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Abstract

The basic equations used to study the fluid diffusion in porous media have been set
by Fick and Darcy in the mid of the XIXth century but some data on the flow of fluids
in rocks exhibit properties which may not be interpreted with the classical theory of
propagation of pressure and fluids in porous media (Bell and Nur, 1978; Roeloffs,5

1988).
Concerning the fluids and the flow, some fluids carry solid particles which may ob-

struct some of the pores diminishing their size or even closing them, some others may
chemically and physically react with the medium enlarging the pores; so permeability
changes during time and the flow occurs as if the medium had a memory.10

In this paper we show, with experimental data, that the permeability of sand lay-
ers may decrease due to rearrangement of the grains and consequent compaction as
shown qualitatively by Elias and Hajash (Elias and Hajash, 1992). We also provide a
memory model for diffusion of fluids in porous media which fits well the flux rate ob-
served in five laboratory experiments of diffusion of water in sand. Finally we show15

that the flux rate variations observed during the experiments are compatible with the
compaction of sand, due to the amount of fluid which went through the grains locally,
and therefore with the reduction of porosity.

1. Introduction

Using Darcy’s law, which states that the flux is proportional to the pressure gradient,20

many authors contributed in various forms to set equations rigorously representing the
interaction between the porous media and the flow of fluid through it and obtained
equations solutions in many interesting cases (Bear, 1972; Sposito, 1980; Steefel and
Lasaga, 1994; Dewers and Ortoleva, 1994; Indelman and Abramovici, 1994; Cushman
and Moroni, 2001). In spite of this, some data on the flow of fluids in rocks exhibit prop-25

erties which may not be interpreted with the classical theory of propagation of pressure
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and fluids in porous media (Bell and Nur, 1978; Roeloffs, 1988) nor adequately with
many of the new theories.

If the fluid carries solid particles which obstruct some of the pores or chemically
reacts with the medium enlarging the pores, then the permeability changes during time
and the flow occurs as if the medium had a memory, intending that at any instant the5

process of diffusion is also affected by the previous local value of pressure and flow
of the fluid. These phenomena must be taken into account when writing equations for
diffusion of fluids in porous media.

The scope of this paper is to show quantitatively, with experimental data, that the
permeability of sand layers decreases due to the rearrangement of the grains and10

consequent mechanical compaction (Elias and Hajash, 1992). We will provide, by
rewriting the constitutive equation of diffusion with memory formalism, a new model for
diffusion of fluids in porous media in order to describe permeability changes observed
in the flux rate through the sand samples.

2. The laboratory experiments15

The experiments were designed to obtain flow measurements through a porous layer
with constant hydraulic pressure difference between the boundary surfaces of the sam-
ples.

In order to obtain considerable flux the porous medium selected is sand which
showed an adequate compaction and therefore considerable permeability and flux rate20

variations during the experiments. The grain size distributions shown in Fig. 1 was
measured by sieves for a sample of sand; the percentiles of the cells are shown on
top of histogram. Sand density was estimated to be ρS= (2.4±0.1) g×cm−3 for all the
experiments.

We used water as fluid, its temperature during all experiments was (19±1)◦C.25

From the previous istogram it results that the weighted mean value of the grain size is
〈s〉=0.27 mm. A schematic description of the instrument assembled for all the diffusion
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experiments is shown in Fig. 2.
Water-saturated sand is kept in the cell for medium, a cylinder shaped metal box of

height l= (11.6±0.1) cm and surface’s inner diameter DI= (10.1±0.1) cm. The condition
of saturation was obtained by slowly filling step by step the initially empty cell with dry
sand and water alternately and removing the surplus water; the cell was closed once5

completely filled. This way ensures that the water pressure inside the cell is, neglecting
the small variations due to the cell height, the atmospheric pressure. The next step is
to obtain the value for the initial pressure of the water pressure inside the cell. In the
Fig. 2 R, RI and RU are water-taps and R is also water source; T is a tank with input
gate I and output gate U ; H= (212±1) cm.10

The water-taps R and RI are initially turned on while RU is off; this way the pressure
inside the cell increases and after few time reaches the value of atmospheric pressure
plus the pressure due to the H- height water column. Once the pressure is the same
through the medium, all is ready to start up the experiment.

Opening RU the pressure on the boundary plane in x=l is equal to the pressure of a15

water column of height H plus the atmospheric one, while the pressure on the boundary
plane in x=0 is the atmospheric pressure and so water begins to flow through porous
medium and runs out from RU . Note that the column is always of height H because
the surplus water flows out from the gate U . This way a constant pressure difference
is maintained between the boundary planes in x=l and x=0, which was verified during20

all the experiments using pressure gauge B.
In this configuration, measurements of water flow at the boundary surface in x=0

were obtained by storing the water that flow through the surface in a small container
with capacity of about 100 cm3 and taking note of the relative time interval with 10−2 s
precision chronometer, however the dominant time error is that one due to the experi-25

menter who starts and stops the chronometer, as explained below.
The water mass in the filled container was measured using 10−4 g precision scale

and flow rate measured.
In order to diminish the error of the experimenter and of the devices the water mass
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in each filled container was measured three times with the scale, experimenter error in
starting and stopping chronometer was evaluated to be 2×10−1 s and each flow mea-
sure is the average value of three containers filled in rapid succession. The estimated
relative error in the flux is then about 2%.

All the experiments were managed in the same above described way, with the same5

value of H and with five different samples of the same type of sand. The following
Figs. 3, 4, 5, 6 and 7 show all experimental data collected. In each experiment the
flow measurements are separated by 20 min, only the first ones are separated by 10
minutes. The data collection is limited to about 10 h when the flow seems to have
reached a very slow and steady rate to imply that a steady state is reached. The solid10

line in each figure is the theoretical flux obtained by fitting to the experimental data the
memory which will be introduced in the following.

Note that for each experiment in the first few hours the flux rate steadily decreases
defining a transient phase. It appears that in several hours, seemingly less than 10,
after the transient phase, the flux establishes to a value that is about 70% of the initial15

one, only in experiment 5 it is about 46% of initial value. Moreover a computation
of the Reynolds number (Re=ρF V Dµ−1, where ρF is fluid density, D is the grain size
and V is the volume of flowing water per unit of time and surface) ensures that the
flow was non-turbulent. Assuming D= 〈s〉 and V ∼=0.81 cm× s−1 (which was computed
in the worst of cases assuming q∼=65 g× s−1), it results Re=2.2 which is less than 10,20

commonly accepted as threshold for the turbulent motion.
Opening the cell for medium after each experiment we observed a height reduction

of the sand of about 3–4 mm, that is about 3% of the porous media volume, and this is
an evidence of mechanical compaction.

In order to quantitatively discuss the variation of the flux rate in terms of the porous25

media volume reductions we used empirical Fair and Hatch law (1933) for permeability
k (Bear, 1972)

k = CMz3
/

(1 − z)2 (1)
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where z is medium porosity and CM is a geometrical medium dependent coefficient
introduced to take into account the grain size distribution, grains shape and chemical
properties of the medium.

The sand mass contained in the cell for medium in each experiment was
m= (1550±30) g (dry sand) and no sand may go out from cell during the ex-5

periment. From computations involving the Fair and Hatch law, remembering
ρS= (2.4±0.1) g× cm−3, it results that ∆k%= (26±3) %. This permeability reduction jus-
tifies experimentally observed flux rate reduction.

3. The modeling of the flux variation

In order to model the permeability variation with a memory mechanism, meaning that10

at any instant the process of diffusion is affected by the previous amount of fluid which
went through the pores we modified as follows the original Fick law, stating proportion-
ality between flux and pressure gradient

q̄ (x̄, t) = −c∇̄p (x̄, t) (2)

where p is fluid pressure in the porous medium and q is fluid flow through medium,15

introducing in it a derivative of fractional order n (Caputo, 2000):

γq̄ (x̄, t) = −
[
c + d

∂n

∂tn

]
∇̄p (x̄, t) (3)

ap (x̄, t) = αρ (x̄, t) (4)

divq̄ (x̄, t) +
∂ρ (x̄, t)

∂t
= 0 (5)

where ρ is variation of fluid density in medium from the undisturbed condition while20

γ, c and d are real numbers modulating memory formalism, α/a is the bulk modulus
of the fluid. In Eq. (3) the flux can be seen as a linear combination of ∇p

(
x, t

)
and
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its fractional order derivative; the parameters c
/
γ and d

/
γ are the coefficient of the

combination and are useful to get an idea of the contribution to the flux from the two
terms.

The fractional order derivative is defined as follows (Caputo, 1967; Podlubny, 1999)

f (n) (t) =
∂nf (t)
∂tn

=
1

Γ (1 − n)

t∫
0

f (1) (u)

(t − u)n
du (6)

5

where n ∈ [0, 1] and Γ is the Gamma function. In practice the derivative of fractional
order f (n) (t) is constructed with a weighted mean of the first order derivative f (1) (u) in
the time interval [0, t], which is a sort of feedback system. That is, the values of f (1) (u)
at time u far apart from t are given smaller weight than those at time u closer to t.
Hence, the weights are increasingly smaller with increasing time separation from t to10

imply that the effect of past is fading with increasing time. When n=0 and f (0)=0 the
fractional derivative reduce to the functions themselves.

The introduction of fractional derivatives in the constitutive equations of the phenom-
ena studied in geophysics is not new. In rheology they were used to model the rheo-
logical properties of solids (Bagley and Torvik, 1986; Le Mehaute and Crépy, 1983), to15

model the frequency indipendent quality factor (Caputo, 1967), to succesfully model the
fennoscandinian uplift (Körnig and Müller, 1989), to show that the constitutive equation
of polarizable media, in the time domain, is rapresented by a relation containing these
derivatives (Caputo and Plastino, 1998). The derivatives of fractional order were also
succesfully used in other fields of research like electromagnetism (Jacquelin, 1984), bi-20

ology (Caputo, 2002b; Cesarone, 2002), chaos (Mainardi, 1996) and economy (Caputo
and Kolari, 2001; Caputo, 2002a).

The equations resulting from our procedure are phenomenologic, however the rep-
utation of this type of equations, as stated in recent motivations for assigning Nobel
prizes for physics, has been rehabilitated for their important contribution given in vari-25

ous forms to the rapid developments of the superconductive materials.
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These phenomenological equations, when adequately verified with experimental
data, represent a step forward in respect to the usual empirical equations which are
still very useful in many branches of applied science and technology. However some
scientists resent the fact that they are not logically obtained from first principles ignor-
ing that if we stick very strictly to first principles some types of progress are rendered5

more difficult.
It is noteworthy to observe how the memory functions capture the past. What the

fractional derivative memory functions are remembering is their past values as de-
fined by Eq. (9), which implies that the function is constructed by adding to the initial
value the successive weighted increments over time. The increments per unit time are10

represented by the first order derivative under the integral sign and the weights are
represented by the factor of the first order derivative in Eq. (6), which are decreasing
with increasing time separation from t. Thus, a variable’s value is a weighted mean of
its past value.

In order to fit experimental data with memory model we find in the Appendix A the15

Green function of the flux q (0, t) when diffusion occurs through a slab of thickness
l with pressure boundary conditions, neglecting the atmospheric pressure which is a
common offset,

p (0, t) = 0 (7)

p (l , t) = K = constant (8)20

and initial pressure condition

p (x,0) = K = constant (9)

In order to obtain the flux q (0, t) we solve the Eqs. (3)–(5) in the Laplace Transform
(LT) domain obtaining

P (x, s) =
K
s

[
eBsν(x−l ) − eBsν(l−x)

eBsνl − e−Bsνl
+ 1

]
(10)

25
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and

Q (0, s) = −dKB
γsν

[
1 + e2Bsνl

e2Bsνl − 1

]
(11)

where

B =
[
aγ

/
αd

] 1
2 , ν = (1 − n)

/
2 (12)

and s is the LT variable.5

The LT−1 of Eq. (11) is found in the Appendix B and the following expression of
boundary flux is obtained

q (0, t) = −dBK
2πγ

+∞∫
0

e−rt

rν
·
2 sin (πν)

[
e2Mrν − 1

]
+ 4 sin

(
Nrν

)
cos (πν)eMrν

e2Mrν + 1 − 2 cos (Nrν)eMrν
dr (13)

with
r =modulus of s10

M = 2Bl cos (πν)

N = 2Bl sin (πν)

Note that in Eq. (7) a/α=ρF z
/
kB, where and kB is bulk modulus of fluid; water values

are ρF=1 g× cm−3 and kB=2.08×1010 g× cm−1 · s−2 (Domenico and Schwartz, 1997).

Therefore B=
[
γρF z

/
dkB

] 1
2 and, assuming for sand z=0.35 (Bear, 1972), the bound-15

ary flux theoretical solution q (0, t) depends on memory parameter d
/
γ and the order

of fractional derivative n through ν=(1 − n)
/

2.
With extreme values theorem it is seen that

lim
s→0

sQ (0, s) = lim
t→+∞

q (0, t) = 0 (14)

lim
s→∞

sQ (0, s) = lim
t→0

q (0, t) = −∞ (15)
20
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3.1. Fitting the model to the experimental data

The experimental data show that in several hours flux seems close to stabilization and,
since we will describe only the transient phase of diffusion (c=0), we obtained the data,
to fit to the model, by subtracting the original data the average of the last few hours of
flux (let’s call it qAS ). The data of the five experiments run indicate that qAS is a good5

candidate for asymptotic flux and new data are good to represent the diffusion transient
phase we want to describe.

In order to best fit memory model to experimental data we minimized the following
two variables function

AD
(
ν,
d
γ

)
=

1
ND

ND∑
i=1

∣∣∣∣EDi − q
(
ti , ν,

d
γ

)
− qAS

∣∣∣∣ (16)
10

where ND is the number of experimental data for each experiment, EDi are the data
obtained in the laboratory at the time ti .

The results of fitting for the five experiments are shown in the Table 1.
Note that experiment 5 is a bit different from the others, in fact the initial flux is higher

and the transient reaches steady state at about 46% of the initial value while the others15

reach steady state at about 71% of the initial value. So it differs from the others most
of all in the first hour, after which it is similar to the other in the stationary part. This
may be due to a difference in the preparation of the sample which caused a particular
distribution of the grains which favoured a preferential path for the water caused an
initial flux anomalously high but the asymptotic value of flux is similar to that of the20

other experiments.
Taking into account only the first four experiments it results that both for n and d

/
γ

the average quadratic discrepancy (AQD) is compatible with the relative average value
(AV); values are shown in the Table 2.
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4. Conclusions

In the experiments we have observed that flux decreases in time to about 70% of
initial value and that the volume of sand decreases by about 3%; moreover, using
empirical Fair and Hatch law for permeability, the sand volume and flux reductions
seem compatible; which proves that mechanical compaction occurring during diffusion5

is caused by the permeability changes which in turn cause the flux variations.
The classic theory, in the case of constant diffusivity, with constant boundary and

initial conditions, would give a constant flux contrary to the results of our laboratory
experiments. One would have to introduce in the equations a time variable diffusivity
which is a priory unknown and would have to be determined monitoring the permeabil-10

ity changes caused by the flux in the sand.
Note that for each experiment the value of the minimum AD (see formula 16) numeri-

cally computed is about 2% of average observed flux and that the order of the fractional
derivatives has a standard deviation of 0,048 or 9% of the average value which, taking
into account the variety of samples, is rather satisfactory and, with the low value of AD,15

confirms the validity of the model.
We have also seen that, with the boundary and initial conditions used, the relaxation

time of the flux, that is the time to reach stability, is about 10 hours which in turn implies
that the compaction of the sand in the sample has the same relaxation time. However
in terms of the memory model the flux and the associated relaxation time are now20

defined by two parameters, and not only one as in the classic theory; the parameters
are the order of fractional derivative n and dµ

/
ρF γ, where µ is the viscosity of the

fluid, which are called pseudodiffusivity parameters (Caputo, 2000).
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Appendix A

It is useful to rewrite memory relations in one dimension:

γq (x, t) = −
[
c + d

∂n

∂tn

]
∂p (x, t)

∂x
(A.1)

ap (x, t) = αρ (x, t) (A.2)

∂q (x, t)
∂x

+
∂ρ (x, t)

∂t
= 0 (A.3)5

In this appendix we find the LT of the Green function of the flux resulting from
Eqs. (A.1)–(A.3) with boundary and initial condition given by Eqs. (7)–(9). Comput-
ing the LT , differentiating with respect to x and then substituting it results that(
c + dsn

)
γ

Pxx =
1
α

[asP − αρ (x,0)] (A.4)

Here, in order to reduce the number of free parameters and to simplify the formulae,10

we set c=0 which is justified as follow: it seems that in several hours, seemingly less
than 10 h, the flux stabilizes but we cannot rule out that it is asymptotically nil. If the
flux were constant after 10 h then the rigorous solution requires that c6=0, which implies
that asymptotically the flux is constant as required by Darcy’s law which does not apply
here. We have two options:15

1. consider the transient phase which is asymptotically nil,

2. consider that after the transient phase the flux stabilizes.

However, since we have no indication of the asymptotic value, also for simplicity of
computation, we studied only the transient phase and set c=0.
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So Eq. (A.4) becomes

d
γ
snPxx =

a
α
sP − ρ (x,0) (A.5)

which, by substituting LT of pressure equations, can be written as

Pxx =
γa
αd

[
s1−nP − s−np (x,0)

]
(A.6)

The general solution of Eq. (A.6) is5

P (x, s) = C1 (s)eBsνx + C2 (s)e−Bsνx +
K
s

(A.7)

where B=
[
aγ

/
dα

] 1
2 and ν=(1 − n)

/
2.

With boundary conditions (7) and (8) in Eq. (A.7) we obtain the general solution

P (x, s) =
K
s

[
eBsν(x−l ) − eBsν(l−x)

eBsνl − e−Bsνl
+ 1

]
(A.8)

Differentiating Eq. (A.8) with respect to x and substituting in the LT of Eq. (A.3) we10

obtain

Q (x, s) = −dKB
γsν

[
eBsν(x−l ) + eBsν(l−x)

eBsνl − e−Bsνl

]
(A.9)

Appendix B

In this appendix we find the LT−1 of Eq. (9), to be fit to experimental data, by integrating
estQ (0, s) along the path of figure B.1 below.15

When the radius R1 of the inner circle Γ1 goes to infinity and the radius R2 of the
outer circle Γ2 goes to zero the residual theorem (RT) states that the integral is equal
to the sum of residuals inside the path.
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Path of integration in Fig. 9 can be divided as follow

ΓT = Γ1 + ΓF H + ΓHA + ΓAB + ΓBD + ΓDE (B.1)

and when R1→0 we find that ΓBD→ΓCD and ΓHA→ΓHK .
Concerning the integral along Γ1, when the radius R1 goes to zero it can be shown

by the Taylor development of Q (0, s) near s=0 that5

lim
s→0

sQ (0, s) = lim
R1→0

−2dKB
γ

s1−ν(
2Blsν + o

(
s2ν

)) = 0 (B.2)

and so integral along Γ1 is zero.
To compute integrals along ΓCD and ΓHK , it is useful to rewrite estQ (0, s) with

s=R2e
iϑ. When R2 goes to infinity imaginary exponential can be neglected be-

cause limited in [−1; 1], cos (ϑν) ∈ ]0,1] because ϑ ∈
]
π
/

2, π
]
∪
]
−π,−π

/
2
]

and10

ν=(1 − n)
/

2 ∈
]
0,1

/
2
]
. So the integrals along ΓCD and ΓHK are nil because func-

tion inside integral is nil.
Function estQ (0, s) has no singularity in the complex plain except in the origin, al-

ready analyzed. For RT, renaming estQ (0, s)=I (s), we have that

lim
R1 → 0
R2 → +∞

∫
ΓT

I (s)ds

= lim
R1 → 0
R2 → +∞

+iR2∫
−iR2

I (s)ds+
∫

ΓDE

I (s)ds+
∫

ΓF H

I (s)ds

=0 (B.3)

15

and so

TL−1 [Q (0, s)] = lim
R1 → 0
R2 → +∞

1
2πi

− ∫
ΓDE

I (s)ds −
∫

ΓF H

I (s)ds

 (B.4)
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For the integral along ΓDE we set s=reiπ and obtain

I
(
reiπ

)
= IDE (r) = −dBK

γ
e−rt

eiπνrν

(
1 + eZrν

)
(
eZrν − 1

) (B.5)

with

Z = M + iN

M = 2Bl cos (πν)5

N = 2Bl sin (πν)

For the integral along ΓF H we set s=re−iπ and the same way we have

I
(
re−iπ

)
= IF H (r) = −dBK

γ
e−rt

e−iπνrν

(
1 + eZ ∗rν

)
(
eZ ∗rν − 1

) (B.6)

so that

TL−1 [Q (0, s)] = q1 (0, t) =
1

2πi

+∞∫
0

[IF H (r) − IDE (r)]dr (B.7)
10

Renaming ω=πν and Y (r)=
[
−dBK

γ
e−rt

rν

]
we have

q (0, t) = −dBK
2πγ

+∞∫
0

e−rt

rν
·
2sin (πν)

[
e2Mrν − 1

]
+ 4sin

(
Nrν

)
cos (πν)eMrν

e2Mrν + 1 − 2 cos (Nrν)eMrν
dr (B.8)

1343

http://www.copernicus.org/EGU/hess/hessd.htm
http://www.copernicus.org/EGU/hess/hessd/2/1329/hessd-2-1329_p.pdf
http://www.copernicus.org/EGU/hess/hessd/2/1329/comments.php
http://www.copernicus.org/EGU/EGU.html


HESSD
2, 1329–1357, 2005

Experimental and
theoretical memory
diffusion of water in

sand

G. Iaffaldano et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Print Version

Interactive Discussion

EGU

Glossary

ρS

(
g×cm−3

)
Mass of sand per unit volume

k
(

cm2
)

Permeability

z (dimensionless) Porosity

q (x, t)
(

g×s−1×cm−2
)

Fluid mass flow rate in porous medium

p (x, t)
(

g×s−2×cm−1
)

Pressure of the fluid

ρ (x, t)
(

g×cm−3
)

Variation of fluid mass per unit volume in the porous
medium from the undisturbed condition

ρF

(
g×cm−3

)
Mass of fluid per unit volume

kB
(

g×s−2×cm−1
)

Bulk modulus of fluid

µ
(

g×s−1×cm−1
)

Viscosity of fluid
dµ
γρF

(
sn×cm2

)
Pseudodiffusivity
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Table 1. Fitting parameters with their errors for each experiment.

n d
/
γ
(
s1+n

)
AD

(
g×s−1

)
qAS

(
g×s−1

)
experiment 1 0.46±0.01 0.008±0.001 0.8 30.3
experiment 2 0.58±0.01 0.014±0.002 0.41 27.1
experiment 3 0.54±0.01 0.012±0.002 0.52 27.5
experiment 4 0.54±0.01 0.010±0.001 0.55 27.2
experiment 5 0.58±0.02 0.046±0.003 0.8 27.1
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Table 2. Mean values (AV) and average quadratic discrepancy (AQD) for the first four experi-
ments.

n d
/
γ
(
s1+n

)
AV 0.53 0.011
AQD 0.04 0.002
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Fig. 1. Grain size distribution for the sand used in the experiments. Weighted mean value of
the grain size is 0.27 mm.
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URCELL FOR MEDIUM

0=xlx =
X

U

R

I

H

IR

Fig. 2. Experimental device used in this study. A water column of height equal H generates a
pressure on one side of the porous medium. Flux measures are token on the other side of the
medium.
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Fig. 3. Flux results (triangules) from experiment number one. An initial transient of about 3 to
4 h is visible, afterwards the flux reaches a steady state. Overimposed solid line rapresents the
theoretical curve which best fits the experimental data.
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Fig. 4. Same of Fig. 3, for the experiment number two.
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Fig. 5. Same of Fig. 3, for the experiment number three.
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Fig. 6. Same of Fig. 3, for the experiment number four.
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Fig. 7. Same of Fig. 3, for the experiment number five.
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Fig. 8. Sketch of the porous slab with its assumed reference frame.
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Fig. 9. Path of integration in the complex plane.
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