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Abstract

Physically-based models have been used previously to map areas of potential insta-
bility where shallow landslides may initiate. Here we introduce a new approach for
determining the Most Likely Initiation Points (MLIP) for landslides. We identify the loca-
tion with critical (lowest) stability index from a terrain stability model on each downslope5

path from ridge to valley. The SINMAP Stability Index (SI) was applied with this method.
Only potential initiation points less than a threshold are considered to avoid identifica-
tion of stable locations on downslope paths that do not contain any unstable locations.
Mapped or observed landslides are often used to evaluate the effectiveness of model
derived terrain stability maps, but a problem with these observations is that they may10

demarcate the entire landslide scar, including run out zones, rather than just initiation
locations. Comparing such observations to SI does not provide a meaningful way to
assess the effectiveness of the SI map because the demarcated area may include con-
siderable area with stable SI values. In this paper we suggest using the relative density
of MLIP locations within and outside demarcated landslide areas to assess the dis-15

criminating capability of a SI map. This approach was tested using landslides mapped
from aerial photographs and airborne laser altimetry (LIDAR) derived elevation data
for a small basin located in the Northeastern Region of Italy. Digital Terrain Models
(DTMs) were derived from the LIDAR data for a range of grid cell sizes (from 2 to 50 m)
and SI and MLIP evaluated for each. We found that the direct comparison of SI within20

and outside of landslides was not effective. However when MLIP was used we found
appreciable differences between the density of MLIP points within and outside mapped
landslides with ratios as large as three or more with the highest ratios for a DTM grid
cell size of 10 m. This demonstrated the utility of the MLIP approach to quantifying the
effectiveness of a terrain stability map when comparisons are to mapped landslides25

that include runout zones. This also suggests that in this study area, where landslides
occurred in complexes that were sometimes more than 100 m wide, a DTM scale of
10 m is optimal. DTM scales larger than 10 m result in loss of resolution, while for DTM
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scales smaller than 10 m the physical processes responsible for triggering landslides
are obscured by smaller scale DTM variability that is resolved.

1 Introduction

Landsliding associated with rainstorms is a major process of landscape evolution on
steep hillslopes. Shallow landsliding in steep, soil-mantled landscapes can generate5

debris flows which scour low-order channels, deposit large quantities of sediment in
higher order channels and pose a significant hazard. The hazard occurs where de-
velopment has encroached on debris flow source and run-out areas. A variety of
approaches are available to assess landslide hazard and produce maps portraying
its spatial distribution (landslide hazard mapping). In the last decade, process-based10

theories and models have been developed that represent the essential processes con-
trolling shallow landsliding, yet remain simple enough that they can be calibrated and
validated using observed landslides inventories. Many of these Terrain Stability Mod-
els (TSMs) are based upon the infinite slope stability model (e.g. Hammond et al.,
1992; Montgomery and Dietrich, 1994; Wu and Sidle, 1995). Dietrich et al. (1992) and15

Montgomery and Dietrich (1994) developed a simple physically based model based
on digital terrain data, which couples a shallow steady state saturated subsurface flow
model with an infinite slope stability model. The model is based on the assumptions
that shallow subsurface flow dictates the pore pressure field and that steady state flow
mimics the spatial pattern of soil pore pressures during transient storms and can be20

used to map the relative potential for shallow landsliding across a landscape. Pack et
al. (1998) introduced a stability index mapping approach (SINMAP) to terrain stability
mapping, a methodology based upon the same concept as Montgomery and Dietrich
(1994) in that it combines steady-state hydrologic concepts with the infinite slope stabil-
ity model. Nevertheless some aspect are different: a) grid-based rather than contour-25

based Digital Terrain Model (DTM) methodology is used following the work of Tarboton
(1997); b) cohesion is retained in the infinite slope stability model to account for soil
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cohesion or root strength; c) parameter uncertainty is incorporated through the use of
uniform probability distributions for uncertain parameters.

The accuracy of procedures relying on process-based theories depends on the qual-
ity of topographic data and is limited by the underlying assumptions used in the models,
which cannot account for many factors which are known to influence landslide hazard,5

such as mechanically weak rocks, springs, locally high or low root strength and soil
thickness, to name a few. With respect to the quality, and resolution of topographic
data the accuracy of base point survey data and the method used to interpolate the
Digital Terrain Model from point survey data can influence the results of TSMs. New
survey techniques have been introduced in the last few years; an example of these is10

the use of laser sensors on aircraft (Akermann, 1999; Kraus and Pfeifer, 2001; Briese,
2004). This technology, called LIDAR (LIght Detection And Ranging), provides high
quality digital terrain data, and provides more information about land cover than was
previously available. The application of airborne laser altimetry technology to slope
stability modeling has the potential to improve model performance and benefit land15

management.
There may be some limitations to the improvement of landslide modeling which

can be achieved by using very fine topographic data. Regardless of the algorithms
or type of DTM used, all DTM analyses depend crucially on the assumption that the
flow pathways will be predominantly controlled by the surface topography of the catch-20

ment. Even in shallow systems, the bedrock topography may have a greater control
on downslope saturated flow than the surface topography. It is likely that differences
between surface and bedrock topography is relatively greater at very fine DTM resolu-
tion; therefore, very fine topographic data may lose representativeness, at least for the
modeling of subsurface flow. Practical limits on LIDAR accuracy are still being defined25

(McKean and Roering, 2004). Data errors can be described as those originating from
the hardware/software components of the LIDAR system, those related to the mission
design and conduct, and those associated with the laser target characteristics (e.g. to-
pography and vegetation contamination in the distribution of lidar elevation data points)
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(McKean and Roering, 2004).
In this paper we present a new method for determining the Most Likely Initiation

Points (MLIP) where landslides may initiate. The method identifies the grid cell with
critical (lowest) stability index on each downslope path from ridge to valley. Only poten-
tial initiation points with SI less than a threshold are considered to avoid identification5

of stable locations on downslope paths that do not contain any unstable locations. We
evaluate the benefits of this method and the sensitivity to varying the grid size resolu-
tion of the DTM used for mapping landslide areas with this method. The MLIP approach
was applied to a Stability Index (SI) field obtained from SINMAP using the default pa-
rameters suggested by Pack et al. (1998). Flow paths were determined from the D∞10

algorithm introduced by Tarboton (1997) and available as part of the open source Tau-
DEM software (http://www.engineering.usu.edu/dtarb/taudem). A range of SI threshold
values were used to define MLIPs. The ratio of the density of MLIPs inside and out-
side mapped landslide areas was used to quantify the ability of the terrain stability map
to discriminate terrain instability. High values of the MLIP density ratio indicate good15

model performance. This approach was applied to a study area located in Northern
Region of Italy where landslide runout areas had been mapped from high resolution
aerial photographs. The broad question that we address is: What is the influence of
high resolution LIDAR derived DTM on terrain stability mapping? Specifically we exam-
ined what additional information is obtained from the MLIP method with respect to the20

standard approach for mapping landslides based on a stability index, and how sensitive
is the MLIP method to the DTM grid resolution?

The paper is divided into six sections. In Sect. 2 we define Most Likely Initiation
Points (MLIP). Section 3 describes the field area in Northern of Italy where the ap-
proach was tested. Section 4 describes the method used to calculate the density of25

MLIP points within mapped landslide runout zones used to evaluate the model. Sec-
tion 5 discusses the results and in section 6 we conclude with a summary of our find-
ings.
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2 Most Likely Initiation Point definition

A Most Likely Initiation Points (MLIP) is defined as the point along each flow path that
has minimum value of Stability Index (SI), corresponding to the most unstable loca-
tion along the flow path. This is illustrated in Fig. 1 using a terrain stability index map
obtained from SINMAP. Figure 1a is shows four flow paths from ridge top to valley5

and along each path the grid cell with lowest SI is identified. In Fig. 1b the MLIPs
along all flow lines are identified. The procedure for evaluation of MLIP consists of first
identifying the lowest SI downslope of each point. This is referred to as the minimum
downslope value. Then the lowest SI value upslope of each point, the minimum up-
slope value, is identified. Third the minimum downslope and minimum upslope grids10

are intersected and where they equal the SI value at the grid cell a MLIP has been
identified.

3 Study Area

3.1 Setting

The study area is the Miozza catchment, located in Carnia (a tectonically active15

area), an alpine region of north-eastern Italy (Fig. 2). The area of the Miozza basin
is 10.7 km2. Elevation ranges from 471 to 2075 m a.s.l. with an average value of
1244 m a.s.l. The slope angle has an average value of 33◦ with a maximum value
of 77◦. The only significant human activity in the basin is forestry. The area has a
typical North Eastern Alpine climate with short dry periods and a mean annual rainfall20

of about 2200 mm. Recorded annual rainfall ranges from 1300 to 2500 mm. Precipi-
tation occurs mainly as snowfall from November to April; runoff is usually dominated
by snowmelt in May and June. During summer flash floods with heavy solid transport
are common. Vegetation covers 94% of the area and consists of forest stands (74%),
shrubs (10%) and mountain grassland (10%); the remaining 6% of the area is bedrock25
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outcrops and unvegetated landslide scars and deposits. The geomorphologic setting
of the basin is typical of the eastern alpine region, with deeply incised valleys. Soil
thickness varies between 0.2 m and 0.5 m on topographic spurs to depths of up 1.5 m
in topographic hollows. The Miozza basin was chosen as a study area because it is
representative of the lithological and physiographical conditions frequently observed in5

the Carnia region where mapping landslide impacts is of interest, and because detailed
topographic, land use and geomorphologic information from various sources (including
LIDAR) is available. Meteorological data are also available from the regional weather
service. Within the study area the area of erosion and shallow landslide scars amounts
to 0.5 km2, i.e. about 4.6% of the total catchment area. The average slope of the land-10

slide scar area is 39◦. Most of these areas, in particular the largest single landslide
area (0.22 km2), are located at the head of the basin and occur in complexes (Fig. 3)
that result from the aggregation of many shallow landslides.

3.2 Data

Aerial photography, at a resolution of 0.5 m, and field mapping was used to develop15

a detailed inventory of sediment source, erosion and landslide scars within the study
area as illustrated in Figs. 2 and 3. The most recent aerial photographs obtained in
Autumn 2004 were used to identify recent landslides not present in earlier surveys.
The landslides identified in the aerial photographs were checked in the field.

LIDAR data was collected during snow free conditions in November 2003. The LI-20

DAR survey specifications are listed in Table 1. LIDAR returns were filtered into returns
from vegetation and bare ground resulting in an irregular density of ground returns with
an average point density of 0.26 points per m2 (3.8 m2 per point). Figure 4 illustrates the
distribution of bare ground LIDAR elevation points which contains occasional coverage
gaps, 5–7 m in extent, in regions of dense vegetation.25
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4 Methods

Figure 5 illustrates the steps taken in processing the data to map terrain stability index,
SI, and MLIP. The numbers in the description that follow correspond to elements on the
flowchart. The bare ground LIDAR data (1) consists of a set of elevation data points
(2). These are used as input to the ArcGIS TOPOGRID (3) function to interpolate a5

DTM (4) with specified grid cell size. The ArcGIS TOPOGRID interpolation function
was chosen because it implements a spline algorithm that has been adapted to retain
proper topographic characteristics (Hutchinson, 1988, 1989). The DTM grids are used
as input to the TauDEM D∞ function (5) that calculates the terrain flow direction (6)
and slope (7) grids. The TauDEM Area D∞ function (8) is then used to calculate the10

specific catchment area (9). Specific catchment area and slope are the terrain inputs
to SINMAP (11). SINMAP also takes as input geotechnical and hydrologic parameters
(10) characterizing the physical properties of the study area. SINMAP produces a map
of the terrain stability index, SI (12). The SI map together with flow direction grid serve
as the inputs to the Path Minimum function (13) that evaluates the minimum SI value15

upslope of (14) and downslope from (15) each grid cell. The minimum upslope and
downslope grids, in combination with the SI grid are used to determine the MLIP grid
(16). Details of SINMAP and the algorithm for evaluation of MLIP are given below.

Once SI and MLIP have been derived they are compared to the observed landslide
areas using density ratios. SINMAP was used to derive a map of SI for each resolution20

DTM grid. MLIPs were mapped for each DTM grid and a range of SI threshold values.
For each SI map corresponding to each DTM grid resolution and a range of SI thresh-
olds we counted the number of grid cells within and outside the mapped landslide area
with SI less than the threshold value. This was used to determine the SI density ratio
using the following equation25

density ratio of SI =
(SIlds/landslide area)

(SIbas/basin area)
(1)

where SIlds is the number of SI cells less than the threshold that falls within the landslide
402

http://www.hydrol-earth-syst-sci-discuss.net
http://www.hydrol-earth-syst-sci-discuss.net/3/395/hessd-3-395_p.pdf
http://www.hydrol-earth-syst-sci-discuss.net/3/395/comments.php
http://www.copernicus.org/EGU/EGU.html


HESSD
3, 395–425, 2006

Most Likely Landslide
Initiation Points

P. Tarolli and
D. G. Tarboton

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

EGU

area and SIbas is the total number of grid cells with SI less than the threshold within the
basin. For the MLIP map corresponding to each DTM resolution and SI threshold we
counted the number of grid cells within and outside the mapped landslide area. This
was used to determine the MLIP density ratio using the following equation

density ratio of MLIP =
(Plds/landslide area)

(Pbas/basin area)
(2)

5

where Plds and Pbas are respectively the number of MLIP grid cells within the landslide
area and within the basin as a whole. The density ratios calculated using this procedure
were used to compare SI and MLIP maps developed using different DTM resolutions
and SI threshold, Sthr. High values of the density ratio correspond to better perfor-
mance of the model in discriminating areas where landslides have been observed.10

4.1 Stability index

SINMAP (Pack et al., 1998) is based upon the infinite slope stability model (e.g. Ham-
mond et al., 1992; Montgomery and Dietrich, 1994) that balances the destabilizing
components of gravity and the restoring components of friction and cohesion on a fail-
ure plane parallel to the ground surface with edge effects neglected (Fig. 6). The infinite15

slope stability model factor of safety (ratio of stabilizing to destabilizing forces) used in
SINMAP is given by the following equation

FS =
C + cosθ

[
1 − min

(R
T

a
sinθ , 1

)
r
]

tanφ

sinθ
(3)

where C is dimensionless cohesion, r is the ratio of the density of water to the den-
sity of soil (ρw /ρs), θ is slope angle, φ the internal friction angle and min

(R
T

a
sinθ ,1

)
is20

an estimate of the relative wetness derived following TOPMODEL assumptions (Beven
and Kirkby, 1979) of steady state drainage driven by a topographic gradient. Dimen-
sionless cohesion, C, is defined as (Cr+Cs)/(hρsg), where Cr and Cs are root strength
and soil cohesion terms, h is the thickness of the soil (Fig. 6) and g the gravitational
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constant. In the expression for relative wetness, a (m) is the specific catchment area
derived from the DTM (Tarboton, 1997), T is soil transmissivity (m2/hr), and R is steady
state recharge (m/hr).

In Eq. (3) a and θ are derived from the DTM. SINMAP takes the geophysical param-
eters C, R/T and tanφ as uncertain and assumes that each has a uniform probability5

distribution. The stability index (SI) is defined with respect to these probability distribu-
tions as the probability that a location is stable, i.e. has FS>1 (Pack et al., 1998).

SI = Prob(FS > 1) (4)

In the special case that FS is greater than 1 for all values of C, R/T and tanφ within
their uniform distribution ranges SI is reported as the FS value for the most conservative10

parameter values, namely the minimum C and tanφ and maximum R/T .
With the physical parameters being taken as uncertain, the parameters input to SIN-

MAP become the minimum and maximum values of the ranges that define the uniform
probability distributions. In SINMAP T/R is used as an input parameter rather than R/T
because it has a physical interpretation as the hillslope length required for saturation15

under parallel flow conditions.

4.2 Calculation of MLIP

The numerical evaluation of MLIP is achieved in three steps. First minimum values
downslope of, and upslope from, each grid cell are computed. These are then com-
bined with the original SI grid to evaluate MLIP locations. This procedure was followed20

so as to take advantage of the efficiency provided by a recursive evaluation of mini-
mum downslope and minimum upslope values adapted from the recursive evaluation
of contributing area used by Tarboton (1997) with the D∞ multiple flow direction model
for representation of flow over a terrain surface.

Figure 7 illustrates the minimum upslope function. Figure 7a is an example of a SI25

grid. Figure 7b gives a flow path through this grid. The values of the minimum upslope
function along this flow path are given in Fig. 7c. On this flow path the top left grid
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cell has no grid cells upslope, so is regarded as a ridge top grid cell and is assigned
a minimum upslope value equal to the cell value itself (in this case 0.8). Moving one
cell down the flow path the minimum upslope value is the minimum of 0.8 and 0.7
so the second cell along the flow path is assigned a minimum upslope value of 0.7.
Similarly the middle grid cell is assigned a minimum upslope value of 0.1, the minimum5

of 0.8, 0.7 and 0.1. The fourth grid cell has a SI value of 0.5, but the minimum upslope
value is assigned as 0.1, the minimum of 0.8, 0.7, 0.1 and 0.5. Similarly the last
grid cell on the flow path is assigned a minimum upslope value of 0.1, the minimum
of 0.8, 0.7, 0.1, 0.5 and 0.8. Numerically the minimum upslope value is computed
recursively as the minimum of the cell value itself and the result from the minimum10

upslope function applied at grid cells immediately upslope. In other words, instead of
the minimums of multiple grid cells described above at the third cell the evaluation is
the minimum of the cell value of 0.1 and the minimum upslope from the second grid
cell, 0.7. At the fourth cell the evaluation is the minimum of the cell value of 0.5 and
the minimum upslope of the third grid cell, 0.1, and so on. In general there may be15

multiple grid cells immediately upslope of any specific grid cell, because flow paths
merge. Furthermore in the D∞ approach the flow between grid cells is proportioned
according to the flow direction angle. Only a fraction of the flow from each upslope grid
cell contributes to a downslope grid cell. When identifying minimum values along a flow
path the question arises as to what fraction of flow should be considered for the flow20

path to be “counted”. We (arbitrarily) selected a proportion of 0.2 (20%). Grid cells that
contribute 20% or more of their flow to a grid cell are counted as being upslope of a
grid cell for the purposes of evaluating the minimum upslope grid value. The procedure
was implemented in a C++ computer program.

Figure 8 illustrates the minimum downslope function, the computation of which is25

similar to the minimum upslope function except that instead of looking at each grid cell
upslope from a specific grid cell it looks at each grid cell downslope from a specific grid
cell.

The minimum upslope and minimum downslope grids are evaluated separately be-
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cause recursion can not function in the upslope and downslope directions simultane-
ously. However once the minimum upslope and downslope grids have been evaluated
the minimum value along a flow path can be identified by the condition that the min-
imum upslope value is equal to the minimum downslope value and the value at the
grid cell itself. This is illustrated in Fig. 9. The MLIP method can be used without any5

condition on the values of SI at the MLIP location. However, some flow paths that never
go through an unstable location will still be identified as MLIP because they have the
lowest SI value along the flow path, but the SI value may be large and unlikely to be a
landslide initiation point. Therefore we use a threshold with the identification of MLIP
points, only identifying MLIP locations whose SI value is less than the input threshold10

SIthr. In the illustration in Fig. 9, SIthr=0.2 results in identification of only the dark grid
cells as MLIP locations.

5 Results and discussion

Five digital terrain models (DTMs) were interpolated for the study area with progres-
sively finer grid cell resolutions of 50, 20, 10, 5 and 2 m. For each of these DTMs15

SINMAP was used to map stability index, SI, using default parameters: 0-0.25 for the
range of dimensionless cohesion, 30◦–45◦ for the range of internal frictional angle, and
2000–3000 m for the range of the ratio T/R . The observed landslides were overlaid
on each of these SI maps and for stability index thresholds of 0.2, 0.5, 1 and 10 the
percentage of area with SI less than the threshold and density ratio of SI less than20

the threshold was calculated using Eq. (1). The results are given in Tables 2 and 3.
Based on the SI maps for each DTM grid resolution MLIP locations were identified us-
ing the procedure described above for stability index thresholds, SIthr of 0.2, 0.5, 1, and
10 again. For each of these MLIP maps the percentage of MLIP locations occurring
within the mapped landslide area and the density ratio of MLIP locations identified was25

calculated using Eq. (2). The results are also given in Tables 2 and 3.
These tables allow us to assess the effectiveness of the SI map and MLIP proce-
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dure at discriminating potential landslide initiation locations in comparison to mapped
landslide locations. We see in Table 2 that as the SI threshold is reduced the percent-
age of terrain less than the SI threshold that falls within the mapped landslide scars
increases, reflecting the general effectiveness of the SI approach. The trend is essen-
tially the same for all grid resolutions. In Table 3 the density ratio values indicate that at5

the lowest SI threshold the ratio of density between points within and outside landslide
scars is around 2.5, a measure of the effectiveness of simple SI thresholding at dis-
criminating landslide scars locations. However, as mentioned before this comparison
is hampered by the fact that mapped landslides included the entire landslide scar, not
only the initiation zones.10

The MLIP results in Tables 2 and 3 allow us to assess the effectiveness of the MLIP
locations identified from the SI map. Notable in these tables are that the MLIP percent-
ages and ratios are (in 18 out of 20 cases) higher than SI percentages and ratios. Also
the percentages remain similar across SIthr values. This is the result of the MLIP pro-
cedure identifying the lowest SI value along a flow path and this lowest value frequently15

being within the mapped landslide scar regardless of threshold. In Table 3, the density
ratios of MLIP are generally higher than SI, with values as high as 3.8, indicating that
in this setting where mapped landslides include the entire landslide scar the MLIP pro-
cedure is more effective at quantifying the effectiveness of the SI map at discriminating
potential landslide initiation locations.20

It is also of interest to note that the highest MLIP percentage and density ratios
occur for a DTM grid cell resolution of 10 m, with the one exception of the smallest
threshold and largest DTM cell size. This is a small sample effect that we disregard.
With a 50 m cell size and 0.2 threshold there are only 20 MLIP grid cells, insufficient
to be representative. The peak in MLIP density ratios for DTM grid cell resolution of25

10 m we take as support for the idea that a 10 m DTM grid cell resolution is optimal
for the identification of potential instability in terrain stability mapping. This may be a
natural scale associated with the landslides under consideration. At scales coarser
than 10 m the loss of information appears to result in a drop off in the discriminating
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capability of the SI map as quantified by MLIP density ratio. At scales finer than 10 m
small scale errors in the determination of slope, for example, may result in increases
in the number of spurious MLIP locations reducing the discriminating capability. It is
also worth noting with respect to this issue that the convergence of subsurface flow
that is quantified by the DTM computed specific catchment area is a process that is5

more likely to be influenced by the larger scale topographic slope than small surface
irregularities represented by a very high resolution DTM. This may be another reason
for the optimal discriminating capability of a 10 m resolution DTM in this study. There
is also a small slope scale effect bias that impacts the results. For the 50 m resolution
DTM the mean slope is 28◦, while for the 2 m resolution DTM the mean slope is 33◦.10

Figure 10 gives the MLIP map for the study area with SIthr=1, compared to mapped
landslide scars. Note in this figure how MLIP locations cluster at the upslope end of
landslide scars indicating their most likely initiation points. Figure 11 illustrates the
mapped MLIP locations draped on an aerial photograph of part of the study area. Fig-
ure 12 illustrates MLIP for end members of the DTM resolution range for one landslide15

complex, showing these scale effects. At the 50 m resolution the DTM is too coarse
to resolve the detail in the landslide scar. At 2 m resolution the MLIP locations spread
out as a blur, rather than a line of single MLIP locations such as generally the case in
Fig. 10.

6 Conclusions20

The Most Likely Initiation Point (MLIP) method has been introduced as a new way to
generate information from terrain stability maps. MLIP locations are of interest be-
cause they identify the most potentially unstable location along each flow path. They
also provide a way to assess the discriminating capability of a terrain stability map in
comparison to mapped landslide scars. This discriminating capability was measured25

using the ratio of the density of MLIP locations within and outside mapped landslide
scars. MLIP locations proved to have a greater discriminating capability than simple
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thresholding of the SI map in the study area where this was applied where mapped
landslide scars include runout areas. In this work we made no effort to calibrate or
adjust the parameters of the terrain stability model (SINMAP); rather default model pa-
rameter were used. This was done to evaluate the generality of the MLIP approach and
given the ratios in excess of 3 of MLIP density between within landslide and outside5

of landslide area we believe that the MLIP approach has generality beyond our spe-
cific study area. The comparisons of MLIP density ratios for different resolution DTMs
showed that for this data a 10 m resolution DTM is optimal. Future work should test
this approach in other settings and with other terrain stability models, such SHALSTAB
(Montgomery and Dietrich, 1994) and Borga et al.’s (2002), quasi dynamic model.10
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Table 1. LIDAR data specifications for Miozza cacthment survey.

Technique helicopter laserscan
Fly strips
Instrument ALTM 3033 OPTECH
Flying height 1000 m a.g.l. (above ground level)
Flying speed 80 kts
Scan angle 20◦

Scan rate 33 KHz
Point density mean >1 points per m2 (2.5 per m2)

with “first & last pulses”
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Table 2. Percentage of area with SI less than threshold, and percentage of identified MLIP
locations occurring within mapped landslide area.

Grid resolution (m) 50 20 10 5 2

SI thresholds SI MLIP SI MLIP SI MLIP SI MLIP SI MLIP
SI<0.2 16.3 25.0 11.8 8.7 12.5 18.2 11.2 14.2 11.2 12.28
SI<0.5 10.7 15.3 10.9 9.2 10.7 17.5 10.7 14.0 10.4 12.27
SI<1 6.4 7.3 6.1 6.8 6.2 16.9 6.2 13.9 6.3 12.27
SI<10 4.7 7.0 4.7 6.6 4.7 16.8 4.7 13.9 4.7 12.26
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Table 3. Density ratio between locations with SI less than a threshold, and between MLIP
locations, within and outside the observed landslide area.

Grid resolution (m) 50 20 10 5 2

SI thresholds SI MLIP SI MLIP SI MLIP SI MLIP SI MLIP
SI<0.2 3.41 5.23 2.47 1.83 2.61 3.81 2.35 2.97 2.34 2.57
SI<0.5 2.25 3.19 2.27 1.91 2.23 3.66 2.24 2.93 2.17 2.57
SI<1 1.33 1.53 1.27 1.42 1.29 3.53 1.29 2.91 1.31 2.57
SI<10 1 1.46 1 1.38 1 3.51 1 2.91 1 2.56
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(a)

(b)

Fig. 1. Illustration of Most Likely Initiation Points (MLIP). (a) SINMAP Stability Index (SI) map
with the locations of the lowest SI value along four example flow paths identified. (b) MLIP
locations identified for all flow paths.
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Fig. 2. Miozza basin location map.
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Fig. 3. Miozza basin landslide scars identified from aerial photography: illustration of a landslide
complex.
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Fig. 4. Illustration of the irregular distribution of filtered LIDAR bare ground elevation points.
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Fig. 5. MLIP model flow diagram.
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Fig. 6. Infinite slope stability model schematic.
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(a) (b) (c)

Fig. 7. Illustration of the minimum upslope function. (a) Example SI grid. (b) Example flow
path. (c) Example values of the minimum upslope function along the flow path in (b).
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(a) (b) (c)

Fig. 8. Illustration of the minimum downslope function. (a) Example SI grid. (b) Example flow
path. (c) Example values of the minimum downslope function along the flow path in (b).
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Fig. 9. Illustration of the combination of minimum upslope and minimum downslope functions
to identify Most Likely Initiation Points (MLIP). The shaded grid cells are identified as MLIP in
all cases. The dark shaded grid cells are MLIP determined for SI≤SIthr=0.2.

422

http://www.hydrol-earth-syst-sci-discuss.net
http://www.hydrol-earth-syst-sci-discuss.net/3/395/hessd-3-395_p.pdf
http://www.hydrol-earth-syst-sci-discuss.net/3/395/comments.php
http://www.copernicus.org/EGU/EGU.html


HESSD
3, 395–425, 2006

Most Likely Landslide
Initiation Points

P. Tarolli and
D. G. Tarboton

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

EGU

Fig. 10. MLIP map for 10 m resolution DTM grid and SIthr<1.
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Fig. 11. 3-D view of MLIP locations.
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(a)

(b)

Fig. 12. Illustration of MLIP locations identified (without SI threshold) for one landslide complex
for endpoints in the range of DTM resolutions used: (a) 50 m DTM resolution (b) 2 m DTM
resolution.
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