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Abstract

Catastrophic disasters afflicting human society are often triggered by tsunamis, earth-
quakes, widespread flooding, and weather and climate events. As human populations
increasingly move into geographic areas affected by these earth system hazards, fore-
casting the onset of these large and damaging events has become increasingly ur-
gent. In this paper we consider the fundamental problem of forecasting in complex
multi-scale earth systems when the basic dynamical variables are either unobservable
or incompletely observed. In such cases, the forecaster must rely on incompletely de-
termined, but “tunable” models to interpret observable space-time patterns of events.
The sequence of observable patterns constitute an apparent pattern dynamics, which
is related to the underlying but hidden Newtonian dynamics by a complex dimensional
reduction process. As an example, we examine the problem of earthquakes, which
must utilize current and past observations of observables such as seismicity and sur-
face strain to produce forecasts of future activity. We show that numerical simulations
of earthquake fault systems are needed in order to relate the fundamentally unobserv-
able nonlinear dynamics to the readily observable pattern dynamics. We also show that
the space-time patterns produced by the simulations lead to a scale-invariant hierar-
chy of patterns, similar to other nonlinear systems. We point out that a similar program
of simulations has been very successful in weather forecasting, in which current and
past observations of weather patterns are routinely extrapolated forward in time via
numerical simulations in order to forecast future weather patterns.

1 Introduction

The critical need to forecast natural hazards has been underscored by the 26 Decem-
ber 2004 M~9.3 Sumatra earthquake and tsunami that led to the deaths of more than
275000 persons (Lay et al., 20051); Hurricane Katrina, a category 5 storm that weak-

'http://earthquake.usgs.gov/eqinthenews/2004/usslav/
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ened to a category 3 storm before flooding New Orleans and the Gulf Coast of the
United States on August 29, 2005, causing as much as $130 billion in damages and
killing more than 1000 persons (J. Travis, 20052); and the M~7.6 Pakistan earthquake
of 8 October 2005 with estimated fatalities of more than 87 000 persons?’. Secondary
disasters can also occur such as landslides, flooding, and tornadoes.

Given the spatial scales of these events, and the rapid onset of their most severe
effects, the development of a physics-based understanding of these hazards must be
a high priority, especially since human populations are increasingly moving into the
areas most likely to be affected by these disasters. A physical understanding of these
dynamical processes leads to the possibility of forecasting and prediction, based upon
the use of numerical simulations, similar to the methods by which progress has been
made in the field of weather and climate forecasting during the past few decades.

Earthquakes are an example of a threshold system, in which the stress on a fault in-
creases persistently due to plate tectonic forces. In general, driven nonlinear threshold
systems are comprised of interacting spatial networks of statistically identical, nonlin-
ear units or cells that are subjected to a persistent driving force or current. A cell “fires”
or “fails” when the force, electrical potential, or other physical variable o(x, ) in a cell
at position x and time t reaches a predefined force threshold of. The result is an in-
crease in an internal state variable s(x, t) of the cell, as well as a decrease in the force
or potential sustained by the cell to a residual value o". Thresholds, residual stresses,
and internal states may be modified by the presence of quenched disorder, and the
dynamics also may be modified by the presence of noise or disorder. Interactions be-
tween cells may be excitatory (positive) in the sense that failure of connected neighbors
brings a cell closer to firing, or inhibiting (negative) in the opposite case.

In the case of earthquake fault systems, the cell or site represents a location x on
a fault; the state variable o(x, t) represents the stress; the force threshold of is the
static frictional strength; and the residual value o” is the fault stress at the conclusion

2http://www.nhc.noaa.gov/archive/2005/tws/MIATWSAT _aug.shtml
3http://earthquake.usgs.gov/recenteqsww/Quakes/ usdyae.htm
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of sliding. In earthquake fault systems, the fault slips when the static frictional threshold
is reached, in a process that reduces the stress to a lower, residual value. As a result
of the earthquake, a portion of the stress is lost during the event, and the remainder
is redistributed to other faults and regions in the system. If the redistributed stress
leads to a state of supercritical stress on other faults, an avalanche of triggered failures
may occur, increasing the magnitude of the earthquake. Other examples of threshold
systems are common in nature, and include the occurrence of floods in river networks,
landslides, volcanic eruptions, ecological systems, saturation and soil moisture, and bi-
ological epidemics. Threshold systems are also seen in other science and engineering
applications, such as depinning transitions in charge density waves and superconduc-
tors, magnetized domains in ferromagnets, sandpiles, and foams (Rundle et al., 2000,
2002). As another example, for neural networks a cell is a neuron, o(x, t) represents
the cellular electrical potential, of is the firing potential, and o is the potential after
the cell discharges.

The failure of the levees when Hurricane Katrina struck New Orleans was also an
example of a threshold process. Here the large amounts of rainfall and the storm
surges led to overfilling of Lake Ponchartrain and the catastrophic failure of the levee
system that protected the sections of the city lying below sea level.

Both weather and seismicity are complex, chaotic phenomena. Current weather pat-
terns are routinely extrapolated forward in order to forecast the weather several days
into the future. These forecasts utilize numerical simulations of atmospheric behavior.
A specific example concerns the future tracks of hurricanes. The standard approach is
to utilize ensemble forecasting. Forecasts are made using a variety of numerical simu-
lations. If these simulations converge on similar tracks, then the forecast is considered
robust. The question is whether a similar approach can be developed for earthquake
forecasting, and whether it can then be extended to other driven systems common in
geomorphology and hydrology.
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2 Patterns in El Nino events

Among the fields of research that have recently made significant progress in recog-
nizing, interpreting, and predicting such patterns are weather forecasting, specifically
predictions in the onset of El Nino-Southern Oscillation events. These methods uti-
lize variations of Principal Component Analysis, Principal Oscillation Pattern Analysis,
and Singular Spectrum Analysis (Preisendorfer, 1988; Penland, 1989; Penland and
Sardeshmukh, 1995; Penland and Mangorian, 1993; Broomhead and King, 1986; Vau-
tard and Ghil, 1989). Prediction of pattern development and evolution is complicated
by the presence of noise, nonlinear mode interactions, and a variety of other factors,
but progress has been made in recent years as exemplified by the successful predic-
tion of the El Nino weather event of 1998. In most of these methods, it is assumed that
the observed time series have Markov characteristics, so that the observed state of the
system at time t+ At depends only on the observed state of the system at time £. There
are typically many time scales in the dynamics, some of which can be as small as At,
and others that can be much longer.

However, in making El Nino forecasts for a year in advance, it is typical to focus on
processes, such as sea surface warming off the Pacific coast of South America, that
take place over the preceeding weeks to months. This assumption of a relatively small
range in time scale evidently holds reasonably well for El Nino events.

An additional important assumption made by some investigators is that the space-
time patterns of El Nino events can be considered to be described by a linear stochastic
equation (Penland and Matrosova, 2006; Penland and Sardeshmukh, 1995), which is
used to forecast the future occurrence and evolution of El Nino events. In this proce-
dure, which we summarize briefly here, the evolution of tropical sea surface tempera-
ture (SST) anomaly 6(x, t) is represented as a stable linear process maintained by a
stochastic forcing n(x, t):

86(x, t)
ot

= BO(x,t) + n(x,t) (1)
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In these types of applications, the function 8(x, t), which depends on coarse-grained
locations centered at x, is considered to be a vector in a Hilbert space (see, e.g.,
Jordan, 1969). 9(x, t)has all the usual properties of vectors, including a metric and a
well defined algebra.

In Eq. (1), B is assumed to be a linear operator that is non-normal, meaning that its
eigenvectors E;(x) are non-orthogonal. The eigenvectors evolve at different rates, and
interfere with each other in such a way that, when the initial El Nino anomaly projects
strongly onto an “optimal” initial pattern state, the spatial variance of the temperature
anomaly field, representing the El Nino event, then increases to a maximum (Farrell,
1988). The eigenvectors of B are assumed to be complete, so that the actual SST
anomaly 8(x,t) at any time can be represented as a linear sum of the eigenvectors
E;(x):

N
O(x, 1) = D a;(t)E(x) 2)
i=1

The corresponding pattern evolution operator P(t) is found by formally integrating the
dynamical Eq. (1), setting the stochastic forcing n(x, t)=0:

P(t) = % 3)

Note that in this case, the Eq. (1) does not represent the fundamental equations that
govern the SST anomoly, it is rather a simple linear stochastic equation that is assumed
to govern the evolution of the space-time patterns associated with El Nino events.
Moreover, the pattern evolution operator P(t) is not known a priori, it must instead be
determined from data, or from theoretical considerations. An advantage is that SST
anomalies can be directly observed via satellite observations, and the El Nino cycles
are sufficiently short (~6 years) that time series techniques can be used to filter and
isolate the important SST signals.
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3 Threshold systems

Driven threshold systems are complex systems that are characterized by both sudden
observable events, such as earthquakes, as well as an underlying Newtonian dynamics
that is largely unobservable, as well as being subject to unobservable stochastic pertur-
bations. It is important to note that the events do not represent the true dynamics that
governs evolution of the system, they are only a product of the dynamics. Examples of
such systems include not only earthquakes, but also landslides and avalanches, floods,
and other non-geological systems including neural networks, and magnetic depinning
transitions in superconductors. In these cases, the observable events are impulsive
phenomena that are the result of the persistent forcing of the underlying dynamics
(Rundle et al., 2000). While the time scale for the forcing is often relatively long, the
time scale for the observable events is usually short. Since we cannot observe the un-
derlying dynamics, we usually have no choice but to interpret, and to try to forecast, the
evolution of the system on the basis of the observable events. We are therefore led to
define a state vector S(x, t) representing the rate of occurrence of the impulsive events
within a small, coarse-grained region centered on the location x (Rundle et al., 2000).
One example of such a coarse-graining would be to cover a geographic area such as
southern California with a lattice of small regions (boxes) of a certain small size, for ex-
ample boxes of size .1° (Lattitude) by .1° (Longitude). This procedure has been carried
out in recent work on earthquake forecasting (Holliday et al., 2006). For the simulations
we discuss below, x represents the location of the center of a fault segment. For these
simulations, S(x, t)=1 if the segment slips at time ¢, and zero otherwise (Rundle et al.,
2000). For observed data, S(x, t) may have any real integer value at time ¢.

For threshold systems driven at a constant rate, systems that are large compared
to the spatial scale of the impulsive events can often be considered to execute small
fluctuations around a steady state. This assumption has been shown to hold for earth-
quakes (Turcotte, 1997; Tiampo et al., 2003).

If we regard the system state S(x, ) as representing the real part of a complex-
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valued function y(x, t), then we have shown in previous work (Rundle et al., 2000) that
w(x, t) can be written as:

N
V() = wx t)= D a,6 ' ¢,(x) (4)

n=1

where the @,(x) are eigenfunctions, or “eigenpatterns”, the @, are eigenfrequencies,
N is the number of coarse-grained regions or boxes, and the expansion coefficients a,,
satisfy the constraint:

N
> la,f =1 (5)
n=1

The notation W(f)=y(x,t) emphasizes that y(x,t) should be regarded as an N-
dimensional vector function in a Hilbert space of the N coarse-grained boxes that we
also denote by W(f) (Jordan, 1969). In this picture, the state vectors of the system
oscillate around a steady state, and therefore the pattern states can be represented by
sums of complex exponentials (Holmes et al., 1996). The eigenfunctions are therefore
complex, and it is possible that a precursor to a future large earthquake may have a
large imaginary part and a small real part, meaning that the precursor might be diffi-
cult to detect. This effect would produce a signal with a weak observational amplitude,
somewhat similar to the effect produced by interfering non-normal eigenfunctions in
Eq. (3).

Given our inability to observe the true dynamics, we therefore seek to define an
apparent pattern dynamics for the system. Our goal is to define a pattern dynamics
operator Py(t), similar to the pattern evolution operator in Eq. (3). In previous work
(Rundle et al., 2000), we conjectured that such an operator can be constructed by
the use of the equal-time correlation operator (matrix) d. d(x,y) is obtained by cross-
correlating the observed real time series S(x, t) and S(y, t) over a time interval [0, T].
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A more rigorous definition of Pp(t) has been developed in Klein et al. (2006)4, which is
found to be related to the inverse of D, D~ Details of this construction are left to Klein
et al. (2006)4 and future publications.

For the present, we illustrate the general types of patterns revealed by this analysis
by plotting eigenvectors of D , which represents the correlation of activity, considering
S(x,t) and S(y, t) as a Brownian “noise”.

To compute the equal-time correlation operator D(x,y), we evaluate:

.
D(x,y) = %/S(X, t)S(y.t) dt (6)
0

If we consider x to be the spatial coordinate centered on the coarse-grained (box)
location x;, and y to be the spatial coordinate on the coarse-grained (box) location x,
then we have the NxN square, symmetric matrix D,;, which can be diagonalized by
standard techniques of singular value decomposition (Rundle et al., 2000):

D=QNQT )

Here Q is an NxN matrix of orthonormal eigenvectors; Q" isits transpose; and A% is
a diagonal N x N matrix of eigenvalues Af,, n=1,...,N. The eigenvectors g,(x) comprise
the columns of Q. The N positive eigenvalues of D;; are written in Eq. (7) as the square
of the diagonal elements of A.

4 Numerical simulations and Virtual California

Numerical simulations are needed in the study of driven threshold systems due to the
wide range of temporal and spatial scales involved, and because the true dynamics

4Klein, W., Gulbahce, N., Gould, H., Rundle, J. B., and Tiampo, K. F.: Precursors to earth-
quake and nucleation, Phys. Rev. Lett., submitted, 2006.
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are fundamentally unobservable. Simulations are typically carried out on computers
ranging from workstations to supercomputers, and can be used to determine both the
spatial and temporal eigenpatterns that characterize the activity, and the pattern dy-
namics, or pattern evolution operator Py (t).

Here we give a brief example of this approach using the Virtual California simulation
for earthquakes. Virtual California, which was originally developed by Rundle (1988),
includes stress accumulation and release, as well as stress interactions between the
San Andreas and other adjacent faults. The model is based on a set of mapped faults
with estimated slip rates, prescribed long term rates of fault slip, parameterizations of
friction laws based on laboratory experiments and historic earthquake occurrence, and
elastic interactions. An updated version of Virtual California (Rundle et al., 2001, 2002,
2004, 2006) is used in this paper. The geologic data on average rates of offset in the
model is shown in Table 1 (Rundle et al., 2004). The faults in the model are those
that have been active in recent geologic history. Earthquake activity data and slip rates
on these model faults are obtained from geologic databases of earthquake activity on
the northern San Andreas fault. A similar type of simulation has been developed by
Ward and Goes (1993) and Ward (1996, 2000). A consequence of the size of the
fault segments used in this version of Virtual California is that the simulations do not
generate earthquakes having magnitudes less than about m=~5.8.

Virtual California is a backslip model — the loading of each fault segment occurs
due to the accumulation of a slip deficit at the prescribed slip rate of the segment.
The vertical rectangular fault segments interact elastically, the interaction coefficients
are computed by means of boundary element methods (Crouch and Starfield, 1983).
Segment slip and earthquake initiation is controlled by a friction law that has its basis
in laboratory-derived physics (Tullis, 1996; Karner and Marone, 2000; Rundle et al.,
2004). Onset of initial instability is controlled by a static coefficient of friction. Segment
sliding, once begun, continues until a residual stress is reached, plus or minus a ran-
dom overshoot or undershoot of typically 10%. Onset of instability is also possible by
means of a stress-rate dependent effect, in that segment sliding can initiate if stress on
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a segment increases faster than a prescribed value due to failure of a nearby segment.
Finally, the friction law used in Virtual California also includes a term that promotes
a small amount of stable segment sliding as stress increases. This latter term has
been shown to promote stress-field smoothing along neighboring segments, offsetting
the stress-roughening effects of increasing fault complexity, and allowing larger earth-
quakes to occur. To prescribe the friction coefficients we use historical earthquakes
having moment magnitudes m>5.0 in California during the last ~200 years (Rundle et
al., 2004).

Virtual California includes the major strike-slip faults in California and is illustrated
in Fig. 1. In this version of the model, Virtual California is composed of 650 fault seg-
ments, each of which has a width of 10 km and a depth of 15 km. A much more detailed
treatment and explanation of the dynamics and equations solved numerically for Vir-
tual California simulations can be found in (Rundle et al., 2004, 2005, and references
therein).

An example of results from Virtual California is shown in Figs. 2a, b in which we
show two large earthquakes, one reminiscent of the San Francisco earthquake of 1906
(Fig. 2a) on the northern San Andreas fault, and one similar to the Fort Tejon earth-
quake of 1857 on the southern San Andreas fault near the Big Bend between Fort Tejon
and Wrightwood (Fig. 2b). In both Figs. 2a, b, red vertical bars represent “right lateral
slip” (opposite side of the fault moves to the right) and blue vertical bars represent “left
lateral slip”.

It can be seen in Fig. 2a that the earthquake on the Northern San Andreas fault,
where most of the slip occurs, also involves triggered slip on the Hayward, Rogers
Creek and Maacama faults (these are the faults to the east of — “behind” — the main
trace of the San Andreas fault). The dark bar on the San Andreas fault represents the
epicentral segment, the segment that was the first to slip in the event. The maximum
amplitude of slip, as shown in the figure, is 9.3 m.

Figure 2b shows a large event in southern California similar in extent and magnitude
to the 1857 Fort Tejon earthquake. It can be seen that while most of the slip occurs
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on the main trace of the San Andreas fault, where the maximum amplitude of slip is
12.6m, other triggered slip occurs on the Big Pine fault, the Garlock fault, the San
Gabriel fault, and faults in the Mojave desert and Owens Valley to the east. In fact, it is
extremely interesting that all of this activity began with initial slip on a small fault in the
Mojave desert, as shown by the location of the dark epicentral vertical slip bar.

5 Patterns in Virtual California

We used 10000 years of simulation data from Virtual California to compute the N=650
spatial patterns of activity for the simulation. These patterns reveal which are the most
dominant and important modes of correlated activity, and which are less important. The
eigenvectors (spectrum) indicate the fraction of the eigenvectors that are present, on
average, in the activity during the simulation. More specifically, pnzllf, , is the fraction of

eigenvector g ,(x) of the orthonormal N xN matrix Q of Eq. (7) is present, on average,
N

in the activity. Note that 3 p,=1. Using a frequency interpretation for probability, we
n=1

can say that on average, over the 10000 years of simulation data, the probability of

finding eigenvector g,(x) in the data is on average p,,.

In Figs. 3a, b, c, d we show the first four orthonormal correlation eigenvectors g, (x),
again for the same 10000 years of simulation data. In these figures, the red and blue
bars correspond to locations where the value of g,(x) is significantly different from 0.
The heights of the red and blue bars represent the values of g,(x), and can take on
values between —1. and +1. Red bars represent positive values of g,(x) between 1078
and 1, and blue bars represent negative values of q,(x) between —1 and -1073. Green
dashed lines are locations where |g,(x) | has a value less than 1072, which is roughly
the amplitude of the numerical error. The physical meaning of the red and blue colors
for a particular eigenvector q,(x), which represents a particular fundamental pattern of
activity is:
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— Red sites tend to be active when other red sites are active, so that activity at red
sites is positively correlated with activity at other red sites;

— Blue sites tend to be active when other blue sites are active, so that activity at
blue sites is positively correlated with activity at other blue sites;

— Red sites tend to be inactive when the blue sites are active and vice-versa, so
that activity at red sites is negatively correlated with activity at other blue sites.

Figure 3a is an eigenvector that represents the most important pattern of activity in
the 10000 years of simulation data. This pattern of activity comprises p;=3.5%, on
average, of the activity over 10 000 years of simulations. It bears a strong resemblance
to Fig. 2b, the 1857-type event. From Fig. 3a, it can be seen that this pattern is as-
sociated with correlated activity on the San Andreas, the Garlock and Big Pine, the
Northern Mojave, the Owens Valley and Death Valley faults. If one were to expand the
pattern of slip in Fig. 2b as a sum of the eigenvectors g,(x), the expansion coefficient
g+(x) would represent the most important term.

Figure 3b shows the second-most important eigenvector g,(x). Here we primar-
ily see strongly correlated activity on the northern San Andreas, the Hayward-Rogers
Creek-Maacama, the Calaveras and Bartlett Springs fault systems. This pattern of
activity is seen in 3.1% of the activity over the 10000 years of simulations. This eigen-
vector also resembles the event shown in Fig. 2a, the 1906-type event.

It is interesting that these first two patterns of activity are effectively decoupled be-
tween northern and southern California. The physical explanation for the decoupling is
probably related to the existence of the creeping zone of the central San Andreas fault.
This zone is the ~100km long part of the San Andreas fault just to the north of the
large slipped region in Fig. 2b. Earthquakes do not occur in the creeping zone, rather a
steady aseismic slip is observed at a rate corresponding to the long-term rate of plate
motion across the fault, 35 mm/yr (Table 1). The creeping zone appears to act as a
kind of “shock absorber” for the largest events, effectively eliminating the correlation of
these events in the north and south.
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Eigenvectors 3 and 4 are shown in Figs. 3c and d. Figure 3c shows a pattern,
representing 2.4% of the activity, characterized by correlated slip on the southernmost
part of the faults of the San Andreas system, together with slip activity on the eastern
Garlock fault. Figure 3d is an interesting pattern, in which a kind of higher “pattern
harmonic” of the activity on the faults of the northern San Andreas fault. Comparing
Figs. 3b and d, eigenvector 4 (1.8% of the activity) shows an anticorrelation between
activity on the extreme northern end of the San Andreas system with the faults near
the San Francisco Bay region (refer to Fig. 1 for locations relative to San Francisco).
Eigenvector 4 also shows the beginnings of correlations between activity in northern
California with activity south of the creeping zone, on the eastern Garlock fault in the
Mojave desert. Evidently the decoupling effect of activity in the north and south by the
creeping zone of the San Andreas decreases as the higher pattern harmonics appear.

Figure 4 shows the eigenvalue spectrum p,. Here we plot Logy, p, as a function of
Logyon. We observe that there is a region of scaling or power-law behavior at values
of n in the interval between n~10 and n~200:

Logqg P, o —.75L0g4¢n(10 < n < 200) (8)

To understand this, we suppose that we can define a “characteristic wavelength” 1, for
each pattern according to the approximate ansatz:

2mL
Ap~ —= 9)
where L represents the linear size (length) of the largest events in the simulations.
Then the scaling region shown in Fig. 4 must be an expression of the hierarchical
nature of the spatial scale of the patterns generated by the fault system dynamics:

Py~ A% ~ 0 (10)

The reason for the particular value of the scaling exponent a=0.745+0.004~0.75 is

not at present known, but its value, which is nearly equal to the ratio of integers 3/s,

would lead to the conjecture that it is related to the mean field nature of the dynamics
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(Rundle, 1989; Rundle and Klein, 1993; Tiampo et al., 2002a). In mean field dynamics,
it is frequently the case that the scaling exponents are ratios of integers (see Klein et
al., 2000).

We note that similar types of overall behavior for patterns has been observed in
seismicity data (Tiampo et al., 2002b).

6 Conclusions

Forecasting in systems such as ENSO and earthquakes depends on the interpretation
of observable space-time patterns, since the true stress-strain rate and stress-strain
dynamics cannot be observed. It is likely that similar methods can be used for both
systems, based upon the identification of patterns as eigenvectors of a dynamical cor-
relation operator. We note that these are linear descriptions of fundamentally nonlinear
dynamical systems. However, there are important examples of of probability distribu-
tions for nonlinear systems that are known to obey linear Fokker-Planck equations
(Haken, 1983). Moreover, Klein et al. (2006)4 show that the evolution of patterns in
driven threshold systems can be characterized by correlation functions that have the
properties discussed above.

We may speculate that hierarchical patterns that are observed in other nonlinear
earth systems may be described in by similar methods. For example, it is known that
in hydrology, river networks are observed to display scaling patterns that arise from
purely local dynamics. These local dynamics include hill slope and topography, surface
winds and erosion, and rainfall. Yet these local effects are often the product of long
range interactions, i.e., correlation of hill slope and topography, and rainfall patterns
over long distances (Turcotte, 1997). Moreover, the tree-like nature of river networks
leads also to the conjecture that pattern hierarchies may have a mean field character,
inasmuch as tree-like networks are often found to be mean field constructs, such as
the Bethe lattice in percolation theory (Stauffer and Aharony, 1994). Understanding
how these hierarchies of pattern scales develop and evolve doubtless holds the key to
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forecasting the future dynamical states of these systems.
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Table 1. Segments and geologic rates of offset for the modified version of VC 2001 used in HESSD
Figs. 1-4.
3, 1045-1069, 2006

Fault or Fault Segment Nos. Chart Distance (km) Average Slip Rate (mm/yr)
System Name Begin End Begin End p .
Bartlett Springs 0 7 0.0 84.7 6 attern qynamlf:s,
Calaveras 8 22 847 2389 15 (8->17) 6 (18->22) pattern hierarchies,
Collayomi 23 25 238.9 266.8 .6 and forecasting
Concord-Green Valley 26 31 266.8 3222 6
Death Valle! 32 55 322.2 569.6 5 (32—>49) 4 (50—>55
Garberville Briceland 56 59  569.6 609.2 9 ( 4 ) J. B. Rundle et al.
Greenville 60 66 609.2 682.2 2
Hayward 67 77 6822 793.3 9 (67->74) 3 (75->77)
Hunter Mtn.-Saline Val. 78 84 793.3 861.3 25
Hunting Creek-Berryessa 85 90 861.3  920.3 6 _
Lake Mountain 91 93 920.3 953.7 6
Maacama 94 111 953.7 1133.3 9 ! !
Monterey Bay-Tularcitos 112 119 1133.3 1213.6 5
Ortigalita 120 126 1213.6 1280.1 1 ! !
Owens Valley 127 138 1280.1 1401.6 15
Palo Colorado-Sur 139 146 1401.6 1479.8 3 ! !
Panamint Valley 147 156 1479.8 1584.5 25
Quien Sabe 157 158 1584.5 1607.6 1
Rinconada 159 177 1607.6 1796.9 1 ! !
Rodgers Creek 178 183 1796.9 1858.9 9
Round Valley 184 189 1858.9 1914.3 6
San Gregorio 190 198 1914.3 2003.3 5 ! !
Sargent 199 203 2003.3 2056.0 3
West Napa 204 206 2056.0 2085.9 1 ! !
White Mountains 207 216 2085.9 2186.5 1
San Andreas North 217 263 21865 2653.6 24 (217->248) 17 (249->263) _
San Andreas Creeping 264 273 2653.6 2751.3 34
San Andreas South 274 335 2751.3 3330.7 34 (274—>298) 30 (299->312)

24 (313->321) 25 (322—>335) _
San Jacinto 336 364 3330.7 3622.1 12 (336—>352) 14 (353—>364)
Elsinore 365 388  3622.1 3857.5 3 (365->368) 5 (369—>384) _

4 (385->388)
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Table 2. Continued.

Fault or Fault

Segment Nos.

Chart Distance (km)

Average Slip Rate (mm/yr)

System Name Begin End Begin End

Imperial Valley 389 406 3857.5 4020.0 30

Laguna Salada 407 416 4020.0 4118.5 4

Garlock 417 440 4118.5 4353.0-5 (417—>426)—-7 (427—->440)

Palos Verdes 441 447 4353.0 4428.6 3

Santa Cruz Island 448 452 4428.6 4481.9 -3

Brawley 453 457 4481.9 4533.8 25

Santa Monica 458 468 4533.8 4653.3 -3

Cleghorn 469 470 4653.3 4676.4 -3

Tunnel Ridge 471 472 4676.4 4695.6 -1.3

Helendale 473 481 4695.6 4781.7 .8

Lenwood-Lockhart 482 499 4781.7 4955.2 .8

Pipes Canyon 500 501 4955.2 4970.8 7

Gravel Hills-Harper 502 509 4970.8 5051.2 9

Blackwater 510 516 5051.2 5113.0 2

Camp Rock-Emerson 517 527 5113.0 5227.2 1 (517->524) .6 (525—->527)

Homestead Valley 528 530 5227.2 5254.4 .6

Johnson Valley 531 536 5254.4 5320.4 .6

Calico-Hidalgo 537 549 5320.4 5455.5 1 (537) 1.7 (538) 2.6 (539—>545)
.6 (546—>549)

Pisgah-Bullion 550 562 54555 5571.2 1

Mesquite Lake 563 564 5571.2 5592.2 1

Pinto Mountain 565 573 5592.2 5676.0 -1

Morongo Valley 574 574 5676.0 5690.6 -5

Burnt Mountain 575 576 5690.6 5707.6.6

Eureka Peak 577 578 5707.6 5725.8 .6

Hollywood-Raymond 579 582 5725.8 5763.7 -1 (579->580) -.5 (581->582)

Inglewood-Rose Cyn 583 604 5763.7 5979.2 1 (583->590) 1.5 (591->604)

Coronado Bank 605 623 5979.2 6179.5 3

San Gabriel 624 637 6179.5 6310.8 3 (624—>628) 2 (630—>633)
1 (634—>637)

Big Pine 638 644 6310.8 6379.5 -4

White Wolf 645 649 6379.5 6427.6 -5
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Fig. 1. Fault segments making up Virtual California. The model has 650 strike-slip fault seg-
ments, each approximately 10 km in length along strike and 15 km in depth.
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on the northern San Andreas fault.
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DARK => Epic
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Fig. 2. lllustration of simulated earthquakes on the San Andreas fault. Two large earthquakes
are shown. Panel (a) is an event that is reminiscent of the San Francisco earthquake of 1906
Panel (b) is an event that is similar to the Fort Tejon
earthquake of 1857 on the southern San Andreas fault near the Big Bend between Fort Tejon
and Wrightwood.
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Figenvector: 1 """ ’ Eigenvector: 2
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Fig. 3. This figure shows the first (and most important) four correlation eigenvectors for 10 000
years of simulation data. The color-coding of the vertical bars is that: 1) Red sites tend to be
active when other red sites are active, so that activity at red sites is positively correlated with
activity at other red sites; 2) Blue sites tend to be active when other blue sites are active, so
that activity at blue sites is positively correlated with activity at other blue sites; 3) Red sites
tend to be inactive when the blue sites are active and vice-versa, so that activity at red sites is
negatively correlated with activity at other blue sites.
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LOG10 (EIGENVALUE) VS. LOG (INDEX)
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Fig. 4. Plot of the eigenvalue spectrum p,, on a log-log plot. Log,qp,, is plotted as a function of
Log,on, where n is the index number of the eigenvector (n=1 has the largest value of p,, and

the rest are ordered by descending values of p,,).
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