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Abstract

A simplified, vertically averaged model of soil moisture interpreted at the daily time
scale and forced by a stochastic process of instantaneous rainfall events is compared
with a model which uses a non-overlapping rectangular pulse rainfall model and a more
physically based description of infiltration. The models are compared with respect to
the importance of short time-scale (intra-storm) variable infiltration in determining soil
moisture dynamics at the daily time-scale. Differences in approach to infiltration mod-
elling show only minor effects on the probabilistic structure of soil moisture dynamics
as simulated in the two models. Examining closely the partitioning of losses during
a rainfall event reveals that losses to percolation are significantly greater than that of
Hortonian runoff. A possible improvement of the instantaneous rainfall model to incor-
porate a jump distribution with a state dependent mean is also discussed.

1 Introduction

As both a reservoir and a regulator of water movement in the soil-plant-atmosphere
continuum, the soil is an enormously rich and complicated domain for hydrologic en-
quiry. In ecosystems where water is the limiting resource, understanding the dynamics
and variability of soil water is essential not only for understanding the cycling of wa-
ter, but also for understanding ecosystem dynamics, such as patterns of vegetation
form, adaptation, and distribution (both spatially and temporally) (Rodriguez-lturbe and
Porporato, 2004). However, these systems are complex, nonlinear systems making
mathematical analysis of the dynamics difficult. Development of simplified soil mois-
ture models (e.g., Eagleson, 1978c; Milly, 1993; Kim et al., 1996; Rodriguez-lturbe et
al., 1999; Laio et al., 2001; Porporato and Daly, 2004; Rodriguez-lturbe and Porpo-
rato, 2004; Daly and Porporato, 2006) is therefore an important step in assembling the
analytical tools necessary to unravel the intertwined dynamics of ecosystems and the
hydrologic cycle. The aim of developing such models is to balance the faithful repre-
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sentation of physical dynamics (e.g., nonlinearities of infiltration and plant dynamics)
against the mathematical simplicity that may allow analytical solutions. These solu-
tions in turn provide insight into the relationships between component processes in
determining the character of soil water dynamics.

One of the many tasks in developing simplified models is determining how to repre-
sent the partitioning of rainfall into runoff and infiltration. Two mechanisms are usually
associated with runoff: that of Dunne (subsurface control, saturation from below, or sat-
uration deficit) and that of Horton (surface control). In simplified models it is often con-
venient to ignore Hortonian runoff in favor of Dunne’s saturation deficit approach, given
its simple implementation (Rodriguez-lturbe et al., 1999; Rodriguez-lturbe and Porpo-
rato, 2004). In this paper we examine the relationship between models treating runoff
solely from the saturation deficit (Dunne) approach in favor of analytical (probabilistic)
solutions and models which take into account Hortonian runoff at some analytical cost.

To make such a comparison we have selected two models (each with some mod-
ifications for the purposes of this investigation) which broadly illustrate the differing
treatments of infiltration while otherwise remaining similar in structure. The first model
is that of Rodriguez-lturbe et al. (1999) (see also Milly, 1993, Laio et al., 2001, and
Porporato and Daly, 2004) which models soil moisture at the daily time-scale using
instantaneous rainfall events which ignore Hortonian runoff. We will hereafter refer to
this model as the Instantaneous Event Model (IEM). The second model is derived from
those of Eagleson (1978b,c) and Kim et al. (1996) which take into account rainfall du-
ration and the associated possibility of Hortonian runoff. This model will be referred
to as the Finite Duration Event Model (FDEM). Both the IEM and the FDEM treat soil
moisture content averaged vertically over the root zone. For a comparison of vertically
lumped versus distributed models see Guswa (2002).

The fundamental differences between the two models are in the representation of
rainfall and infiltration. For models using the saturation deficit (Dunne) approach it is not
necessary (at the daily time scale) to resolve the dynamics of soil moisture during the
rainfall event (since only the initial soil saturation deficit and the rainfall depth determine
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the infiltration response). In such models an instantaneous pulse of rainfall containing
a finite depth may then be used as a model for rain events. Alternatively, in order to
resolve Hortonian runoff the model must ascribe a finite duration to the rainfall event
in order to determine the infiltration. This amounts to assigning a (stochastic) duration
to each rainfall event and then defining a function which transforms a given rainfall
depth and duration into an infiltrated depth. In this paper we follow the approach of
Eagleson (1978c) and Kim et al. (1996) in using Philip’s (1957) infiltration solution
modified by the time compression approximation as the basis for this function. The
two models for comparison differ then only in accounting losses during storm events.
As the stochastic forcing is generally the factor determining analytical tractability of
the problem, it is of particular interest to understand what is gained from the added
complexity of resolving storm duration and whether modifications of the instantaneous
storm models are available which might retain the possibility of analytical solutions
while improving the accuracy of the model.

2 Description of models

The basic structure of vertically averaged models of soil moisture at the daily time-scale
is that of a stochastic differential equation describing the rate of change in soil moisture
as the sum of inputs and losses associated with the active soil layer. An example of
this balance equation is

as
nZ,— = ®(R)-ET - L, (1)

where n is the soil porosity, Z, is the soil rooting depth (active layer), s is the verti-
cally averaged relative soil moisture content, ¢ is an infiltration function, R; represents
a stochastic rainfall process (e.g., the Poisson process), ET is the rate of evapotran-
spiration, and L, represents the losses to deep percolation. Runoff (and infiltration)
mechanisms are contained in ¢ which may be a nonlinear function of several variables
and include thresholds (e.g., at s=1).
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In this section we describe two models that may be expressed in the manner of
Eq. (1): the IEM, which models rainfall as a marked Poisson process, and the FDEM,
which models rainfall using random rectangular pulses. As the models differ primarily
in the processes at work during a rainfall event, we will divide the description of the
models into “during storm” and “between storm” components.

Between storm events both models evolve according to the same equation repre-
senting losses due to evapotranspiration and percolation, following Kim et al. (1996),

nZ,ﬁ

at
where kg is the saturated hydraulic conductivity, c=2/m(1+m) where m is the exponent
in the Brooks and Corey (1966) water retention relation, and £, is the potential evap-
otranspiration. Here percolation is modelled after the Brooks and Corey (1966) relation
for unsaturated conductivity. For a discussion of the use of the linear evapotranspira-
tion rate, see Kim et al. (1996). While the loss function used in Rodriguez-lturbe and
Porporato (2004) is somewhat more general than Eq. (2) (with the inclusion of thresh-
olds important to vegetation stress), the characteristic behaviors of the respective loss
functions are very similar. Thus, for the purposes of this paper, the loss function given
in Eq. (2) is adopted for both the instantaneous and finite duration models.

While the models are identical in their representation of soil moisture between
storms, the models differ significantly in their treatments during a rainfall event. In
the following sections we describe the particulars of the stochastic rainfall process and
soil moisture accounting in each model.

= _(kssc-'-1 + Emaxs)f (2)

2.1 Instantaneous Event Model (IEM)
2.1.1 Rainfall

Since both the occurrence and amount of rainfall can be considered to be stochastic,
the occurrence of rainfall is idealized as a series of point events in continuous time,
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arising according to a Poisson process of rate A, each carrying a random amount of
rainfall extracted from a given distribution. The temporal structure within each rain
event is ignored and the marked Poisson process representing precipitation is phys-
ically interpreted at a daily time scale, where the pulses of rainfall corresponding to
daily precipitation are assumed to be concentrated at an instant in time.

With these assumptions, the distribution of the times between precipitation events
is exponential with mean 1/1 (e.g., Cox and Miller, 1965), while the depth of rainfall
events is assumed to be an independent random variable D, described by an expo-
nential probability distribution where a is the mean depth of rainfall events.

Both the Poisson process and the exponential distribution are of common use in
simplified models of rainfall at the daily time scale. The exponential distribution fits
well daily rainfall data and, at the same time, allows analytical tractability (Benjamin
and Cornell, 1970; Eagleson, 1978a,c). The values of a and 1 are assumed to be
time-invariant quantities, representative of a typical growing season.

2.1.2 Infiltration

In the IEM infiltration is treated purely from the standpoint of saturation deficit
(Rodriguez-lturbe et al., 1999; Rodriguez-lturbe and Porporato, 2004). Since the Pois-
son process creates an instantaneous jump in soil moisture, the infiltration depth, /,
is equal to the minimum value between the soil saturation deficit and the depth of the
rainfall event, i.e.,

Ip = min[nZ,(1 - s), D], 3)

where s, is the relative soil moisture at the beginning of the event and D represents
the total depth of the rainfall event. Alternatively, a normalized infiltration function
y(D, sp)=Ip/nZ, representing the net increase in relative soil moisture due to a rainfall
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event of dimensionless depth, 5=D/nZ,,
D, 0<D<(1-5p)
1-55, D>(1-5p).

which will be useful in comparing the IEM and FDEM treatments later. Any rainfall in

excess of 1-5; is attributed to cumulative losses (i.e. the combined effect of runoff and
percolation).

y(B. so) = { @

2.1.3 Losses during rainfall events

While the only mechanism for losses in the IEM during a rainfall event is that of runoff
by saturation excess (described in previous section), additional losses may be added
to the model which reduce the depth of rainfall available for the infiltration process. For
example, interception may be modelled simply as a threshold of rainfall depth below
which no water reaches the soil for infiltration. Formally, this amounts to adjusting the
mean arrival frequency, 1, of the Poisson process to produce an effective arrival rate,
or the rate of the Poisson process for which the event is of sufficient depth to contribute
infiltration (Rodriguez-lturbe and Porporato, 2004),

1= Ae—A/a (5)

where A represents the threshold depth of rainfall necessary to overcome interception.

As illustrated here with the example of interception, augmenting the treatment of
losses with relatively simple analytical mechanisms presents an array of possible
corrections that may be implemented to improve the IEM while retaining analytical
tractability.

2.1.4 Model summary

The IEM is a vertically averaged model of soil moisture interpreted at the daily time-
scale, driven by a marked Poisson rainfall process of rate 1 with exponentially dis-
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tributed depths of mean a. This may be expressed by the stochastic differential equa-
tion,
ds
at
The instantaneous jump in soil moisture state for a particular event is determined com-
pletely by the subsurface state, or saturation deficit, and the depth of the rainfall event.
Losses between storms are assumed due only to evapotranspiration and percolation.

The stochastic soil moisture process described by Eq. (6) may be solved analytically
under steady state conditions (Rodriguez-lturbe and Porporato, 2004). The resulting
probability distribution is, in this case,

nZ,— = Ip(Ry, So) = (KsS°*" + EpnayS). (6)

P(S) = CSTO™V* (Erpay + ko571, )

where q=% and C is a normalization constant that must be evaluated numerically.
r

2.2 Finite Duration Event Model (FDEM)
2.2.1 Rainfall

Eagleson (1978c) offered an alternative to the Poisson rainfall process to allow for
Hortonian runoff by modelling rainfall with non-zero storm durations. In contrast to the
marked Poisson process, each rainfall event is a rectangular pulse occupying a finite
time, with the time between storms distributed exponentially with mean 7. A probability
distribution is also assigned to the storm durations as well as to either the intensity or
the total depth of rainfall. The remaining distribution may then be derived from the other
two. Drawing on data from Massachusetts and California, Eagleson (1978b) found that
the durations were fit reasonably well by the exponential distribution (with mean &, see
Fig. 1) and that the event depths fit a two parameter gamma distribution. Eagleson
(1978b) then employed a model based on assumed distributions for the depth and
duration of rainfall events. Given that the exponential distribution is a special case
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of the two parameter gamma distribution, we will use the simpler exponential form
in this paper so that the two rainfall models (IEM and FDEM) agree with respect to
the distribution of depths. Thus, for our finite duration model, each rainfall event is
determined by three random variables (depth, duration, and inter-arrival time), each of
which is drawn from an exponential distribution.

Assuming statistical independence, one may now derive the distribution of rainfall
intensities dictated by fixing the distribution of depths and durations as an exponential.
The resulting probability density function is

ab
f(P) (a +6P)2’ (®)
which is the positive tail of a Cauchy distribution. As Eagleson (1978b) found that
measured rainfall intensities were modelled well as an exponential distribution, the
Cauchy distribution, with power law tails, should overestimate the frequency of intense
rain events and the corresponding Hortonian runoff.

It should be noted that while Eagleson’s model is an improvement over the marked
Poisson process approach, both models still assume that the occurrence of rainfall
events is independent of both the present state of the soil system and the history of
rainfall. Furthermore, both models ignore correlation between intensity and duration of
rainfall.

2.2.2 Infiltration

To treat infiltration, the FDEM follows Eagleson (1978c) and the improvements of Kim
et al. (1996) by employing Philip’s (1957) approximate solution to Richards’ equation
combined with the time compression approximation.

Assuming a constant hydraulic head at the soil surface with an initially uniform
(semi-infinite) vertical soil moisture profile, Philip (1957) obtained a series solution to
Richards’ equation. In its truncated form, the solution states that the infiltration rate,
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i(t), is proportional to t'1/2, or equivalently that the cumulative infiltration depth is pro-
portional to z‘1/2. That is,

i(t) = S(so)t™"? + ak,, 9)
where /(t) is the potential infiltration rate, t is the time since the inception of the rainfall
event, and S(s;) represents the soil sorptivity and may be expressed as, following
Smith and Parlange (1978),

2n(1 - s /2
S(s,) = ( (1= So)Ws  (1+3m)/m _ 1)> 172

1T+3m 0 s (10)

where y; is the Brooks and Corey (1966) air entry pressure. The constant, a, in Eq. (9)
which depends on unsaturated hydraulic conductivity near saturation (see Parlange
et al.,, 1982) is here taken to be unity for consistency with percolation losses (see
Sect. 2.2.3).

For t<t,, where t, is the time at which the infiltration capacity equals the rainfall
intensity, the potential rate of infiltration of the soil will exceed the rainfall intensity. Dur-
ing this time, infiltration is limited by rainfall intensity rather than the potential infiltration
rate. The observed infiltration rate should then be of the form,

P O<t<t
t: H -t ="e 11
0 {swm”ﬂ+@, t>t, "

where P is the precipitation intensity (see Fig. 1). Setting Eq. (9) equal to P and solving
for time yields,
S0’
4P - k)2
However, due to the assumption of a constant head boundary condition, ¢, underesti-

mates the actual time to surface ponding. In reality, the boundary condition is initially
1348
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that of a constant flux equal to the rainfall intensity. Ponding then occurs when the soil
surface becomes saturated, at which point the boundary condition becomes that of a
constant head. Liu et al. (1998) provide a nice description of the exact solution for one
dimensional linearized infiltration. To correct for the difference between the exact infil-
tration solution and the Philip (1957) solution, according to the time-compression ap-
proximation (TCA) (also termed the Infiltrability-Depth Approximation, see Smith (2002)
for detailed discussion), cumulative infiltration may be used as a surrogate for time
(Sherman, 1943; Liu et al., 1998). The new time to ponding, ¢,=t,+?., is then defined
by,

/ * pat = / “ iyt (13)

0 0
From this definition it follows that,

S(s0)*(2P—ks)
Z‘p={4/g('°——ks)2'P>ks

oo, P < k.

(14)

The infiltration rate from Eq. (11) is then modified accordingly,
it = P, 0<t<t, (15)
T\ St -t Pk, >t

Furthermore, we can express the cumulative infiltration depth (i.e., the cumulative
depth of infiltrated rainfall) analytically by integrating Eq. (15),

Pt, O<ts<t,
Io(t) = 4 Pt + S(sp) ((t )2 t;/z) (16)
wko(t = 1,). t>1,

From Eq. (16) one may now derive the normalized cumulative infiltration y(5,so) in
analogy with that for the IEM, Eq. (4), as a function of the non-dimensional rainfall depth
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by dividing Eq. (16) by nZ,, substituting D/P for t, and then non-dimensionalizing D
and P. The result is the somewhat complicated expression,

r ~ ~ ks 5
[i, B 0<D< n_Z,Pt,D
~ n—ZS,Pz‘p+
Y(D.P,so) =< sisy (2,5 2 i (17)
7z, WP t. -t )+
nZ,D = ki
L kg( F ty) D > n_z,Ptp

where t,, t,, and {, are all functions of both s, and P. Notice that since Philip’s solution
assumes a semi-infinite domain, the cumulative infiltration is potentially infinite.

2.2.3 Losses during rainfall

The model of infiltration described in the previous section only accounts for the cumu-
lative infiltration across the soil surface and does not provide explicitly a method for
determining the soil moisture content of an active layer of soil. In order to model the
change in mean soil moisture content in the upper soil layer (of depth Z,) it is nec-
essary to keep an account of the flux of water across the lower bound of this layer
(i.e. percolation) during the rainfall event.

In the Kim et al. (1996) model, however, losses were only included during the inter-
storm periods. One consequence is shown clearly by comparing the time to soil satura-
tion (given the linear increase in relative soil moisture during the period prior to ponding)
with the calculated time to ponding derived from the time compression approximation.
Combining Egs. (10) and (14),
nZ,(1 = so)\ (Wskslsy ™™~ 1)(2P - k)
P ( P ) ( 2Z,(1 +3m)(P - k)2 )

(18)
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from which it is clear that the first bracketed term represents the time to saturation if
ponding does not occur, and thus that the second bracketed term must be less than or
equal to unity in order for ponding to occur before the soil is saturated (a reasonable
physical requirement). This condition is, in fact, not met identically.

Figure 2 illustrates the domain in which this model is physically consistent. Kim
et al. (1996) accounts for this possibility by including it as part of “infiltration excess.”
So, while the time to ponding may in some cases violate physical sense, it presents
no problem for simulation due to the bound imposed at s=1. In effect, the Kim et al.
(1996) model amounts to the IEM model with temporally extended rainfall and losses
due to Hortonian runoff.

To avoid this unphysical result, the FDEM incorporates percolation during storm
events in the same form as Eq. (2). Following Kim et al. (1996) we assume that evap-
otranspiration is negligible during storm events. The loss function during the rainfall
event is then

ds
at
which is simply the loss equation for periods between storms, Eq. (2), without the
evapotranspiration term.

nz,95 = _jsot1, (19)

2.2.4 Model summary

Following Eagleson (1978b,c) and Kim et al. (1996) the FDEM is a physically-based
model of vertically averaged soil moisture at the daily time scale which incorporates
Philip’s (1957) infiltration solution coupled with the time compression approximation
and the Brooks and Corey (1966) model for percolation. The FDEM uses a non-
overlapping, rectangular pulse model for rainfall for which the depths and durations are
drawn from corresponding exponential distributions with means a@ and §. The mean
inter-arrival time, 7, is then chosen to be consistent with that of the IEM, /1=('r+6)'1.

1351

HESSD
3, 1339-1367, 2006

A look at infiltration

J. R. Rigby and
A. Porporato

EG

c


http://www.hydrol-earth-syst-sci-discuss.net
http://www.hydrol-earth-syst-sci-discuss.net/3/1339/2006/hessd-3-1339-2006-print.pdf
http://www.hydrol-earth-syst-sci-discuss.net/3/1339/2006/hessd-3-1339-2006-discussion.html
http://www.copernicus.org/EGU/EGU.html

10

15

20

25

The evolution of soil moisture during storm events is described by the equation

ds
at
where i (P, s, t) is the time dependent infiltration rate (given by Eq. (15) for a single
rainfall event) and P is the rainfall intensity. In the FDEM, as with the IEM, a bound is
imposed at s=1. The steady-state probabilistic structure of this process is not known

analytically and is thus determined by simulation. See Fig. 3 for diagrammatic summary
of the FDEM.

nZ,— = i(Ry, sy, t) — kgs°*1, (20)

3 Model comparisons

A combination of simulations and analytic solutions were used to compare the two
models. Analytic solutions exist for the Philip infiltration solution with time compression
approximation, as well as for the full soil moisture process presented in the IEM, Eq. (7).

Figure 4 illustrates the correspondence between the IEM and the FDEM for a simu-
lation period of 100 days. The traces are almost identical with a notable exception near
the beginning of the series where an extremely intense storm occurred. As seen to the
right of the time series, the simulated probability distribution of relative soil moisture
generated with the FDEM agrees well with the analytical solution to the IEM.

The net effect of the differences in infiltration modelling between the IEM and FDEM
is illustrated in Fig. 5 which shows the probability distributions of soil moisture for the
two models. The four plots represent independent simulations between which the soil
depth, mean rainfall frequency, and mean rainfall duration were varied. As one would
expect, the FDEM simulation shows the greatest departure from the IEM when the soll
is deep and rainfall is intense. Under these conditions the mean soil moisture state is
relatively dry leading to a high mean saturation deficit, while rainfall intensities are also
high, leading to significant losses to Hortonian runoff for the FDEM. However, even in
these cases the correspondence between the two is very good.
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Given the correspondence between the two models evident from Figs. 4 and 5, it
is worth taking a closer look at the relative importance of the two types of runoff as
well as percolation in determining the change in soil moisture state due to a single
event. Figure 6 illustrates the relationships between the models as they account for the
partitioning of a rainfall event into constituent depths. The plot on the left shows the
simple partitioning of the IEM into the depth contributing to a change in soil moisture
and cumulative losses for a storm event as a function of rainfall depth for a given rainfall
intensity and initial soil moisture state. The plot on the right of Fig. 6 gives a detailed
account of the partitioning in the FDEM: The diagonal line of unit slope represents the
amount of water input to the system (equal to the event depth). The curve just below
this represents the model of Kim et al. (1996) comprising the Philip (1957) infiltration
solution and the time compression approximation. The difference between the two
upper curves is that portion of the total depth which is lost to surface controlled runoff
(Horton). The next lowest curve in the diagram is that of the FDEM without the bound
at s=1. The difference between the Kim et al. (1996) and FDEM curves is the effective
portion of rainfall contributing to percolation. The bold curve represents the FDEM
taking into account the bound at at s=1 and represents the portion of a rainfall event
that is stored in the rooting zone (i.e., the change in soil moisture state). The difference
between the FDEM curve without the bound at s=1 and this bold curve is then the
runoff due to subsurface control (Dunne).

From the point of view of simplified soil moisture models one should notice that for
all event depths the dominant loss during rainfall events is percolation (Fig. 6, shown
for P=2). Secondly, the diagram in Fig. 6 may be somewhat misleading with respect to
the values of D one may expect to encounter. A typical mean event depth, a=12mm
(used for the simulations in this paper), yields a mean value of D between 0.1 and
0.2 (depending on Z,). In fact, D<0.3 for 95% of the rainfall events drawn from this
exponential distribution. From the diagram, at D=0.3 the losses are almost entirely due
to percolation. For larger rainfall intensities the proportion of losses due to Hortonian
runoff will increase, though for most sites the average rainfall intensity is unlikely to
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be much greater than that shown, particularly for longer durations. Notice from Fig. 4
that in 100 days only one storm event is of sufficient intensity to show a significant
difference between the models even though the intensities have been drawn from a
heavy-tailed power law distribution for which intense storms should be more frequent
than we observe in actual rainfall records.

While Fig. 6 illustrates the deterministic partitioning of a rainfall event into infiltration,
runoff and percolation, this reveals little of the behavior of the two models as the pa-
rameters s, and P vary randomly during a growing season. Figure 7 shows how the
change in relative soil moisture state, y, due to a single rainfall event varies with rainfall
intensity and initial soil moisture state in the two models. Notice that the change in soll
moisture, especially for small values of D, is more strongly controlled by s, than P.

Given the one-to-one relation between event depth and change in soil moisture state
represented by these curves along with the distribution of event depths, we may derive
the probability distribution of change in soil moisture state simply by transformation of
variables. The result of the transformation, performed numerically, is shown in Fig. 8.
Comparison of the two plots in Fig. 8 again supports the observation that the change in
soil moisture due to a storm event is significantly more sensitive to initial soil moisture
state than to rainfall intensity. For s,=0.8 the IEM significantly overestimates the prob-
ability of saturation (represented by the Dirac delta function at 5:1—30). The shape
of the distributions from the FDEM as s, increases may be somewhat counterintuitive.
Taking the s,=0.8 case as an example, the shape can be understood by referring back
to the diagram in Fig. 3. For t<t, the change of variables is just a re-scaling of the
exponential curve. For durations (where storm duration and time are used here inter-
changeably) longer than ¢, the duration necessary to saturate the soil is significantly
longer for the FDEM. In effect, a larger domain of event depths contributes to a smaller
range of changes in soil moisture, which results in a redistribution of probability from
the atom at saturation for the IEM to values of y<1-s,. For s,=0.8 the IEM has an
atom of probability (exceedence probability for D=1 -5y) of approximately 0.14, while
that for the FDEM model has an atom of only about 0.02.
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Examination of the distribution of net infiltration, y, as s, and P vary suggests no par-
ticularly straightforward method to improve the IEM with respect to losses during rainfall
events. One possible correction is to introduce another element of state dependence
into the jump distribution. Whereas the IEM currently uses a jump distribution that is an
exponential truncated at y=1-s, with mean y=a/nZ,, one might define a state depen-
dent mean which maps an exponential probability distribution with the same atom of
probability at 1-s, as the FDEM distribution onto each value of s,. Such an approach
is the subject of future research and may still yield to analytical solution. This sort of
correction is most likely to be of use in wetter climates where the probability of high
soil moisture values is significant. Otherwise, as can be seen in Fig. 8, the effect of
corrections will probably be of little value.

4 Conclusions

We have presented two models for comparison with respect to the importance of re-
solving infiltration processes in capturing the dominant characteristics of soil moisture
dynamics. The first is a model of vertically averaged soil moisture forced by a marked
Poisson arrival process. The second model is rooted in the treatment by Eagleson
(1978c) and Kim et al. (1996) with a physically based description of infilatration which
was further modified in this paper to include percolation losses.

In resolving both Hortonian and Dunne runoff fractions as well as percolation, we
have shown evidence that accounting for fractional loss to leakage during a storm
event is probably of equal or more concern for improving the accuracy of simplified
models than is Hortonian runoff, particularly for events of longer durations. It is worth
noting once more the significant difference between the IEM and the model of Kim et
al. (1996) in which losses during the storm event were neglected. The latter model
is similar to the IEM except that it accounts for Hortonian losses during the rainfall
event. However, neglecting the losses to percolation (particularly for long durations) is
a significant weakness for the Kim et al. (1996) model. Since in the IEM events are
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instantaneous, percolation continues essentially uninterrupted. The IEM error is thus
concentrated at an instant in time and is then damped quickly by the strongly nonlinear
character of percolation, while the Kim et al. (1996) model spreads the error over the
duration of the event. For longer rainfall durations, therefore, the Kim et al. (1996)
model may be expected to overestimate infiltration to a greater extent than the IEM. In
such cases the gains of representing temporally extended rainfall events with variable
infiltration are outweighed by the error of neglecting percolation.

The highly simplified IEM performs well against more complex, physically-based
models such as the FDEM (Fig. 4) in reproducing the probabilistic structure of soil
moisture dynamics (Fig. 5). As expected, the most significant difference between the
models occurs under conditions of intense rainfall over short duration, in which case the
IEM will consistently overestimate infiltration. Our analysis has been conservative with
respect to the frequency of intense rainfall, as the use of Eq. (8) likely overestimates its
frequency, thus likely exaggerating the importance of Hortonian runoff in simulations.
Also, while structurally capable of more sophisticated approaches (see Sects. 2.1.3
and 3), the IEM used for comparison here incorporates a very simple mechanism for
losses during storm events. We find, however, that even in this conservative analysis
the IEM reproduces well the probabilistic structure of soil moisture dynamics.
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Table 1. Table of parameter values used in simulation of soil moisture and rainfall processes.

Name Units Value
178 [mm] -500
k,  [mm day™'] 200
m [-] 0.5
Z, [mm] 300-600
T [h] 74
6 [h] 4-6
1 [day”'] 0.3
a [mm] 12

Epax [mm day™'] 3
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Intensity
[mm/hr]

Time [hr]

Fig. 1. Summary of the stochastic rainfall model used by Eagleson (1978c). The frequency,
A, for the corresponding marked Poisson process, used in the IEM, is also shown. The mean
rainfall depth a represents the mean area of the rectangular pulses.
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Fig. 2. Plot showing the domain in which the Kim et al. (1996) model by ignoring percolation
during storm events produces the unphysical result that the time to ponding is greater than the
time to saturation. Parameter values used for simulation may be found in Table 1.
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Fig. 3. Summary of the FDEM incorporating Philip’s infiltration solution with the time compres-
sion approximation for a rectangular rainfall pulse. The differential equations governing the soil
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moisture process are shown above the corresponding time periods.
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Fig. 4. Comparison of FDEM (solid line) and IEM (dotted line) soil moisture models over one

hundred days. The stochastic rainfall series of rectangular pulses is shown above. To the right
is shown the simulated p.d.f. of the FDEM model (bars) with the analytic p.d.f. of the IEM model.
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Fig. 5. Comparison of simulated FDEM (lines) and analytic IEM (shaded area) probability
distributions for soil moisture. The four plots show varying soil depth and rainfall arrival rates.
The two lines on each plot are for mean rainfall durations of 4 (solid) and 6 (dotted) hours.
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Fig. 6. Rainfall partitioning during a storm event for the IEM (left) and the FDEM (Right). The
vertical axis represents the rainfall depth transformed by processes of infiltration and perco-
lation. The normalized curves in the FDEM plot are, from highest to lowest: depth of rainfall
event (slope = unity), infiltrated depth according to Kim et al. (1996), infiltrated depth minus
percolation according to FDEM without bound at s=1, and the bold line represents the actual
change in soil moisture state as a function of rainfall depth according to the FDEM with the

s, =0.6

Cumulative Losses

l
|

0.2 0.4

bound at s=1.

0.6

0.8

1365

09

0.8

0.7

06

0.5

041

0.3

0.2

0.1

HESSD
3, 1339-1367, 2006

s, =0.6 Runoff (Horton)
Percolation

Runoff (Dunne)

A look at infiltration

J. R. Rigby and
A. Porporato

0.2 0.4 0.6 0.8

D

i

EG

(@


http://www.hydrol-earth-syst-sci-discuss.net
http://www.hydrol-earth-syst-sci-discuss.net/3/1339/2006/hessd-3-1339-2006-print.pdf
http://www.hydrol-earth-syst-sci-discuss.net/3/1339/2006/hessd-3-1339-2006-discussion.html
http://www.copernicus.org/EGU/EGU.html

HESSD
3, 1339-1367, 2006

A look at infiltration

J. R. Rigby and
07 : ‘ ‘ : 07 ‘ ‘ ‘ ‘ A. Porporato
5,=04
06t sm————= 06 -t
Vi P=2 ’
7 e 4
05F 7 P=3 9 0.5F ’
4 =1 z
// =4 ’
0ar W P=s5 | y o 508
7,
y 7 .
03f 7 1 03 p
7
5,=0.8
02t 1 02 L SIS
01t 1 01k
5, =04 P=2
o ‘ ‘ ‘ ‘ o ‘ ‘ ‘ ‘
0 02 04 06 08 1 0 02 04 06 08 1
D D

Fig. 7. (zhange in soil moisture, y=As, representing normalized net infiltration, for different
values of P (left) and s, (right) for both the IEM and FDEM models. The dotted lines represent
the IEM model.

it

EG

(@

1366


http://www.hydrol-earth-syst-sci-discuss.net
http://www.hydrol-earth-syst-sci-discuss.net/3/1339/2006/hessd-3-1339-2006-print.pdf
http://www.hydrol-earth-syst-sci-discuss.net/3/1339/2006/hessd-3-1339-2006-discussion.html
http://www.copernicus.org/EGU/EGU.html

()

5, =04 |

p(»)

o 24 N w Ao o N ® ©
T T T T T T T T T

Fig. 8. Derived distributions of the normalized net infiltration for both the IEM and FDEM. Note
that the IEM distribution (bold) is a truncated exponential with an atom of probability at D=1-5s,
represented by the corresponding Dirac delta functions.
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