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Abstract

In this paper catchments are conceptualised as linear space-time filters. Catchment
area A is interpreted as the spatial support and the catchment response time T is in-
terpreted as the temporal support of the runoff measurements. These two supports
are related by T∼Aκ which embodies the space-time connections of the rainfall-runoff5

process from a geostatistical perspective. To test the framework, spatio-temporal var-
iograms are estimated from about 30 years of quarter hourly precipitation and runoff
data from about 500 catchments in Austria. In a first step, spatio-temporal variogram
models are fitted to the sample variograms for three catchment size classes indepen-
dently. In a second step, variograms are fitted to all three catchment size classes10

jointly by estimating the parameters of a point/instantaneous spatio-temporal variogram
model and aggregating (regularising) it to the spatial and temporal scales of the catch-
ments. The exponential, Cressie-Huang and product-sum variogram models give good
fits to the sample variograms of runoff with dimensionless errors ranging from 0.02
to 0.03, and the model parameters are plausible. This indicates that the first order15

effects of the spatio-temporal variability of runoff are indeed captured by conceptual-
ising catchments as linear space-time filters. The scaling exponent κ is found to vary
between 0.3 and 0.4 for different variogram models.

1 Introduction

Geostatistical methods fall into two groups. The first focuses on the characterisation20

of spatial variability and is termed structural analysis. It provides a representation of
the spatial structure of the variables of interest in terms of the variogram and sheds
light on the continuity of the processes involved. In hydrology, structural analysis plays
an important role in aquifer assessment and sampling design (e.g., James and Freeze,
1993). The second group of geostatistical methods consists of spatial estimation meth-25

ods where the variogram obtained in the structural analysis step is used to estimate the
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variable of interest at locations where no measurements are available. Spatial estima-
tion methods based on geostatistical concepts are widely used in many geosciences
including subsurface hydrology (Renard et al., 2005).

In catchment hydrology, geostatistical concepts have been used more sparingly. This
is because of the nested structure of catchments which makes geostatistical analyses5

more complicated as compared to the usual analysis of point samples or blocks. How-
ever, a number of recent studies have demonstrated that geostatistical methods can
indeed account for the nested catchment structure. This applies to both the structural
analysis step of understanding the spatial structure and the spatial estimation step of
estimating variables such as streamflow at locations where no data are available. The10

latter addresses the ungauged catchment problem (Sivapalan et al., 2003). Based on
the work of Gottschalk (1993a, 1993b); Sauquet et al. (2000) presented a spatial es-
timation method for annual streamflow. A similar spatial estimation method, termed
TOPKRIGING, was presented by Skøien et al. (2005) who showed that accounting for
the nested catchment structure improved the spatial estimates of flood frequency over15

a method that did not account for nested catchments. Reliable variograms are needed
for applying this type of spatial estimation methods.

Runoff is a process that varies in both space and time. It is therefore appealing to
extend the spatial analyses of Sauquet et al. (2000) and Skøien et al. (2005) to the
spatio-temporal case, i.e. to analyse and estimate runoff as a function of both space20

and time. Spatio-temporal variograms are needed for this. At the same time, spatio-
temporal variograms of runoff may shed light on the nature of hydrological variability in
space and time. Skøien et al. (2003) analysed the effect of different catchment sizes on
the spatial and temporal variograms of precipitation and runoff. Their results indicated
that variograms of observed runoff were consistent with variograms obtained by aggre-25

gating variograms of hypothetical point runoff. However, their study examined spatial
and temporal variograms independently. It is likely that the spatial and temporal vari-
abilities of runoff are related given that it takes longer for water to move through large
catchments than through small catchments. Woods et al. (1995) analysed catchments
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in the range of 0.04–50 km2 and found the variance of streamflow to decrease more
strongly with catchment area than what would be expected for the spatial aggregation
of a random process. Woods et al. (1995) noted that this may be due to the presence of
organisation at large scales that is not present at small scales but Skøien et al. (2003)
suggested that this may be related to spatio-temporal aggregation effects instead.5

It is therefore time to follow the suggestion of Skøien et al. (2003) to analyse runoff
in space and time jointly, and to examine the joint spatial and temporal aggregation ef-
fects of runoff. As a central concept, we adopt the description of Woods and Sivapalan
(1999), where runoff from a catchment is represented as the convolution of the local
runoff generated within the catchment within a time period. This is consistent with the10

filter concept of Skøien et al. (2003) where the catchment area is interpreted as the
geostatistical support of the runoff measurements. In a joint spatio-temporal analysis
the catchments then operate as space-time filters and runoff measurements are asso-
ciated with both a spatial support (the catchment area) and a temporal support (the
response time of the catchment).15

The objective of this paper is to analyse spatio-temporal variograms of runoff and
examine the potential of estimating these from point variograms of runoff by spatio-
temporal aggregation. For comparison and for testing the aggregation procedure,
spatio-temporal variograms of precipitation are analysed as well. This study uses a
similar data set as Skøien et al. (2003) but goes beyond their study in two ways. First,20

Skøien et al. (2003) analysed the variograms in space and time separately while, here,
a joint analysis is performed to shed light on the connection of space and time scale
variability. Second, Skøien et al. (2003) used a data set of daily values while, here, a
data set of quarter hourly values is used. This allows us to perform a more detailed
analysis of the short term characteristics of runoff that are important for space-time25

connections.
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2 Data

The data used in this paper stem from a comprehensive hydrographic data set of Aus-
tria. Austria has a varied climate with mean annual precipitation ranging from 500 mm
in the eastern lowland regions up to about 3000 mm in the western alpine regions.
Runoff depths range from less than 50 mm per year in the eastern part of the country5

to about 2000 mm per year in the Alps. Potential evapotranspiration is on the order of
600–900 mm per year. Precipitation data from 991 stations for the period 1981–1997
were used in this study (Fig. 1a). 161 of the stations were recording rain gauges while
the rest were daily raingauges. The daily records were disaggregated to a time step
of 15 min based on the temporal patterns of the neighbouring stations (Merz et al.,10

2006). In order to be able to examine spatial aggregation effects, catchment precip-
itation was calculated for each time step by external drift kriging interpolation of the
point data for a total of 579 catchments using topographic elevation as an auxiliary
variable. The catchment precipitation series so obtained were divided into three size
classes (Table 1). Runoff data from 591 catchments for the period 1971–2000 were15

used that all had a time resolution of 15 min. The catchments were subdivided into
three classes according to catchment size – small (3–71 km2), medium (72–250 km2)
and large (250–131 000 km2) (Fig. 1b). Catchments smaller than 10 km2, as well as
catchments with short records, significant anthropogenic effects or lake effects were
excluded from the data set. This resulted in a total of 488 stream gauges available for20

the analysis. Table 1 summarises the data series used in this paper. The runoff data
set consists of a total of 5×108 individual data values.
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3 Method

3.1 Spatio-temporal sample variograms

Spatio-temporal sample variograms were calculated from the runoff data separately for
the three catchment size classes, and from catchment precipitation separately for the
three catchment size classes as well as for point precipitation:5

γ̂st(hs, ht)=
1

2
m(hs)∑
j=1

nj (ht)

m(hs)∑
j=1

nj (ht)∑
i=1

(z(xj + hs, ti + ht) − z(xj, ti ))
2 (1)

where hs= |hs | and ht are the spatial and temporal lags, respectively, z(xj, ti ) is pre-
cipitation or runoff at time ti and spatial location xj of station j , m(hs) is the number of
pairs of stations with distance hs, and nj (ht) is the number of pairs of points in time with
time lag ht within a spatial or temporal bin. hs was taken as the distance between the10

centres of gravity of the catchments for the cases of runoff and catchment precipitation
and as the station distance for the case of point precipitation. The spacings of the
bins were selected approximately logarithmically (with the exception of zero lags). The
variograms of precipitation were calculated on the basis of precipitation intensity, those
of runoff on the basis of specific discharge. The physical units of the precipitation and15

runoff variograms hence are (mm2×h−2) and (m6×km−4×s−2) with 1 m6×km−4×s−2 =
12.96 mm2×h−2. The space and time units used are kilometres and hours, respectively.

3.2 Spatio-temporal variogram models

Numerous spatio-temporal variogram models have been proposed in the literature.
There are two types, separable and non-separable models. In separable models, the20

covariance can be factorised into two components, one component containing time
lag only and the other containing space lag only. Rodŕıguez-Iturbe and Mej́ıa (1974)
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presented an example of a separable model. Cressie and Huang (1999) proposed a
series of non-separable models. De Cesare et al. (2001) and De Iaco et al. (2001)
extended some of the earlier models into a product-sum model. Kyriakidis and Jour-
nel (1999) reviewed spatio-temporal variogram models and discussed advantages and
disadvantages of different model types. Fuentes (2006) and Mitchell et al. (2005) pro-5

posed methods for testing if a process can be modelled by a separable model. They
noted that for some spatio-temporal modelling applications, the computational burden
can be reduced considerably by using separable models. Cressie and Huang (1999),
however, suggested that non-separable models are necessary for many natural cases.

Four models are compared in this paper that are all non-separable: a spatio-temporal10

exponential model, a model proposed by Cressie and Huang (1999), the product-sum
model (De Cesare et al., 2001; De Iaco et al., 2001), to all of which a fractal component
was added (Eq. 8), as well as a pure fractal model. The exponential model is:

γ′
1st(hs, ht)=a1(1−exp(−((c1ht + hs)/d1)e1)) (2)

a1 is the sill or the variance for infinite lag, c1 is a scaling parameter for time, d1 is a15

spatio-temporal correlation length and e1 defines the slope of the short distance part
of the variogram. The model is consistent with the Taylor hypothesis which assumes
that a constant characteristic velocity exists, so space and time are interchangeable
(Taylor, 1938; Skøien et al., 2003). Cressie and Huang (1999) derived a number of
models from Bochner’s theorem (Bochner, 1955). We tested a number of them and20

focus in this paper on:

γ′
2st(hs, ht)=a2

(
1− 1

(c2ht+1)(d+1)/2
exp

{
−

b2
2h

2
s

c2ht+1

})
(3)

a2 is the sill, b2 and c2 are scaling parameters for space and time, respectively, and d
is the spatial dimension.
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The third model is the product-sum model which is derived from a covariance model
that combines products and sums (De Cesare et al., 2001; De Iaco et al., 2001):

γ′
3st(hs, ht)=γ

′
3s(hs)+γ

′
3t(ht)−kγ′

3s(hs)γ
′
3s(ht) (4)

where k is a parameter. γ′
3s(hs) and γ′

3t(ht) represent the spatial and temporal vari-
ograms, respectively:5

γ′
3s(hs)=a3s(1−exp(−(hs/d3s)

e3s )) (5)

γ′
3t(ht)=a3t(1−exp(−(ht/d3t)

e3t )) (6)

with parameters similar to Eq. (2). The product-sum model reduces to the separable
model proposed by Rodŕıguez-Iturbe and Mej́ıa (1974) for α3s=α3t=1/k. The three
variogram models (Eqs. 2, 3, 4) are stationary, i.e., they are finite for infinite lags.10

Skøien et al. (2003) showed that daily precipitation can be regarded as stationary in
time, daily mean runoff is almost stationary in time, while neither of the processes can
be regarded as stationary in space within the spatial extent of the data set used. The
variograms were therefore modified to account for non-stationarity. For application in
spatial (and spatio-temporal) estimation a variogram needs to be such that the variance15

of any linear combination Y of the variable z of the type Y =
n∑

i=1
αiz(xi, ti ) is equal to

zero or positive. This requirement is fullfilled by Eqs. (2, 3, 4). If the variogram is
non-stationary, the following condition has to be fulfilled:

V ar(Y ) = −
∑
i

∑
j

aiajγst
(
|xi − xj | , ti − tj

)
≥ 0 (7)

with
n∑

i=1
αi=0.−γst (hs, ht) is then by definition said to be a “conditional positive definite

20

function” (Journel and Huijbregts, 1978; Cressie, 1991). To ensure conditional posi-
tive definiteness of −γst (hs, ht), it is common to specify the variogram as a sum or a
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product of models that are known to have this property. We have therefore added spa-
tial and temporal fractal components that are positive definite to the three variogram
models γ’st of Eqs. (2, 3, 4):

γst = γ′
st + ash

a
s + ath

β
t (8)

where as and at are parameters that adjust the level of the fractal part, and α and β5

are the spatial and temporal fractalities, 0<α<2 and 0<β<2. Although this model en-
sures conditional positive definiteness, the non-stationary part (Eq. 8) does not include
space-time interactions. In addition to the three variogram models, we examined a
pure fractal model for comparison (Eq. 12 below). In summary, the following variogram
models were used in this paper:10

Exponential model

γ1st(hs, ht) = a1(1 − exp(−((c1ht + hs)/d1)e1)) + ash
α
s + ath

β
t (9)

Cressie-Huang model:

γ2st(hs, ht) = a2

(
1 − 1

(c2ht + 1)(d+1)/2
exp

{
−

b2
2h

2
s

c2ht + 1

})
+ ash

α
s + ath

β
t (10)

Product-sum model (using Eqs. 5 and 6):15

γ3st(hs, ht) = γ′
3s(hs) + γ′

3t(ht) − kγ′
3s(hs)γ

′
3s(ht) + ash

α
s + ath

β
t (11)

Fractal model:

γ4st = ash
α
s + ath

β
t (12)
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3.3 Spatio-temporal regularisation

3.3.1 Concept of catchments as space-time filters

Measurements are strongly affected by the measurement scale. Blöschl and Siva-
palan (1995) formulated the measurement scale as a scale triplet: the distance be-
tween measurements (spacing); the size of the region over which measurements are5

available (extent); and the area or volume that each measurement represents (sup-
port). Skøien and Blöschl (2006a) and Skøien and Blöschl (2006b) performed coher-
ent studies of measurement scale effects on parametric and non-parametric estimates
of spatial correlation, respectively. As the support increases, the variable of interest
becomes increasingly smoother. Because of this, the variance (and hence the sill of10

the variogram) decreases and the correlation lengths increase.
In this paper, we interpret the catchment area as the spatial support of the runoff

measurements and conceptualise local runoff as a point process following Woods and
Sivapalan (1999) and Skøien et al. (2005). In a joint spatio-temporal analyses both
the spatial and the temporal supports need to be taken into account. In this paper, we15

therefore interpret the response time of a catchment as the temporal support. Runoff
at the catchment outlet is then assumed to be some sort of aggregated value of local
runoff over the catchment area (spatial support) over the catchment response time
(temporal support).

The concept starts with local runoff or rainfall excess, R(x,y ,t). To account for rout-20

ing on the hillslopes and in the channels within the catchment, a weighting function
u(x,y ,t) is introduced which allows to combine local instantaneous runoff into runoff at
the catchment outlet, Qi :

Qi (t) =
∫∫
Ai

t∫
t−Ti

R(x, y, τ)u(x, y, τ)dτdxdy (13)

950

http://www.hydrol-earth-syst-sci-discuss.net
http://www.hydrol-earth-syst-sci-discuss.net/3/941/2006/hessd-3-941-2006-print.pdf
http://www.hydrol-earth-syst-sci-discuss.net/3/941/2006/hessd-3-941-2006-discussion.html
http://www.copernicus.org/EGU/EGU.html


HESSD
3, 941–985, 2006

Catchments as
space-times filters

J. O. Skøien and
G. Blöschl
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where Ai is the area of catchment i , Ti is the time interval that influences the output,
x and y are the space coordinates, t is time and τ is the temporal integration variable.
The weighting function u(x,y ,t) represents the routing processes within the catchment
and varies in space. For example, runoff generated close to the outlet or close to
the streams will reach the outlet faster than runoff generated further away. u(x,y ,t),5

for a certain point in space, also changes with time as the flow velocities change with
changes in the catchment state. As an approximation, we assume in this paper that, for
a given catchment, the weighting function is constant within the integration limits both
in space and time. For a constant weighting function, Eq. (13) becomes a linear filter or
a convolution integral. In time, the weighting function is equivalent to a unit hydrograph10

that is constant between 0 and Ti and zero elsewhere. In space, the weighting function
is constant within the catchment area and zero elsewhere which is consistent with the
assumptions of Sauquet et al. (2000) and Skøien et al. (2003). The specific runoff at
the catchment outlet (runoff divided by catchment area) then becomes:

qi (t) =
1

AiTi

∫∫
Ai

t∫
t−Ti

R(x, y, t − τ)dτdxdy (14)
15

The runoff routing process is hence conceptualised as a linear space-time filter in this
paper. For simplicity, we assume that the filter kernel in space is a square with area
Ai (catchment size), and in time the filter kernel is a block unit hydrograph with time
base Ti as mentioned above. We assume a simple relationship between catchment
response time and catchment area:20

Ti = µAκ
i (15)

where µ and κ are parameters to be estimated from the data. For κ>0 the response
time increases with catchment size. Eq. (15) embodies the space-time connections of
the rainfall-runoff process from a linear filter perspective. Note that Eq. (15) applies
to runoff. For comparison, we also analysed catchment precipitation for which we25
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used the same aggregation procedure in space but a constant temporal support of
Ti=15 min, as consistent with the raingauge data.

In a geostatistical framework, the linear aggregation of Eq. (14) is represented by the
second moments. A point variogram of runoff represents the second moment of local,
instantaneous runoff. From the point variogram with zero support in space and zero5

support in time (i.e. instantaneous) one can estimate variograms that are valid for finite
support areas and finite support times by a procedure that is usually referred to as reg-
ularisation (Journel and Huijbregts, 1978). Conversely, it is possible to back-calculate
the point/instantaneous variogram from variograms based on finite supports (Skøien et
al., 2003). The point variograms are the basis of spatial estimation methods such as10

those of Sauquet et al. (2000) and Skøien et al. (2005). In addition, the point variogram
sheds light on the spatio-temporal structure of instantaneous runoff generated at the
local scale.

3.3.2 Implementation

The variogram value, given a certain distance, represents the expected variance of a15

process within an extent equal to this distance. If a variable is linearly aggregated,
each measurement is the average of the point process within the support of the mea-
surement. If we assume that the variance of catchment runoff is both dependent on
the spatial and temporal supports (A and T , respectively, dropping the index), for two
catchments of equal size the spatial regularisation technique of (Cressie, 1991, 66)20

can be extended to:

γst(hs|a, ht |T ) = 1
A2T 2

∫
A

∫
A

∫
T

∫
T
γst(|r1 + hs − r2|, |τ1 + ht − τ2|)dr1dr2dτ1dτ2−

1
A2T 2

∫
A

∫
A

∫
T

∫
T
γst(|r1 − r2|, |τ1 − τ2|)dr1dr2dτ1dτ2

(16)

where γst(r, τ) is the spatio-temporal variogram of the instantaneous point process, hs

is the separation vector between two catchments (with space lag hs= |hs |
)
, ht is the

time lag and a is the side length of the square that approximates a catchment, i.e.,25
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a=
√
A. The catchment size A has been taken as the median catchment size for all

catchments of a given size class (Table 1). Eq. 16 indicates that the regularised var-
iogram value between two catchments of size A with response time T is the variance
integrated in time and space between the two catchments, minus the integrated vari-
ance within one catchment. This concept is illustrated in Fig. 2. Each catchment is5

visualised as a spatio-temporal “volume” separated by spatio-temporal distances.
The number of integrals has been reduced here by using the distribution function of

spatio-temporal distances within and between catchments in a similar way as Western
and Blöschl (1999) and Skøien et al. (2003) but extended to space and time:

γ(hs |a , ht |T ) =
ht+T∫
ht−T

R max∫
0

γst(r, τ)f2st(r |(hs, a) , τ |(ht, T ) )dτdr−

T∫
−T

R max∫
0

γst(r, τ)f1st(r |(hs, a) , τ |(ht, T ) )dτdr

(17)

10

f1st(r |a , τ |T ) is the probability density function (pdf) of distances in space
and time within a catchment with spatial support a and temporal support T .
f2st(r |(hs, a) , τ |(ht, T ) ) is the pdf of distances in space and time between points in
two catchments with a centre-to-centre distance hs in space and ht in time. Rmax is
a practical integration limit. We can assume the distances in space and time to be15

independent, so the f1st and f2st can be separated into spatial and temporal parts:

γst(hs |a , ht |T ) =
ht+T∫
ht−T

R max∫
0

γst(r, τ)f2s(r |(hs, a) )f2t(τ |(ht, T ) )dτdr−

T∫
−T

R max∫
0

γst(r, τ)f1s(r |a )f1t(τ |T )dτdr

(18)

f1s andf2s are the pdfs in space which have been evaluated as in Western and Blöschl
(1999) and Skøien and Blöschl (2006ab). f1t and f2t are the pdfs of the temporal dis-
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tances, within and between catchments, respectively, which for a block unit hydrograph
are:

f1t(τ |T ) =
{ 1

T

(
1 − τ

T

)
τ > 0

1
T

(
1 + τ

T

)
τ ≤ 0

(19)

and:

f2t(τ |(ht, T ) ) =


(1 − ht

T + τ
T )/(ht −

h2
t

2T + T
2 ) 0 ≤ τ < ht,0 < ht < T

(1 + ht
T − τ

T )/(ht −
h2
t

2T + T
2 ) ht ≤ τ < ht + T, 0 < ht < T

T−ht+τ
T 2 ht − T ≤ τ < ht, ht ≥ T

T+ht−τ
T 2 ht ≤ τ ≤ ht + T, ht ≥ T

(20)

5

3.4 Parameter estimation of variograms

The analyses are organised into two parts. In the first part, variogram models are
fitted to the sample variograms of the small, medium and large catchment size classes
independently (Sects. 4.1 and 4.2). In the second part, one point variogram model is
fitted jointly to the three catchment size classes based on regularisation (Sects. 4.310

and 4.4).
In the first part we used a version of the weighted least-squares (WLS) method

(Cressie, 1985) to estimate the parameters of the variogram models by minimizing the
objective function:

Φ =
1

ns∑
i=1

nt∑
j=1

w(i , j )

ns∑
i=1

nt∑
j=1

w(i , j ) ·
[
γ̂st(hsi , htj )

γst(hsi , htj )
− 1

]2

(20)

15

where γ̂st(hsi , htj )is the sample variogram for one of the three catchment size classes
or that of point rainfall (Eq. 1), γst(hsi , htj )is one of the variogram models (Eqs. 9–12),
hsi and htj are the spatial and temporal lags, and ns and nt are the number of bins
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in space and time. w(i , j ) is the weight of each bin, with the indices i and j in spatial
and temporal directions, respectively. We used the square root of the number of pairs
in each bin as the weight, except that we increased this weight by a factor of 10 for
hsi=0 and htj=0. These lags represent the marginal variograms in space and time.
In a spatio-temporal estimation procedure, the marginal variograms will be important.5

As the bins on the margins only constitute approximately one tenth of the total number
of bins in the spatio-temporal variograms, the increased weights balance the impor-
tance of the margins with the rest of the variogram. The SCEUA-method (Duan et al.,
1992) was used to search for the best parameter set. The search was carried out ten
times for each model type and catchment size class with different starting values, to10

reduce the probability of finding local minima. The variogram models associated with
the smallest objective function of the ten trials are shown. The procedure was repeated
for each catchment size class (including point precipitation), each variogram model and
for precipitation and runoff separately.

In the second part, the parameters of a point variogram were estimated instead.15

For a certain point variogram, we estimated spatio-temporal variograms for the three
catchment size classes by regularisation (Sect. 3.3). These regularised variograms
were jointly compared to the sample variograms of the three catchment size classes.
The same objective function was used as above, but the summation was over all catch-
ment size classes. Regularised variogram models associated with the smallest objec-20

tive function of ten trials are shown. The procedure was repeated for each variogram
model and for precipitation and runoff separately.

The scales of the diagrams of the spatio-temporal variograms are scaled linearly in
terms of the bin spacing. As the bins have been selected approximately logarithmically
(with the exception of zero lags) the axes are close to logarithmical.25
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G. Blöschl

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

EGU

4 Results

4.1 Separately fitted variograms of precipitation

The left column of Fig. 3 shows the spatio-temporal sample variograms of point and
catchment precipitation, sorted by catchment size class. The total variance of precipi-
tation is similar in time and space within the spatial and temporal extents of the data set5

(300 km, 1000 h shown here). The variogram values increase with increasing spatial
and temporal distances which indicates the presence of spatial and temporal correla-
tions as would be expected. There is a reduction in the variogram values as one moves
from points to larger catchments which reflects the smoothing as a result of an increas-
ing support. Columns two to five of Fig. 3 show the spatio-temporal variogram models10

that have been independently fitted to the sample variograms. For all models, with the
exception of the fractal model, the visual fits are very good and the differences between
the models are small. Fig. 4 shows the margins of the sample variograms and the fit-
ted variogram models for precipitation. The margins of a spatio-temporal variogram are
equivalent to the spatial and temporal variograms. The sample variograms are repre-15

sented by points, while the fitted variograms are represented by lines. For a certain
catchment size class, points and lines are of the same colour. All models, except for
the fractal model, provide close fits. The shortest spatial lags show some differences
between the models as this is where the models have been extrapolated beyond the
data. Table 2 gives the values of the objective function for each variogram model and20

catchment size class as well as the average over the three size classes. The table
indicates that the product-sum model can be best fitted to the sample variograms of
precipitation. It should be noted that the product-sum model has the largest number of
parameters, so the good fits may be both a result of a suitable model structure and the
large number of degrees of freedom.25
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4.2 Separately fitted variograms of runoff

The left column of Fig. 5 shows the spatio-temporal sample variograms of runoff, sorted
by catchment size class. The variograms indicate that there is a higher variance in
space than there is in time within the spatial and temporal extents of the data set.
The spatio-temporal variograms increase monotonously with spatial and temporal dis-5

tances. There is a much stronger variance reduction effect between the variograms of
the different catchment size classes than for precipitation. It is obvious that the catch-
ment size has an efficient smoothing effect. Columns two to five of Fig. 5 show the
variogram models that have been fitted separately for each catchment size class. All
models can be fitted well to the sample variograms, with the exception of the fractal10

model, and the differences between the models are small. Figure 6 shows the margins
of the sample variograms and the fitted variogram models. The figure shows in more
detail the much stronger variance reduction from smaller to larger catchments than that
of precipitation. Table 3 gives the values of the objective functions for the fitted vari-
ogram models. The product-sum model offers a slightly better fit than the exponential15

and the Cressie-Huang models.

4.3 Jointly fitted variograms of precipitation

Figure 7 shows the results of jointly fitting the variograms of precipitation to the three
catchment size classes. The variograms in the left column are again the sample var-
iograms. The letters on the left side of the figure relate to the respective rows and20

denote estimation (E), verification (V) and fitting (F). The sample variograms of rows
three, four and five have been used for the fitting of the models in columns two to five.
With the exception of the fractal model, there are only small visual differences between
the fitted variograms. The sample variogram of row two (point data of precipitation with
a temporal support of 15 min) can be used for verification. For this case, the differences25

between the models are slightly larger than for the fitting but the models are still rather
close to the sample variogram, again with the exception of the fractal model. The top
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G. Blöschl

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

EGU

row of Fig. 7 shows the back-calculated point variograms valid for zero temporal and
zero spatial supports, i.e. instantaneous point variograms. These do differ between the
variogram models with the fractal and Cressie-Huang models giving larger sills than the
other models. The exponential and product sum models are rather similar.

The margins of the variograms of Fig. 7 are shown in Fig. 8. The margins more5

clearly show that the overall fits are good to very good. The margins of the fractal
model are less biased than the rest of the spatio-temporal variogram, especially along
the spatial axis. As all catchment size classes have the same temporal support (15 min)
the fractal model does not estimate any temporal variance reduction with increasing
catchment size. The temporal variograms indicate that the Cressie-Huang and product-10

sum models slightly underestimate the temporal variance of point precipitation with a
temporal support of 15 min. The exponential model performs best on the margins.

Table 4 shows the values of the objective function for the fitted variogram models.
The product-sum model offers a slightly better fit than the exponential and the Cressie-
Huang models but for the verification case (point precipitation with temporal support15

of 15 min) the exponential model is the best model. The objective function for the
goodness of fit (small, medium, large catchment sizes classes) is around 0.01 (with
the exception of the fractal model) which is similar to the separate fitting (Table 2).
This indicates that the regularisation is fully consistent with the catchment precipitation
data. Note that the joint fitting (Table 4) has only one third of the free parameters of20

the separate fitting. This comparison tests the assumptions of regularisation in space,
i.e., the approximation of the catchments by squares with an area equal to the median
of each size class. It is clear that this approximation is sufficiently accurate for the
purposes of regularisation. In the verification case (Table 4, right column) the errors
are somewhat larger (0.01–0.03 depending on the model, excluding the fractal model)25

but in absolute terms this is still a small number.
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4.4 Jointly fitted variograms of runoff

Regularised spatio-temporal variogram models were fitted to the sample variograms of
runoff jointly for all catchment size classes and are shown in rows two to four of Fig. 9.
There are only minor differences between the regularised variograms from the different
models, and they are all similar to the sample variograms. The exception is the fractal5

model which cannot be fitted as well. It should be noted that this is the model with the
smallest number of parameters, so a poorer fit would be expected. The point variogram
models back-calculated by the procedure (Fig. 9, top row) exhibit significantly shorter
spatial correlation lengths than any of the catchment scale variogram models. The
point variogram models differ in terms of their sills (i.e. the overall levels). Similar to10

precipitation, the Cressie-Huang and fractal models have the largest sills. It is clear that
there is substantial uncertainty associated with these variograms. However, for prac-
tical applications this may not be important if the spatio-temporal estimation of runoff
is applied to catchments of a size range similar to that used here, as the regularised
variograms based on these point variograms are all very similar.15

Figure 10 shows the margins of the sample variograms and the fitted regularised
models for runoff. There are only small differences between the exponential, Cressie-
Huang and the product sum models. The temporal margins are almost perfectly mod-
elled, while there are minor deviations between the spatial sample variograms and the
estimated variograms. The point variograms are shown in light blue. For the fractal20

model, the point variogram is larger than the range shown. Table 5 indicates that the
variogram models give almost equally good fits with the exception of the fractal model.
The objective functions of the exponential, Cressie-Huang and product sum models
range between 0.02 and 0.03. This is larger than those of the separately fitted var-
iograms (around 0.01 in Table 3) which is likely related to the simplifications of the25

analysis including the assumptions on the unit hydrograph and the general assumption
of linearity. However, the absolute values of the objective functions for the three models
are still very small indicating overall excellent consistency.
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All variogram models have been fitted ten times with different starting values which
produced somewhat different parameter sets. This is because of local minima in the
objective function. For the presentation we have selected the parameter sets with
the smallest objective functions. To illustrate the uncertainty around these best fits
we selected, for each model, the five best parameter sets and computed the average5

and the coefficient of variation (CV) for each parameter. The CV is a measure of the
uncertainty of the parameters. These statistics are shown in Table 6, together with the
values of the corresponding objective functions. Overall, the uncertainty depends on
the parameter estimated. For some parameters, the uncertainty is very small (e.g. d1)
but for other parameters the uncertainty is substantial. These differences are related to10

the sensitivity of the shape of the variogram to individual parameters. The parameters
with the smallest sensitivity have the largest uncertainty but this may not be important
for spatio-temporal estimation. It was more difficult to find suitable parameter sets for
the product-sum model than for the other models. This is because it is the model
with the largest number of parameters. In order to obtain suitable parameters, the15

parameter search was initiated with parameter sets found in previous optimisation runs.
Because of the presence of local minima this tends to reduce the variability of the
estimated parameters. The CV values of the parameters of the product-sum model in
Table 6 hence tend to be smaller than those of the other models. A parameter that
is of particular interest is the exponent in the relationship between space and time20

supports, κ. The uncertainty of this parameter ranges between 1 and 38% depending
on the model. The order of magnitude of κ is hence a meaningful estimate. With the
exception of the fractal model, for which the fitting was not very good, the κ values of
the different models are similar and range between 0.3–0.4. The parameters of the
non-stationary parts (as, at, α and β) are not well constrained as they are controlled by25

the large time scale and space scale variability present in the data. For the exponential
and Cressie-Huang models, the levels (or sills) of the point variograms are defined
by parameters a1 and a2, respectively. The a2 value is significantly larger than a1
reflecting the larger sills of the Cressie-Huang model as illustrated in Figs. 9 and 10.
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5 Conclusions

5.1 Sample variograms

A comparison of the spatio-temporal variograms of runoff and precipitation indicates
that, for a given catchment size class, the variograms are fundamentally different. The
left column of Fig. 5, as compared to the left column of Fig. 3, suggests that the plots5

of the runoff variograms are much more elongated in the time direction indicating that
the time correlations of runoff are much more persistent than those of precipitation.
Obviously, this is because of the time delays as rainfall passes through the catchment
system. The contour lines of the variogram values give an indication of the character-
istic velocities (Skøien et al., 2003). For precipitation of all catchment classes, a typical10

pair of length and times scales is 70 km and 2 h which suggests a typical characteris-
tic velocity of 10 m/s. This is similar to the characteristic velocities found in Skøien et
al. (2003) and consistent with the schematic of space time scales of Blöschl and Siva-
palan (1995). For runoff, again for all catchment size classes, typical pairs of length and
times scales are 2 km and 2 h, 20 km and 20 h, and 50 km and 100 h. This translates15

into typical characteristic velocities of 0.27, 0.27 and 0.14 m/s, respectively. These
characteristic velocities are somewhat faster than those found in Skøien et al. (2003),
which may be related to the higher temporal resolution of the data. The data resolve
the event scale in more detail, hence one would expect the estimated scales to be
associated with events. The slower characteristic velocities with increasing catchment20

size are likely related to the larger groundwater contribution in larger catchments.
Independently fitting variogram models to each catchment size class gave excellent

to good fits for all the variogram models considered here with the exception of the frac-
tal model. The product-sum model was generally better than the other models for both
runoff and precipitation. The differences in the goodness of fit may be partly related25

to the degrees of freedom; the fractal model has the smallest number of parameters,
the product-sum model the largest number of parameters. The objective function is di-
mensionless, so a comparison of precipitation and runoff is meaningful. The objective
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functions for runoff and precipitation are similar (both around 0.01 in Tables 2 and 3)
indicating that the variogram models can be fitted equally well to runoff and precipita-
tion.

The variograms change as one moves from small to medium sized and large catch-
ments. The catchment scale effects are significantly larger for the case of runoff than5

for precipitation, i.e., in the case of runoff the variance reduction with catchment area
is much larger (Figs. 3 and 5). Also, the temporal correlations increase more strongly
with catchment area which, again, is related to the travel time of water in the catch-
ments. The stronger time aggregation effects of runoff, as compared to precipitation,
may explain the stronger variance reduction with spatial scale than that predicted by10

spatial aggregation, found by Woods et al. (1995).

5.2 Space-time regularisation

The regularisation of precipitation is used here for two purposes; to separate the spa-
tial aggregation effects (moving from point rainfall to catchment rainfall) from spatio-
temporal effects that involve runoff routing; and to test the spatial aggregation proce-15

dure, in particular the assumption of approximating catchments by squares and the use
of a constant catchment size equal to the median in each size class. The comparison
of back-calculated point precipitation (zero spatial support, 15 min temporal support) in
Fig. 7, second row suggests that the assumptions are indeed appropriate for the data
set used here, so the spatial regularisation of runoff, that uses the same procedure,20

is also valid. The objective functions of the joint fitting (Table 4) are close to the aver-
age objective functions obtained by the separate (direct) fitting (Table 2), i.e., around
0.01 in both cases (exponential, Cressie-Huang and product-sum models). This further
corroborates the validity of the regularisation procedure.

For the case of runoff, however, the objective functions of the joint fitting (Table 5)25

are larger than those of the separate fitting (Table 3). For the joint fitting, the errors
of the exponential, Cressie-Huang and product-sum models range between 0.02 and
0.03, depending on the model, while they are around 0.01 for the separate fitting. This
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G. Blöschl

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

EGU

means that, for runoff, the space-time aggregation effects of catchments are not fully
consistent with the assumptions made here. Specifically, the simplifications include
the assumptions of a block unit hydrograph, the general assumption of linearity and,
perhaps most importantly, a single relationship between catchment size and catch-
ment response time. However, the overall magnitude of the objective functions are still5

very small (i.e., errors of 0.02–0.03) indicating that the first order effects of the spatio-
temporal variability of runoff is indeed captured well by conceptualising catchments as
linear space-time filters. The stronger time aggregation effects of runoff, as compared
to precipitation, have been represented by a relationship between spatial and temporal
supports (Eq. 15) which seems essential in representing the change of spatio-temporal10

runoff variograms with changing catchment size.
For precipitation, we found that the point scale product-sum model provided slightly

better variograms than the other models in terms of the goodness of fit to the small,
medium and large catchment size classes but there was no advantage over the other
models in the verification case of 15 min point precipitation. The fit of the fractal model15

was poorest but it was the model with the smallest number of parameters. For runoff,
the goodness of fit of the exponential, Cressie-Huang and product-sum models was
good (0.02–0.03) suggesting that all three models are suitable for the spatio-temporal
estimation of runoff in the study area. Because of the small differences between the
models, the choice of model could be based on computational convenience. It is in-20

teresting that the product-sum model reduces to a separable model with the fitted pa-
rameters, i.e. a3s=a3t=0.0070 and k=142, which is very close to the condition for the
product-sum model to reduce to the separable model of Rodŕıguez-Iturbe and Mej́ıa
(1974). Separable models are computationally more convenient for some applications
(Fuentes, 2006). The spatial variogram fits in this paper (Fig. 10 right column) are as25

good as or better than those of Skøien et al. (2003) (their Fig. 6b) who used spatial
aggregation only. In addition, we can represent the temporal aggregation effects well
(Fig. 10 left column).
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5.3 Interpretation of point variograms of runoff

The point variograms of runoff, i.e. the variograms for a local runoff generation process
with zero spatial and temporal supports, differ between the models. The fractal model
gives the highest point variogram. This model, however, should be treated with caution
as the model fits are not very good. For the Cressie-Huang model, the overall level5

or sill is higher than for the exponential and product sum models. The point model
has been estimated from catchment size classes of 42, 119 and 605 km2. These are
the spatial supports. The associated temporal supports are, depending on the model
(Eq. 15, Table 6), approximately 7, 11 and 20 h. This means that the back-calculation
procedure involves substantial extrapolation to smaller scales, so the differences be-10

tween the variogram models are not surprising. The shapes of the three point models
are, however, not too different (Fig. 10 and Fig. 9 top row). It should also be noted
that for estimation purposes one is usually interested in catchment sizes that are not
much smaller than the smallest catchments considered here, e.g., 1 km2. For these
catchment sizes, the variograms are much more similar. For the practical application15

of spatio-temporal estimation methods in catchment hydrology the differences in the
point variograms may hence not be important.

The correlation lengths of the back-calculated point variograms of runoff are on the
order of a kilometre or less, while the small catchments showed correlation lengths of
around 10–20 km (Fig. 10 right column). Skøien et al. (2003) found a similar value20

of 0.7 km for point variograms of runoff. The short correlation lengths are plausible
as local runoff will likely vary much over short spatial scales because of the variability
of local infiltration and soil moisture characteristics (Western et al., 2002, 2004). It is
also of interest to compare the sills or overall levels of the point precipitation and point
runoff variograms. For the exponential, Cressie-Huang and product sum models of25

point/instantaneous precipitation the sills in space are 0.04, 0.15 and 0.06 mm2×h−2,
respectively (Fig. 8 right column). The corresponding values for runoff (Fig. 10 right col-
umn, with units adjusted) are 0.14, 0.26 and 0.12 mm2×h−2, respectively. This means
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that the local variability of runoff is between twice and three times the variability of local
rainfall. This is plausible as temporal and spatial soil moisture variability contributes to
making local runoff more variable than rainfall. In time, local runoff is more coherent
than rainfall (Fig. 10 left column as compared to Fig. 8 left column). This, again, is
plausible because of the memory induced by soil moisture and local ponding.5

5.4 Catchments as space–time filters

The high temporal resolution of the data used here (15 min) allowed us to analyse the
connections of space-time variability in more detail than has been possible in Skøien
et al. (2003) who used daily data. A time step of 15 min resolves individual events
even in the small catchment class. The kernel or space-time filter characteristics shed10

light on the space-time scaling behaviour of the rainfall-runoff transformation (Eq. 15).
The parameter that is of particular interest is the exponent of the relationship between
space and time supports, κ. With the exception of the fractal model, for which the fitting
was not very good, the κ values of the different models are similar and range between
0.3–0.4. With a µ value of around 2, this range of κ gives response times of about 5 h15

and one day for catchments of 10 and 1000 km2 area, respectively. These are plausible
event response times for the catchments considered here and are shorter than the low
flow recession time scales to be expected in the catchments. The estimated response
times seem to reflect large events with relatively short response times, as these events
are associated with large absolute differences in the data set and hence contribute20

most to the second statistical moment. The estimated range ofκ represents the av-
erage scaling characteristics of catchments within the study region. Obviously, for an
individual catchment, the response time may deviate significantly from the general re-
lationship of Eq. (15). Figure 3 of Merz and Blöschl (2003), for example, shows a map
of the deviations from such a general relationship based on an exponent of κ=0.35.25

However, interpreted as an ensemble average, the range found here is fully consis-
tent with analyses of observed runoff response in numerous catchments (e.g. Fig. 11.4
of Anderson and Burt, 1990; Pilgrim 1987; Corradini et al., 1995). Similarly, typical
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values used in regional modelling studies are within this range. For example, Blöschl
and Sivapalan (1997) used an exponent of κ=0.35 in analysing the spatial scaling be-
haviour of flood frequency. The consistency suggests that the concept of catchments
as space-time filters is indeed meaningful. It should be noted that, if known, the devia-
tions of catchment response times from a general relationship could be included in the5

space-time filter framework proposed here.
Spatio-temporal point variograms of runoff as derived in this paper could be used in

spatio-temporal estimation models similar to the TOPKRIGING approach of Skøien et
al. (2005). Initial analyses (Skøien and Blöschl, 2005) have demonstrated the feasibility
of such an approach for estimating runoff time series in ungauged catchments. This10

method would be particularly useful for filling in missing data of streamflow records
based on the records in neighbouring catchments. We have treated the precipitation
variograms separately from the runoff variograms in this paper. Another extension of
the work reported here would be to combine these two analyses. This could be based
on similar concepts as those proposed by Woods and Sivapalan (1999).15
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Blöschl, G. and Sivapalan, M.: Process controls on regional flood frequency: Coefficient of
variation and basin scale, Water Resour. Res., 33, 2967–2980., 1997
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Table 1. Data series used in this paper.

Data type Size class Size range Median size Number of Extent of domain Time resolution Period
(km2) (km2) stations (km) (min)

Point precipitation – Point Point 991 700 15 1981–1997

Catchment precipitation Small 3–71 35 193 700 15 1981–1997
Medium 72–236 125 193 700 15 1981–1997
Large 241–131 000 670 193 700 15 1981–1997

Runoff Small 10–71 42 142 700 15 1971–2000
Medium 72–248 119 178 700 15 1971–2000
Large 251–131 000 605 168 700 15 1971–2000
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Table 2. Objective function (Eq. 21) for the variogram models of precipitation fitted inde-
pendently to spatio-temporal sample variograms for small, medium and large catchment size
classes. Average refers to the average of the objective functions from the three catchment size
classes.

Variogram model Point Small Medium Large Average
catchments catchments catchments

Exponential model 0.0036 0.0132 0.0122 0.0123 0.0126
Cressie-Huang model 0.0121 0.0122 0.0125 0.0062 0.0103
Product-sum model 0.0036 0.0094 0.0062 0.0042 0.0066
Fractal model 0.0992 0.1285 0.1310 0.1307 0.1301
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Table 3. Objective function (Eq. 21) for variogram models of runoff fitted independently to
spatio-temporal sample variograms for small, medium and large catchment size classes. Aver-
age relates to the average of the objective functions for the three catchment size classes.

Variogram model Small Medium Large Average
catchments catchments catchments

Exponential model 0.0094 0.0095 0.0151 0.0113
Cressie-Huang model 0.0135 0.0209 0.0216 0.0186
Product-sum model 0.0082 0.0083 0.0110 0.0092
Fractal model 0.0851 0.0878 0.0982 0.0904
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Table 4. Objective function (Eq. 21) for regularised variograms of precipitation fitted jointly to
the spatio-temporal sample variograms for small, medium and large catchment size classes,
denoted as ”total”. Point refers to the objective function for point precipitation with 15 min tem-
poral support which is the verification case.

Variogram model Total (fitted) Point (verification)

Exponential model 0.0113 0.0098
Cressie-Huang model 0.0145 0.0191
Product-sum model 0.0094 0.0304
Fractal model 0.1210 0.2549
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Table 5. Objective function (Eq. 21) for regularised variograms of runoff fitted jointly to the
spatio-temporal sample variograms for small, medium and large catchment size classes.

Variogram model Total

Exponential model 0.0269
Cressie-Huang model 0.0227
Product-sum model 0.0257
Fractal model 0.1544
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Table 6. Statistics of the objective function (φk) of the joint fitting of the runoff variograms;
estimated parameters of the space-time relationship of the supports (µ, κ); and estimated
parameters of the point runoff variogram (remaining lines). CV is a measure of the uncertainty
of the estimates.

Exponential model Cressie-Huang model Product-sum model Fractal model

Average CV Average CV Average CV Average CV

φk 0.0293 0.0786 0.0281 0.1176 0.0258 0.0158 0.1548 0.002
µ 1.8670 1.0422 2.5991 0.6058 2.0108 0.3027 0.3582 0.071
κ 0.4193 0.3841 0.3440 0.2777 0.3065 0.1298 0.7936 0.0123
as 0.0000 1.2773 0.0007 0.9102 0.0000 0.1613 0.0840 0.5811
at 0.0024 1.4488 0.0005 1.0493 0.0001 0.4936 0.0277 0.6813
α 0.5909 0.2939 0.2287 1.0096 0.6718 0.0385 0.0050 0.5056
β 0.1245 0.9893 0.0972 0.4798 0.1847 0.3471 0.0076 0.5847
a1 0.0131 0.1046
c1 0.0295 0.3589
d1 1.0298 0.0198
e1 1.6427 0.0548
a2 0.0256 0.2456
c2 0.1755 0.3966
d2 1.2517 0.0976
a3s 0.0070 0.0773
a3t 0.0070 0.0798
d3s 1.6841 0.0805
d3t 31.6109 0.1490
e3s 1.6814 0.0090
e3t 0.5550 0.1742
k 142.8483 0.0780
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G. Blöschl

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

EGU

Fig. 1. Network of measurement stations in Austria used in this paper. Precipitation gauges
(top); centroids of gauged catchments (bottom) (small catchments shown as plusses, medium
sized catchments as diamonds, large catchments as squares).
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Fig. 2. Schematic of variance estimation between two catchments 1 and 2 and a range of time
lags. Thin arrows represent some of the spatio-temporal pairs of data points.
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Fig. 3. Spatio-temporal variograms of catchment precipitation. Sample variograms (left col-
umn) and independently fitted variogram models (columns 2–5). The rows relate to different
catchment size classes (small, medium, large) including point precipitation in the top row. The
horizontal axes are space lag, the vertical axes are time lag.
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Figure 4. Temporal (left) and spatial (right) margins of the spatio-temporal variograms of 

catchment precipitation as in Fig. 3. Sample variograms are shown as points, fitted variogram 

models as lines.   

Fig. 4. Temporal (left) and spatial (right) margins of the spatio-temporal variograms of catch-
ment precipitation as in Fig. 3. Sample variograms are shown as points, fitted variogram models
as lines.
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G. Blöschl

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

EGU

Fig. 5. Spatio-temporal variograms of runoff. Sample variograms (left column) and indepen-
dently fitted variogram models (columns 2–5). The rows relate to different catchment size
classes (small, medium, large). The horizontal axes are space lag, the vertical axes are time
lag.
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Figure 6. Temporal (left) and spatial (right) margins of the spatio-temporal variograms of 

runoff as in Fig. 5. Sample variograms are shown as points, fitted variogram models as lines.   

Fig. 6. Temporal (left) and spatial (right) margins of the spatio-temporal variograms of runoff as
in Fig. 5. Sample variograms are shown as points, fitted variogram models as lines.
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Fig. 7. Spatio-temporal variograms of catchment precipitation. Sample variograms (left col-
umn) and jointly fitted variogram models (columns 2–5, rows 3–5). Row 2 (point precipitation,
temporal support of 15 min) has not been used in the fitting and is used for verification. Top
row shows the back-calculated variograms for zero spatial and temporal supports (instanta-
neous point precipitation). Letters “E”, “V” and “F” stand for estimation, verification and fitting,
respectively. The horizontal axes are space lag, the vertical axes are time lag.
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Figure 8. Temporal (left) and spatial (right) margins of the spatio-temporal variograms of 

catchment precipitation as in Fig. 7. Sample variograms are shown as points, jointly fitted 

variogram models (small, medium, large catchment size classes) as well as estimated 

variogram models (point 15 min, point instantaneous) as lines. 

Fig. 8. Temporal (left) and spatial (right) margins of the spatio-temporal variograms of catch-
ment precipitation as in Fig. 7. Sample variograms are shown as points, jointly fitted variogram
models (small, medium, large catchment size classes) as well as estimated variogram models
(point 15 min, point instantaneous) as lines.
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Fig. 9. Spatio-temporal variograms of runoff. Sample variograms (left column) and jointly fitted
variogram models (columns 2–5, rows 2–4). Top row shows the back-calculated variograms
for zero spatial and temporal supports (instantaneous point runoff ). Letters “E” and “F” stand
for estimation and fitting, respectively. The horizontal axes are space lag, the vertical axes are
time lag.
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Figure 10. Temporal (left) and spatial (right) margins of the spatio-temporal variograms of 

runoff as in Fig. 9. Sample variograms are shown as points, jointly fitted variogram models 

(small, medium, large catchment size classes) as well as estimated variogram model (point 

instantaneous) as lines. 

Fig. 10. Temporal (left) and spatial (right) margins of the spatio-temporal variograms of runoff
as in Fig. 9. Sample variograms are shown as points, jointly fitted variogram models (small,
medium, large catchment size classes) as well as estimated variogram model (point instanta-
neous) as lines.
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