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Abstract

Shallow water tables in the near-stream region often lead to saturated areas in catch-
ments in humid climates. While these saturated areas are assumed to be of importance
for issues such as non-point pollution sources, little is known about the spatial and tem-
poral behavior of shallow water tables and the resulting saturated areas. In this study,5

geostatistical methods are employed demonstrating their utility in investigating the spa-
tial and temporal variation of the shallow water table for the near-stream region. Event-
based and seasonal changes in the spatial structure of the shallow water table, which
directly influences surface saturation and runoff generation, can be identified and used
in conjunction to characterize the hydrology of an area. This is accomplished through10

semivariogram analysis and indicator kriging to produce maps combining supplemen-
tal soft data (i.e., proxy information to the variable of interest) representing seasonal
trends in the shallow water table with hard data (i.e., the actual measurements) that
represent variation in the spatial structure of the shallow water table per rainfall event.
The area used was a hillslope located in the Catskill Mountains region of New York15

State. The shallow water table was monitored for a 120 m×180 m near-stream region
at 44 sampling locations on 15-min intervals. Outflow of the area was measured at
the same time interval. These data were analyzed at a short time interval (15 min)
and at a long time interval (months) to characterize the changes in the hydrology of
the region. Indicator semivariograms based on transforming the depth to ground wa-20

ter table data into binary values (i.e., 1 if exceeding the time-variable median depth to
water table and 0 if not) were created for both time interval lengths. When considering
only the short time interval, the indicator semivariograms for spring when there is ex-
cess rainfall show high spatial structure with increased ranges during rain events with
surface saturation. During the summer, when evaporation exceeds precipitation, the25

ranges of the indicator semivariograms decrease during rainfall events due to isolated
responses in the water table. When summarized over a longer, monthly time interval,
semivariograms exhibited higher sills and shorter ranges during spring and lower sills
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and longer ranges during the summer. For this long time interval analysis, there was
a good correlation between probability of exceeding the time-variable median water
table and the soil topographical wetness index during the spring. Indicator kriging in-
corporating both the short and long time interval structure of the shallow water table
(hard and soft data, respectively) provided more realistic maps that agreed better with5

actual observations then traditional hard data alone. This technique to represent both
event-based and seasonal trends compensates for spatially sparse observations while
incorporating physical hydrology of the hillslope to capture significant patterns in the
shallow water table. Geostatistical analysis of the spatial and temporal evolution of the
shallow water table gives information about the formation of saturated areas important10

in the understanding hydrological processes working at this and other hillslopes.

1. Introduction

Water tables occurring in nature are highly variable in both time and space. This vari-
ability creates difficulty in predicting how water tables respond to rainfall events and
where saturated areas occur when the water table rises. This is troublesome because15

the position of the water table can determine which hydrologic pathways are active.
Regions with high water tables can promote the occurrence of saturated areas leading
to overland flow. How (i.e., through exfiltiration, direct rainfall, or other pathways) and
what (i.e., old or new water) water finds its way to these regions is not fully under-
stood making the variability in physical patterns of saturated areas difficult to monitor20

and predict (McDonnell, 2003). These saturated areas are often typified by highly per-
meable surface layers underlain by highly impermeable subsurface layers at shallow
depths. They act as runoff source areas causing runoff to be generated by rainfall
amounts exceeding soil storage capacities. The difficulty in capturing the dynamics of
these saturated source areas stems from the non-linear variability in both space and25

time exhibited among rain events and seasons. Due to this variability, researcher have
coined the term variable source area (VSA) to describe these areas (e.g., Dunne and
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Black, 1970; Hewlett and Hibbert, 1967; Dunne et al., 1975). While important in a pure
hydrology perspective (i.e., predicting runoff amounts, peak timing in hydrographs),
representing the spatial and temporal nature of VSAs is quintessential to modeling
and managing contaminant flow pathways in natural environments. As observed by
Grayson et al. (2002), there has been an increased focus in current research on spatial5

variability to account for where contaminants come from and where to invest financial
resources to improve water quality. Although the concept has been around for well over
a quarter of a century, it is obvious that the formation of VSAs and how they influence
water quality is still a hot topic for hydrologist.

Repeatedly, the call for better distributed data to aid in understanding hydrological10

processes, especially for data to identify processes controlling the formation of VSAs,
has gone out (Hillel, 1986; Klemeš, 1986; Hornberger and Boyer, 1995). New methods
of collecting and interpreting spatially distributed data to characterize VSAs have be-
come available. Snap shots of soil moisture using various remote sensing techniques
(Choudhury, 1991; Engman, 1991; Blyth, 1993; Verhoest et al., 1998; Troch et al.,15

2000) and field measurements (Western and Grayson, 1998; Mohanty et al., 2000;
Meyles et al., 2001; Walker et al., 2001; Wilson et al., 2004) have been used to locate
regions concentrating water. These sampling techniques, however, may not be appli-
cable for all field sites. For example, the extremely effective and increasingly popular
technique incorporating time domain reflectrometry (TDR) sensors mounted to an all-20

terrain vehicle (Tyndale-Biscoe et al., 1998; Western and Grayson, 1998) is limited by
field accessibility. This type of sampling may not be an option for field sites with large
biota (e.g., trees, shrubs, corn), extreme geology (e.g., steep slopes, boulders, large
gullys), or excessive amounts of surface water (e.g., ephemeral streams, saturated
source areas). Satellite remote sensing techniques have their own difficulties such as25

signal interpretation, limited coverage, and low temporal and spatial resolution. While
both these methods are powerful, they are often too temporally sparse (i.e., low fre-
quency of sampling) to capture the spatial evolution of VSAs. High temporal resolution
measurements of depth to water table are becoming readily available due to inexpen-

1686

http://www.copernicus.org/EGU/hess/hessd.htm
http://www.copernicus.org/EGU/hess/hessd/2/1683/hessd-2-1683_p.pdf
http://www.copernicus.org/EGU/hess/hessd/2/1683/comments.php
http://www.copernicus.org/EGU/EGU.html


HESSD
2, 1683–1716, 2005

Spatial structure in
shallow water table

S. W. Lyon et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Print Version

Interactive Discussion

EGU

sive, self-contained, water level data loggers (e.g., TruTrack, Inc). These loggers can
be employed to monitor depth to water table from the field scale up to the watershed
scale. The ability to capture short term changes in the water table depths makes it
possible to observe the effects of storm events. Since the position of the water table
during storm events is crucial to VSAs, these measurement techniques provide new5

information where the runoff is being produced. However, few techniques are available
to summarize this enormous mass of data easily. Here we will show how geostatistics
lends itself naturally to characterize spatial patterns and how kriging can be used to
interpolate among the points to obtain realistic spatial patterns of water table heights
and saturated areas.10

Geostatistical analysis most commonly uses semivariograms to define the variance
between two observations as a function of the distance separating them. The main
parameters of the variogram are the nugget, the sill and the range. The range provides
a measure of the maximum distance over which spatial correlation affects the variable
of interest. The sill represents the spatial variance of two distant measurements. The15

nugget represents the variance between two close measurements. The nugget gives
the variance in the measurement due the occurrence of spatial patterns smaller than
the sampling interval and due to the inherent variability of the sampling device. Within
the realm of semivariogram techniques, indicator semivariograms provide a method to
capture extreme values (Journel, 1983). Indicator semivariograms have been used to20

assess risk of contamination in various constituents such as heavy metals (Webster
and Oliver, 1989; Smith et al., 1993; Goovaerts and Journel, 1995) and assess un-
certainty in soil properties (McKenna, 1998; Pachepsky and Acock, 1998; Goovaerts,
2001). In the most basic form, indicator semivariograms treat data as a binary indi-
cator with respect to a threshold value (i.e., 1 if threshold is exceeded; 0 if threshold25

is not exceeded). This can be used to identify clustering of extreme values in space.
More complete discussions of indicator semivariograms, and the associated kriging,
along with many possible derivatives in algorithms and methodology are provided in
Goovaerts (1997), Deustch and Journel (1992), and Chilès and Delfiner (1999).
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Semivariograms provide the information about the spatial structure needed to inter-
polate among data points using kriging. Kriging of various forms has been used to
interpolate maps of potentiometric surfaces from water table data (Delhomme, 1978;
Neuman and Jacobsen, 1984; ASCE, 1990). The goal of most research of this nature
is how to best interpolate discrete spatial observations into full coverage. To this end,5

some research has looked at using existing information about the landscape to sup-
plement point observations of the water table. Hoeksema et al. (1990) supplemented
well data with elevation in mapping of a phreatic surface using a cokriging approach.
More recently, Desbarats et al. (2002) used kriging with external drift incorporating the
TOPMODEL topographic index of Beven and Kirkby (1979) to interpolate water table10

elevations. Their results showed that predictions made accounting for the traditional
topographic index resulted in somewhat non-physical water table behavior in regions
of high fluctuations in ground water and sparse observations. Lyon et al. (2005) used
indicator kriging (IK) to incorporate soft data developed using logistic regression. “Soft”
data are local information that is a proxy to the variable of interest and need not relate15

directly (Goovaerts, 1997) as opposed to “hard” data which are actual measurements
of the variable of interest. They were able to improve interpolations for low antecedent
rainfall condition rain events using pre-event water table positions as a predictor of sat-
uration. The analysis of Lyon et al. (2005) required information about the pre-event
depth to water table that may not be available and cannot be extended beyond the20

boundaries of the study site. Also, the study made observations on only large storm
events and did not look at how spatial structure changed through time.

This research looked at the spatial and temporal evolution of the shallow water table
in the near stream region of a headwater catchment. The position of this shallow water
table was directly related to the formation of saturated source areas. Our goal was25

to characterize both short time interval and long time interval variations, thus better
understand event-based and seasonal hydrologic responses, in the spatial structure
of the shallow water table using semivariogram analysis. This type of geostatistical
analysis is capable of representing large amounts of data easily. Depth to ground wa-
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ter was measured at 44 locations for 5 min intervals from March 2004 through August
2004. These data were used to develop indicator semivariograms at small time inter-
vals over the sampling period using the time-variable median depth to water table as a
threshold. By investigating the small time interval changes in characteristics of these
indicator semivariograms, the event-based processes driving runoff in the region could5

be identified. To investigate long time interval changes in the spatial structure of the
shallow water table, probability of exceeding the time-variable median depth to water
table was computed for each month. This probability was related to the soil topographic
wetness index (STWI) for the study site to demonstrate seasonal influences on the spa-
tial structure of the shallow water table. Both the event-based and seasonal influences10

can be incorporated into a kriging interpolation to visualize the physical patterns occur-
ring in the shallow water table on the hillslope. This geostatistical analysis provides a
manner to reinforce spatial observations based on limited, discrete observations using
an understanding of the hydrological processes operating on the hillslope. Also, this
analysis provides a utility to represent the variability of the shallow water table which15

affects the formation of saturated regions in both time and space. This representation
gives insight to the dominant hydrological patterns in terms of runoff generation at the
hillslope scale which can then be located with the help of kriging interpolations. The
evolution of these patterns in both space and time directly influences runoff generation
and contaminant transport. This makes the correct characterization and representa-20

tion of them essential for hydrologists interested in predicting water movement from the
landscape to the stream.

2. Site description and data

The 2.44 ha study site on New York State Department of Environmental Protection
(DEP) owned lands is part of a 2 km2 sub-watershed located in the southwest corner25

of the 37 km2 Townbrook watershed in the Catskill Mountain region of New York State
(Fig. 1). The landuse on the study site is uniformly grass/shrub with forested regions
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upslope (south) the study area. A survey of more than 200 points was conducted to
supplement the existing 10 m digital elevation model (DEM) and derive 1-m interval
contours for identifying small-scale topographic features. The study site covers the
near stream region approximately 120 m along the stream (bordering the northern side
of the study site) and 180 m upslope (south) from the stream and elevation varied from5

585 m to 600 m above mean sea level with slopes varied from 0◦ to 8◦. Soil Survey
Geographic Database (SSURGO) soil maps were used to determine soil types and
properties. Two soil types dominate the study site. The northern (down slope) half of
the study site consisted of approximately 30 cm deep gravely silt loam. The southern
(up slope) half of the study site consisted of approximately 56 cm deep silt loam. The10

soil is underlain by a restrictive fractured bedrock layer. These shallow soils were
typified by a higher hydraulic conductivity (1.4×10−5 m/s) in the surface material and a
lower hydraulic conductive (1.4×10−6 m/s) in deeper layers.

At 44 measurement locations piezometers were instrumented for continuous mon-
itoring depth to water table. The water levels in the upper 30 cm of the soil were15

recorded using WT-HR 500 capacitance probes manufactured by TruTrack, Inc, New
Zealand. Levels were recorded at 5-min intervals and averaged over 15-min inter-
vals for the study period from 10 March 2004 to 22 August 2004. The location of the
piezometers followed approximately two grid systems. The first consisted of 20 log-
gers on a 10×10 m grid near the stream (northern end) of the study site. In addition,20

24 loggers were located on a large spacing 30×40 m grid to record water table levels
upslope from the stream. A few capacitance probes failed for some periods to record
data and need to be repaired, recalibrated, or replaced. During these periods, the
sampling location was removed from the data set and assigned a ‘no data’ value and
not used in the analysis. At most, two sampling locations from the 44 sampling loca-25

tions were assigned ‘no data’ values at any given time. A tipping bucket rain gauge
with data logger was set on the site to record rainfall amounts. Also, two water level
loggers were placed in the stream above and below the study site to gauge the runoff
from during the sampling period. These water level loggers recorded the stream stage
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and were converted to flow using rating curves developed for the stream at both loca-
tions. Each rating curve was based on seven current-meter discharge measurements.
16% of all stream height observations required extrapolation beyond the highest known
point of the rating curve. Runoff from the hillslope was calculated as the difference in
flow downstream and upstream of the study site with negative values during low flow5

conditions removed. This was reasonable since there was only little catchment area
contributing from the other side of the stream for this stream segment (Fig. 1). Rain
data and stream data were not available for the last two weeks of the study period (from
6 August).

3. Methods10

Indicator geostatistics were used to characterize the spatial structure of the shallow
water table. To give a proportionate number of observations above and below the
threshold, the median depth to water table at each 15-min interval was used as the
threshold. Indicator variables were, thus, defined as:

Ii (zc(t)) =
{

1 if zi(t) ≤ zc(t)
0 if zi(t) > zc(t)

(1)
15

where Ii (zc) is the indicator value at sampling location i , zi(t) is the measured depth to
water table at sampling location i [cm] at a certain point in time t, and zc(t) is the me-
dian depth to water table [cm] at the same time t. The time-variable threshold ensured
that there were equal numbers of zeros and ones in the data set at any time step. With
a constant threshold, the number of ones would be time-variable which would cause20

artifacts in the geostatistical analysis. It should be noted that a one did not indicate a
wet location but rather a location that was wetter than 50% of the wells. The sets of
indicator variables for each 15-min time step were used to characterize spatial struc-
ture on a short time interval to describe event-based changes in the shallow water
table. Long time interval spatial structure at the study site was evaluated by dividing25
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the 15-min data into monthly intervals. Monthly intervals were selected because of
their ability to capture the seasonal variability of the spatial distributions of hydrolog-
ically active areas for this region (Agnew et al., 2005; Walter et al., 2001). For each
month (March through August), the frequency of the water table at a sampling location
exceeding the time-variable median water table (i.e., how often was the water table at5

a certain location among the 50% wettest locations) was computed to give a probabil-
ity of exceeding the threshold. This frequency also describes the prior probability of
exceeding the threshold used later for the development of soft data. Indicator variables
were selected because they give information about water table positions deeper than
detectable by the piezometers. Also, semivariograms based on indicators may provide10

additional information over traditional, measurement-based semivariograms for data
clustering in space (Western et al., 1998).

Semivariograms were constructed for both the short time interval and the long time
interval observations using the semivariance, γs(h), at a lag, h, of

γs(h) =
1

2N(h)

∑
(i ,j )

(Yi (z) − Yj (z))2 (2)
15

where, N is the number of pairs, Yi (z) and Yj (z) are the variable of interest at i and j ,
respectively, with summation over pairs (i , j ). For the short time interval, the variable of
interest was the indicator values at points i and j instead of measured values. For long
time interval, the variable of interest was the probability of exceeding the threshold at
i and j . Plotting the average semivariance for pairs grouped by separation distance or20

grouped into “bins” in semivariogram nomenclature against the average “bin” distance,
sample semivariograms were created with Eq. (2) to relate distance between sampling
location and semivariance. For the short time interval, the semivariance was normal-
ized with the variance of the observations to lower scatter around the sill. The sample
semivariograms were modeled the widely-used exponential relationship (Eq. 3).25

γe(h) = σ2
0 +
(
σ2
∞ − σ2

0

)(
1 − e

−h
λ

)
(3)
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γe(h) is the fitted semivariogram, σ2
0 is the nugget, σ2

∞ is the sill and λ is the correla-
tion length. This model reaches its sill asymptotically with the range (i.e., maximum
distance over which spatial correlation affects the variable of interest) defined as 3λ.
Thus, for the short time interval data, indicator semivariograms based on indicator
values defined with Eq. (1) were created and for the long time interval data, tradi-5

tional semivariograms were created from the probability of exceeding the time-variable
threshold. Using an automated fitting procedure programmed in Matlab v7r14 (The
Mathworks, Inc., 2004) exponential models for both the short time interval indicator
semivariograms and long time interval semivariograms were created. Since anisotropy
was found to be minimal for the study site (Lyon et al., 2005), only omnidirectional10

semivariograms were used in this study. The parameters of these models describe
the spatial structure of the shallow water table and were compared to measured runoff
and surface saturation on the hillslope. For this study, saturation was considered when
the depth to water table at a sampling location was less than 5 cm so the water table
is close to or at the soil surface. The area representing each sampling location that15

saturates was determined using Theissen polygons to compute the portion of hillslope
saturating.

For this study, two interpolation methods were used to visually identify patterns in
the shallow water table on the hillslope. The first was indicator kriging (IK) based on
the hard data alone. Using Eq. (1) to create hard data (i.e., indicator variables) from20

the short time interval data, interpolation between sampling locations (for this and all
subsequent interpolations) was made as ordinary kriging performed using the Geosta-

tistical Analyst extension available in ESRI© ArcMap™ v9 (ESRI, Inc., 2004). When
using indicator variables, the resulting IK is the probability of exceeding the defined
threshold. A major advantage of the IK approach is its ability to account for soft data25

(Deutsch and Journel, 1992). With this in mind, the second interpolation method for this
study was IK coupling hard data with soft data. Soft data can relate prior probabilities
about the indicator variables to auxiliary information, such as existing geographic con-
ditions (e.g. soil map, topography). To develop soft data for this study site, the relation
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between the prior probability (i.e., monthly frequency a sampling location exceeding
the time-variable median water table) and the soil topographical wetness index (STWI)
was investigated. Agnew et al. (2005) demonstrated that STWI was a good predictor of
saturation for this watershed based on a 30-year modeling simulation. STWI is defined
as:5

xSTW I = ln

(
a

tanβ DK̂s

)
(4)

where a is the area of the upslope watershed per unit contour length [m], tanβ is the
local slope, D is the depth of the soil [m] and K̂s is the mean saturated hydraulic con-
ductivity [m/day]. Values for a and tanβ were determined for the study site using the
D∞ algorithm of Tarboton (1997). D and K̂s were taken from SSURGO soil distribution10

maps for the study site. The STWI values from each sampling location were catego-
rized into unit intervals (i.e., sampling locations with STWI values between 8 and 9 in
the first category, between 9 and 10 in the next, etc.) and the average STWI was eval-
uated for each interval. This resulted in six total intervals. The average prior probability
for exceeding the median water table was also computed for each interval. A linear15

function relating STWI to prior probability was then used to create a continuous prior
probability map based on STWI or soft data. Residuals were evaluated between the
hard data and this map which were interpolated and merged with the soft data using a
method consistent with Goovaerts (1997). For comparison, the two interpolation meth-
ods were conducted on data from the six rainfall events causing the highest median20

water tables for the spring period (March through May).

1694

http://www.copernicus.org/EGU/hess/hessd.htm
http://www.copernicus.org/EGU/hess/hessd/2/1683/hessd-2-1683_p.pdf
http://www.copernicus.org/EGU/hess/hessd/2/1683/comments.php
http://www.copernicus.org/EGU/EGU.html


HESSD
2, 1683–1716, 2005

Spatial structure in
shallow water table

S. W. Lyon et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Print Version

Interactive Discussion

EGU

4. Results

4.1. Short time interval

Indicator semivariograms were computed for the study site at each of the 15 min sam-
pling intervals to look at the short time interval spatial structure. The threshold level for
the indicator semivariograms was time variable and set at the median depth to water5

table of all the sampling locations. This provided an equal number of sampling loca-
tions above and below the threshold level for any point in time. Exponential models
were fitted to the indicator semivariograms for various median water tables and at var-
ious times in the sampling period (Fig. 2). The sample indictor semivariograms were
calculated using 10 bins with bin sizes of 15 m. Many of the indicator semivariograms10

had a well defined sill and identifiable ranges. These indicator semivariograms provide
information about the spatial structure of the shallow water table for snapshots in time;
however, they provide no information about the evolution of the shallow water table with
time.

To look at this evolution along with changes in rainfall and runoff at the hillslope, time15

series were created over the sampling period. Frequent, low intensity storms were
more prevalent during the first half of the study period (March through mid-May) while
high intensity storms occur less frequently in the second half (Fig. 3A). Peaks in runoff
coincided with the rainfall events with large rainfall events producing more runoff from
the study site (Fig. 3B). The two largest runoff events occurred after periods of high20

antecedent rainfall and coincide with large volume rainfall events. The median depth
to water table fluctuates quickly, rising in response to rain events for the study site
(Fig. 3C). The median water table was consistently close to the ground surface during
March through early June. From mid-June through the end of August the median water
table was deeper with high fluctuations during rain events. The water table and stream25

response to rainfall at the study site was typical for this region. High water tables
near streams were maintained in spring (March through May) by interflow from either
snowmelt or rainfall from upslope areas. The range for the fitted exponential models
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was highly variable in time (Fig. 3D). The minimum range was about 9 meters and the
maximum 105 m.

From this time series, the importance the median water table plays in the hydrology
of the hillslope was investigated. The ranges for the short time interval indicator semi-
variograms decreased as the median water table rises (Fig. 4A). This trend changes5

when the median water table was about 10 cm deep. After this point, as the median
water table rises closer to the soil surface the ranges began to increase. The runoff
increases, as expected, when the median water table rises towards the soil surface
(Fig. 4B). There was a large increase in runoff observed when the median water table
was closer to the soil surface than 10 cm. There was also an increase in the saturated10

portion of the hillslope with decrease in median depth to water table (Fig. 4C). For each
2-cm increment in depth to water table the STWI values of all respective piezometers
were grouped together and the mean, along with maximum and minimum, were com-
puted. The mean STWI of all the saturated locations decreased as the median water
table rose towards the soil surface (Fig. 4D). Also, the minimum STWI for all the sam-15

pling locations that saturate tended to decrease as the water table rises to the soil
surface while the maximum STWI for all the sampling locations that saturate tends to
stay constant.

4.2. Long time interval

Monthly intervals were selected to characterize the long time interval spatial structure20

in the shallow water table. This interval sufficiently captures the seasonal variability
of the spatial distributions of hydrologically active areas (Agnew et al., 2005; Walter et
al., 2001). For each month (March through August), the frequency of the water table
at a sampling location exceeding the time-variable median water table was computed
and used to develop semivariograms. The semivariograms for the long time interval25

data all had well defined sills and ranges (Fig. 5, Table 1). The nugget values for all
months were similar ranging from 0.036 in August to 0.54 in March and April. Due to
uncertainty associated with these nuggets, no further conclusions could be drawn from
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the nugget values. Sills, which are representative of the variance of the measures,
varied from higher values during low median depth to water tables (0.193 in April, and
0.194 in May) to lower values during high median depth to water tables (0.147 in June
and 0.135 in July). The ranges for the exponential models were longest in June and
July at 73.8 and 144.4 m, respectively, and shorter during months with low median5

depth to water table.
The long time interval analysis provided a prior probability of exceeding the threshold

on a monthly basis. This prior probability representing seasonal variability, in turn,
defined soft data capable of being incorporated with hard data using IK techniques
to visualize variations in spatial patterns of the shallow water table. To create this10

soft data, the probability of exceeding the median water table was correlated to STWI
for March through August (Fig. 6). There was a noticeable difference in the relation
between prior probability and STWI when comparing March through May and June
though August. For March through May, the low depth to median water table due
to spring thaw caused increased prior probability with increased STWI with a higher15

slope in the linear regression equation. For June through July, the slope of the linear
regression equation was much lower. R2 values were low for July and August.

The combined influence of long time interval and short time interval information on
the spatial structure of the shallow water table was demonstrated visually for six rain
fall events using kriging techniques (Fig. 7). These events were selected because they20

produced the highest median water tables for the period from March through May (i.e.,
when there was a noticeable increase in probability with increase in STWI) and char-
acterize the hillslope response to rainfall for wet conditions (Table 2). For the 27 March
and 3 May events, IK interpolations based on hard data alone showed high probabil-
ity of exceeding the median water table in the near stream region. Also, there was a25

region of high probability extending up the hillslope. Within this upslope region, there
occurred discontinuous islands of higher probabilities. Incorporating soft data based
on seasonal trends in the spatial structure of the water table into the IK interpolation
reduced the occurrence of these isolated islands of high probabilities. For the events
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on 2, 13, and 26 April and 26 May, IK interpolations based on hard data alone gave
relatively high probability of exceeding the threshold for the area closest to the stream,
but little high probability in the region further upslope. Incorporating soft data, the near
stream region having high probability of exceeding the median water table was larger.
Also, the topographically converging region upslope from the stream was predicted as5

having higher probability of exceeding the threshold when incorporating the soft data
than when using hard data alone.

To quantify the improvement in interpolation made by incorporating soft data, jack-
knifing was used to cross validate the kriging interpolations. This method of cross
validation tests a kriging interpolation by dividing the original dataset to produce a test-10

ing and a training dataset. Randomly, 30% (14 of the 44 total) of the sampling locations
were removed from the original dataset to create a testing dataset leaving 70% (30 of
the 44 total) in a training dataset for analysis. To compare the interpolation methods,
root mean square error (RMSE) was computed between the observed values in the
testing dataset and predicted values using both methods. From these, the percentage15

reduction achieved by incorporating soft data evaluated. For each event, IK incorpo-
rating soft data reduces the RMSE for between the observed and predicted values
(Table 2). This reduction in RMSE reflects a better spatial representation of observed
depths to water table using IK with soft data.

5. Discussion20

Semivariograms based on probability of exceeding the median water table or the long
time interval analysis (Fig. 5) have a clear distinction between wet conditions (March,
April, and May) and dry conditions (June, July, August). This demonstrates the sea-
sonal controls on hydrology for this hillslope. During wet, spring conditions, shallow
water tables in the convergent zones lead to shorter ranges in the long time interval25

semivariogram results. This is similar to the results of Western et al. (1998b) for soil
moisture distributions in the Tarrawarra watershed. Locations where the water table
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is likely to rise during rainfall events are spatially closer together during wet conditions
than during dry. This agrees with the short time interval results where saturation causes
increased ranges in indictor semivariograms. Since the expansion and contraction of
saturated regions occurs quickly, the longer ranges seen during rain events in the short
time interval analysis are not reflected in the monthly, frequency-based analysis. The5

long time interval analysis is influenced by seasonal variations in shallow water table
while the short time interval analysis is influenced by the formation of surface satu-
rated areas due to individual rainfall events. When the median water table is close to
the surface, topographic converging areas concentrate interflow and produce regions
of higher water table. The higher water tables are prerequisite for the lateral expansion10

of large-scale saturated source areas seen in the short time interval analysis. Previous
work showed a correlation between pre-event depth to water table and probability of
saturation at the sampling locations during wet conditions (Lyon et al., 2005). During
the dry, summer period of the study (June, July, and August), there is a reduction in
variance and an increase in range for the long time interval analysis. The water table15

is more uniform in space on average for these months. Locations where the water
table is likely to rise in response to rainfall are spatially distributed across the hillslope.
Thus, the relation between STWI and prior probability (Fig. 4) shifts for these summer
months. The long term analysis provides more information about prior conditions for
the hillslope which describe the seasonal change in water table response as we move20

from the wet period to the dry period.
The short time interval analysis provides a way to describe changes in the spatial

structure of the shallow water table in response to rainfall events which, for this study
site, are influenced by the antecedent conditions. During wet conditions, the local wa-
ter table is close to the soil surface between rainfall events and, when rainfall occurs,25

the median water table raises producing surface saturation (Fig. 4C). The lateral ex-
tent of expansion is captured with the decreasing minimum (and constant maximum)
STWI for these saturated areas as the median water table approaches the soil surface
(Fig. 4D). Since these saturated regions expand along gradients of decreasing STWI,
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the indicator semivariograms exhibit increased ranges for these rainfall events produc-
ing large, expanding saturated areas. This reaction is common to watersheds where
saturation excess overland flow is considered a dominant pathway during wet season
rain events (Western et al., 2004). This lateral expansion of saturated areas has been
observed by other researchers in the Catskills due to accumulation of interflow water in5

the form of increased soil moisture at the hill bottoms relative to the steep parts of the
hills during wet periods (Frankenberger et al., 1999; Ogden and Watts, 2000; Mehta
et al., 2004). Some observed locations where saturation commonly occurs are those
where (1) the soil above the low conductivity layer is shallow, (2) the slope decreases
downhill, such as the toe-slope of a hill, or (3) in topographically converging areas. In10

this study, occurrences of exceeding the median water table, which my be an adequate
surrogate for saturation during high water table conditions, was observed at all three
locations. Shallower soils and a toe-slope occur in the region adjacent the stream while
a topographical convergence occurs in the upper hillslope.

Without additional information such as provided by environmental traces it is not15

possible to discern the exact hydrological pathways. Still, identifying spatial patterns of
saturation is assumed to provide important information when focusing on topics such
as non-point source pollution control (Walter et al., 2005). Throughout the observation
period, non-linear increasing runoff was observed when there were increasing satu-
rated areas (Fig. 4A). A possible interpretation is that as surface saturation regions20

expand, more rainfall is directly contributing to stream flow as overland flow. There
seemed to be a threshold above which the median water table must rise before runoff
to the stream increased dramatically (Fig. 4B). It is when the median water table raises
above this threshold that longer ranges are observed in the indicator semivariograms
due to expansion of surface saturated areas. The identification of these spatial patterns25

of saturation, which can be used to control where and when chemicals and nutrients
can be applied, can be an important hydrological component for non-point source pol-
lution control. Using kriging techniques (Fig. 7), the semivariogram analysis used to
investigate the spatial and temporal evolution of the shallow water table can be further
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employed to identify such physical patterns on the hillslope.
The use of geostatistical techniques, such as IK, is influenced by the number of sam-

pling locations. Western et al. (1998a) suggest that a large dataset is required to pro-
duce reliable results. For this study, since the water table was below the extent of the
sampling devices over parts of the sampling period, traditional, measurement-based5

semivariogram analysis was not an option. By transforming measures into indicator
values, water tables deeper than the sampling devices could still be included in the
analysis. The limited number of sampling locations can produce large fluctuations in
the indicator semivariogram ranges for the short time interval analysis. This can lead
to poor representations when kriging. However, the length of the sampling period has10

allowed for the use of soft data in combination with IK to create a more robust interpo-
lation of the observed data that incorporates different timescales. This compensates
for sparse spatial coverage and incorporates the seasonal variations in the hydrology
of the region into the dataset. The STWI used in this study correlated well with proba-
bility of exceeding the median water table during the wet period. This is similar to the15

long-term modeling results seen for this watershed by Agnew et al. (2005) where the
probability of saturation developed from a 30 years modeling study correlated well to
STWI. When the median water table is close to the soil surface, such as in periods of
snow melt, the probability of exceeding the median water table coincides to the prob-
ability of saturation. The influence of topography during drier periods when the water20

table is not near the soil’s surface, however, is not well established. For the wet period,
the soft data created with prior probability allowed for IK that represents the physical
process of the hillslope. This smoothed the kriging and eliminated islands of high prob-
ability of exceeding the threshold. These isolated regions are attributed to the sparse
nature of the point observations and position of sampling sites influencing the IK. Using25

soft data, the data are interpolated in a manner consistent with the underlying hydro-
logic processes for the hillslope to represent the influence of both event-based and
seasonal trends.

By incorporating the soft data with the IK, the overall error in interpolation for the data
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was reduced. This provides better information about where on the hillslope hydrologi-
cally active areas occur. These regions are extremely important in the development of
nutrient management plans and in control the transport of pollutants. Also, by devel-
oping soft data based on readily available spatial data (i.e., DEM), prior probabilities
could be developed from other analysis techniques if long time interval data such as5

those used in this study are not available. Lyon et al. (2005) improved interpolations by
incorporating soft data into IK, but these improvements are limited to locations where
the pre-event water table is known explicitly. Long-term modeling studies, such as that
of Agnew et al. (2005), can provide the prior probability to create soft data for fortifying
hard data observations. Thus, fewer observations can be made without compromising10

the robustness of the spatial data obtained. In addition, this soft data, when occurring
at a longer temporal scale, can provide information about seasonal variations in spatial
patterns that heavily influence hydrology. Data based on interpolations of this style
provide sources for validation of long-term risk assessment models. They can also aid
in the development of appropriate techniques to better model saturated area formation15

by spatially representing data about water table response to rainfall events. Incorpora-
tion of soft data leads to a more realistic representation of hillslope reaction to rainfall
events by including processes involved in the formation of saturated areas. This style
of geostatistical analysis gives a manner to organize and represent spatial changes in
the shallow ground water table. These changes occur at different temporal scales that20

can be integrated to better describe physical hydrology at the hillslope scale.

6. Conclusions

Geostatistical methods have been used to describe the spatial structure of the shal-
low water table in the near stream region. Using 44 sampling locations from a study
site in the Townbrook watershed in the Catskill Mountain region of New York State,25

indicator methods have been used to explore variations in both short time intervals
(15-min) and long time intervals (months). These time intervals were able to describe
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the event-based reaction of the shallow water table and the seasonal trends influence
the hydrology of the hillslope. The shallow water table for the study site shows two dis-
tinct responses depending on the position of the median water table. When the median
water table was near to the soil surface (wet conditions) the variability in the depth of
the shallow water table decreased with rain resulting in longer ranges in the indicator5

semivariograms. This is caused by expansion of saturated areas in topographically
converging zones. During dry periods when the median water table was far from the
soil surface, however, the shallow water table showed more spatial homogeneity prior
to rainfall events. It was possible to represent these changes in spatial structure using
kriging techniques incorporating both the event-based and seasonal trends in the shal-10

low water table response. From the long time interval, seasonal variations in spatial
structure, prior probability at each sampling location was established to create soft data
using STWI. The soft data was combined with hard data from the short time interval,
event-based variations using IK techniques. This provided more realistic interpolations
during high water table conditions by capturing structure in the shallow water table not15

available when using hard data alone. This type of kriging analysis provides a man-
ner to locate physical patterns influencing the hydrology of the study site. This study
presents methods to characterize large amounts of point data temporally and spatially
that can emphasize the physical hydrology of a field site. By representing both spatial
patterns and temporal evolution in the shallow water table with geostatistical analysis,20

saturated source areas active in controlling not only VSA runoff but also other hydro-
logical pathways can be identified. Understanding this temporal evolution in the spatial
structure of the shallow water table is the ‘where’ and ‘when’ of hydrology that is the
groundwork for tasks such as non-point source pollution control.
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Grayson, R. B., Blöschl, G., Western, A. W., and McMahon, T. A.: Advances in the use of

observed spatial patterns of catchment hydrological response, Adv. Wat. Resour. Res., 25,
1313–1334, 2002.

Hewlett, J. D. and Hibbert, A. R.: Factors affecting the response of small watersheds to pre-10

cipitation in humid regions, in: Forest Hydrology, edited by: Sopper, W. E. and Lull, H. W.,
Pergamon Press, Oxford, 275–290, 1967.

Hillel, D.: Modeling in soil physics: A critical review, in: Future developments in Soil Science
Research, A collection of Soil Science Society of America Golden Anniversary contributions
presented at Annual Meeting, New Orleans, 35–42, 1986.15

Hoeksema, R. J., Clapp, R. B., Thomas, A. L., Hunley, A. L., Farrow, N. D., and Dearstone,
K. C.: Cokriging model for estimation of water table elevation, Wat. Resour. Res., 25, 3,
429–438, 1989.

Hornberger, G. M. and Boyer, E. W.: Recent advances in watershed modeling, U.S. Natl. Rep.
Int. Union Geod. Geophys. 1991–1994, Rev. Geophys., 33, 949–957, 1995.20

Journel, A. G.: Nonparametric estimation of spatial distributions, Math. Geol., 15, 445–468,
1983.
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einzugsgebieten, PhD thesis, Universität Karlsruhle, Karlsruhle, 1995.
Lyon, S. W., Lembo, A. J., Walter, M. T., and Steenhuis T. S.: Defining probability of saturation

with indicator kriging on hard and soft data, Adv. Wat. Resour., in press, 2005.
McDonnell, J. J.: Where does water go when it rains? Moving beyond the variable source area

concept of rainfall-runoff response, Hydrol. Processes, 17, 1869–1875, 2003.30

McKenna, S. A.: Geostatistical approach for managing uncertainty in environmental remedia-
tion of contaminated soils: case study, Environ. Eng. Geosci., 4, 175–184, 1998.

Mehta, V. K., Walter, M. T., Brooks, E. S., Steenhuis, T. S., Walter, M. F., Johnson, M., Boll, J.,

1705

http://www.copernicus.org/EGU/hess/hessd.htm
http://www.copernicus.org/EGU/hess/hessd/2/1683/hessd-2-1683_p.pdf
http://www.copernicus.org/EGU/hess/hessd/2/1683/comments.php
http://www.copernicus.org/EGU/EGU.html


HESSD
2, 1683–1716, 2005

Spatial structure in
shallow water table

S. W. Lyon et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Print Version

Interactive Discussion

EGU

and Thongs, D.: Evaluation and application of SMR for watershed modeling in the Catskill
Mountains of New York State, Environ. Modeling and Assessment, 9, 2, 77–89, 2004.

Meyles, E., Williams, A., Dowd, J., and Ternan, L.: Soil moisture patterns and runoff gener-
ation in a small Dartmoor catchment, south-west England, in: Leibundgut Ch, edited by:
Uhlenbrook, S. and McDonnell, J., Runoff generation and implications for river basin model-5

ing, Freiburger Schriften Hydrologie, band 13, Institute of Hydrology, University of Freiburg
i.Br./Germany, 28–36, 2001.

Mohanty, B. P., Skaggs, T. H., and Famiglietti, J. S.: Analysis and mapping of field-scale
soil moisture variability using high-resolution, ground-based data during the Southern Great
Plains 1997 (SGP97) hydrology experiment, Wat. Resour. Res., 36, 4, 1023–1032, 2000.10

Neuman, S. P. and Jacobsen, E. A.: Analysis of non-intrinsic spatial variability by residual
kriging with applications to regional ground water levels, Math. Geo., 16, 5, 499–521, 1984.

Ogden, F. L. and Watts, B. A.: Saturated area formation on nonconvergent hillslope topography
with shallow soils: A numerical investigation, Wat. Resour. Res., 36, 7, 1795–1804, 2000.

Pachepsky, Y. and Acock, B.: Stochastic imaging of soil properties to assess variability and15

uncertainty of crop yield estimates, Geoderma, 85, 213–229, 1998.
Smith, J. L., Halvorson, J. J., and Papendick, R. I.: Using multiple-variable indicator kriging for

evaluating soil quality, Soil Sci. Soc. Am. J., 57, 743–749, 1993.
Tarboton, D. G.: A new method for the determination of flow directions and contributing areas

in grid digital elevation models, Wat. Resour. Res., 33, 2, 309–319, 1997.20

Troch, P., Verhoest, N., Gineste, P., Paniconi, C., and Merot, P.: Variable source areas, soil
moisture, and active microwave observations at Zwalmbeek and Coët-Dan, in: Spatial pat-
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Table 1. Monthly median depth to water table, total rainfall, and semivariogram parameters for
the exponential models in Fig. 4 using the long time interval data for the study site.

Month Depth to Total Semivariogram
water table rainfall Parameters
[cm] [cm]

Nugget Sill Range
[m]

March 16.6 6.1 0.054 0.173 12.0
April 13.05 10.2 0.054 0.193 17.3
May 15.75 18.3 0.048 0.194 20.9
June 31.85 8.7 0.049 0.147 73.8
July 35.25 15.2 0.039 0.135 144.4
August 16.51 12.2 0.036 0.161 29.0
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Table 2. Summary of water table and rainfall for six dates used in IK analysis along with
reduction in RMSE from cross validation with jackknifing between IK with hard data alone and
IK with soft data.

Date Median depth 20th/80th percentile 1 day antecedent Reduction
to water table depth to water table rainfall in RMSE
[cm] [cm] [cm] (%)

27 March 8.4 2.9/16.6 1.1 4.3
2 April 6.2 1.3/12.8 1.5 11.7
13 April 7.7 2.6/19.2 2.7 8.5
26 April 5.8 1.0/12.7 2.4 1.2
3 May 6.4 0.5/17.2 2.1 9.9
26 May 4.4 0.4/10.5 3.6 7.9
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Fig. 2. Typical indicator semivariograms from the short time interval data for the study site for
(A) 31 March, 06:00, (B) 2 May, 20:30, (C) 3 May, 01:30, (D) 27 May, 00:45, (E) 7 June, 15:30,
30 June, 04:30, (G) 26 July, 05:30, and (H) 6 August, 11:30. The symbols are the normalized
sample indicator semivariogram and the curves are the fitted exponential models.
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Fig. 4. From the short time interval data, variations in (A) the range [m], (B) runoff [m3/s], (C)
percentage of the hillslope saturated [%], and (D) average (black dots) STWI of the saturated
area with bars showing minimum and maximum STWI of the saturated area with respect to the
median depth to water table [cm] for the study site.
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Fig. 7. IK with hard data alone and IK with soft data of study site for (A) 27 March, (B) 2 April,
(C) 13 April, (D) 26 April, (E) 3 May, and (F) 26 May rain events using indicator values from
short time interval for peak in rise of water table with 1 m contours as white lines.
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