob-15

abilistic prediction methods of continuous variables. All analyzed methods have some
interesting characteristics, but none of them, taken alone, allows a complete and fair
evaluation of the quality of the forecast. Our suggestion is to use two methods together,
as each carries a fundamental information about the prediction quality. More in detail,
the expected cost diagram (Fig. 3) is a very useful tool to understand the operational20

value of the forecast, especially when comparing different (deterministic and proba-
bilistic) predictions. This approach, however, does not provide sufficient information for
a complete evaluation: in fact, the reliability of the forecast, i.e. the fact that the distri-
bution of the predictions, pi (x̂i ), is equal to the real distribution, fi (xi ), is hypothesized
rather than verified (see Sect. 3). Moreover, the definition of a cost-loss function always25

demands some subjective choice: for example, we have taken ρξ in Eq. (6) to be piece-
wise linear, but a quadratic (asymmetric) function would also be a proper choice. We
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do not think that the outcomes of the forecast verification would qualitatively change
when using a quadratic cost-loss function, but in any case we believe that it is nec-
essary to complement the expected cost curve with other tools, aimed at verifying the
statistical congruence of the forecast, i.e. the hypothesis that pi (x̂i )=fi (xi ). More in de-
tail, we found that suitable tools, based on the probability integral transform zi=Pi (xi ),5

require the application of the Kendall’s independence test and the representation of the
zi ’s through a probability plot (Fig. 4), which allows one to assess the uniformity of the
zi ’s. The combination of these two approaches, respectively based on the concept of
operational value of the forecast and on the formal statistical verification of its reliability,
provides the basis for an exhaustive and effective probabilistic forecast evaluation.10
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Table 1. Forecast verification tools, subdivided by the type of predicted variable (columns) and
the forecast outcome (rows). We refer to Sect. 2 for details and references about the methods.
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outcome (rows). We refer to Section 2 for details and references about the methods.

Discrete predictands 
Multicategory 

 

Binary 
Nominal Ordinal 

Continuous 
Predictands 

Deterministic 
forecast 

HIT RATE, 
THREAT 

SCORE, … 

PEARSON’S 
COEFF. OF 

CONTINGENCY 

GOODMAN 
AND KRUSKAL 

G STATISTIC 

MSE 
MAE 

Interval forecast 
NOT 

APPLICABLE 
NOT 

APPLICABLE 
NOT 

APPLICABLE 

TESTS FOR THE 
CONDITIONAL AND 

UNCOND. COVERAGE 

Probabilistic 
forecast 

BRIER SCORE 
CONVERSION 
TO BINARY 

TABLES 

RANKED 
PROBABILITY 

SCORE 
THIS PAPER! 

 

18

2169

http://www.hydrol-earth-syst-sci-discuss.net
http://www.hydrol-earth-syst-sci-discuss.net/3/2145/2006/hessd-3-2145-2006-print.pdf
http://www.hydrol-earth-syst-sci-discuss.net/3/2145/2006/hessd-3-2145-2006-discussion.html
http://www.copernicus.org/EGU/EGU.html


HESSD
3, 2145–2173, 2006

Probabilistic forecast
verification

F. Laio and S. Tamea

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

EGU

Figures

 

x OVER-DESIGN UNDER-DESIGN χ 

2
�
 

ρ(x, χ) 

2(1-
�
) 

Fig. 1. Examples of quadratic (dashed line), absolute-value (dotted line) and asymmetric (continuous line, see

Eq. (6)) cost-loss functions. The variableχ on the horizontal axis is the ”design” value, whilex is the real

future value.
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detected.
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Fig. 1. Examples of quadratic (dashed line), absolute-value (dotted line) and asymmetric (con-
tinuous line, see Eq. 6) cost-loss functions. The variable χ on the horizontal axis is the “design”
value, while x is the real future value.

2170

http://www.hydrol-earth-syst-sci-discuss.net
http://www.hydrol-earth-syst-sci-discuss.net/3/2145/2006/hessd-3-2145-2006-print.pdf
http://www.hydrol-earth-syst-sci-discuss.net/3/2145/2006/hessd-3-2145-2006-discussion.html
http://www.copernicus.org/EGU/EGU.html


HESSD
3, 2145–2173, 2006

Probabilistic forecast
verification

F. Laio and S. Tamea

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

EGU

Figures

 

x OVER-DESIGN UNDER-DESIGN χ 

2
�
 

ρ(x, χ) 

2(1-
�
) 

Fig. 1. Examples of quadratic (dashed line), absolute-value (dotted line) and asymmetric (continuous line, see

Eq. (6)) cost-loss functions. The variableχ on the horizontal axis is the ”design” value, whilex is the real

future value.
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detected.
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Fig. 2. Examples of the possible outcomes of a probability plot representation of the zi=Pi (xi )
values versus their corresponding ranks Ri (divided by the sample size n). If the points lie
close to the bisector, the forecast is deemed reliable; otherwise, a problem with the spread of
the probabilistic forecast, or a prediction bias, are detected.
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Fig. 3. Representation of the expected cost from Eq. (9) (re-scaled by the mean deviation δ)
as a function of the cost-loss ratio ξ, for a 1 step-ahead (a) and a 6-steps ahead (b) hourly
discharge prediction. The four lines in each graph refer to four different forecasting methods,
described at the beginning of Sect. 4.
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Fig. 4. Probability plot representation (see Fig. 2) of the ensemble (gray circles) and probabilis-
tic (black circles) forecasts of an hourly discharge time series. Each point in the diagram cor-
responds to a point in the testing set. Panel (a) refers to 1 step-ahead predictions, panel (b) to
6-steps ahead forecasts. The Kolmogorov 5% significance bands are also reported as dashed
lines.
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