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Abstract

Intercomparison should include measurement of differences, between model results

and observations, among the model results themselves, or between model results and

exact solutions. The processes of measuring differences and critically analyzing those

differences are vital. Without such measurement as a component of intercomparison,5

the only expected benefits of an intercomparison project are participation, possibly

the discovery of communal confusion, and the establishment of public, non-proprietary

data sets.

1 On motivation

I perceive four cultural purposes of simplified geometry intercomparison projects:10

(i) to get everyone together to work on a new and intimidating job of common interest,

(ii) to produce publications early in the development of new codes,

(iii) to produce benchmark experiments (or “setups”) usable by current and future

modelers in understanding new models and debugging new codes, and

(iv) to produce benchmark results for the same reasons as in (iii).15

My perception is based upon completed rounds of simplified geometry intercompar-

isons, namely EISMINT
1

I (Huybrechts et al., 1996) and EISMINT II (Payne et al.,

2000), and upon the yet-to-be-completed simplified geometry parts of ISMIP
2
, namely

HOM, HEINO, and MISMIP.
3

1
“EISMINT” = European Ice Sheet Modeling INiTiative.

2
“ISMIP” = Ice Sheet Model Intercomparison Project.

3
Regarding the simplified geometry parts of ISMIP, as of April 2008: The intercomparison

work of ISMIP-HOM is completed, the collective report is under public review, and a perfor-
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All of the above-mentioned simplified geometry intercomparisons have succeeded

in purpose (i). Notably, ISMIP-HOM coincided with, and stimulated, explosive growth

in the number of higher-order and Stokes models. Intercomparison exercises are jus-

tified by the prospect of participation and discussion. The “value” that participation

represents, for instance to the agencies which fund intercomparison, far exceeds their5

direct creation of publications. As an additional example, participation in intercompar-

ison exercises has stimulated to the development of public ice sheet codes (Bueler

et al., 2008; Payne et al., 2008) and monographs (MacAyeal, 1997).

Purpose (ii) is equally serious. Modelers are more willing to take risks if some kind of

result is likely in the shorter term. ISMIP-HOM and MISMIP clearly provide this benefit10

to the modeling community. The shallow ice approximation (SIA)-based intercompar-

isons EISMINT I/II and HEINO compared existing ice sheet codes, to a significant

degree, and probably involved less risk-taking in this sense.

Purpose (iii) is always an intention of an intercomparison, not just the simplified

geometry type. If the only result of an intercomparison was creation of a few standard15

problems, however, then it would be a dull one indeed. Individuals or informal groups

can usually think up good experiments, so intercomparisons ought to add value beyond

goal (iii). There ought to be comparison in intercomparison.

2 On measurement and mathematics

Benchmark results, purpose (iv) in the list of motivations above, is a stated or implied20

goal of all intercomparison. If the results of a simplified geometry intercomparison are

tightly clustered then future readers will inevitably expect to compare new model results

mance analysis of one participating result is under public review (Pattyn and Payne, 2008; Pat-

tyn et al., 2008; Gagliardini and Zwinger, 2008). The intercomparison work of ISMIP-HEINO

is completed but the collective report is not submitted, although one participating result is pub-

lished (Calov and Greve, 2008; Greve et al., 2006). The intercomparison work of MISMIP is not

yet completed (Schoof et al., 2008).
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to the average of the intercomparison results.

The EISMINT I report (Huybrechts et al., 1996) is explicit that the average result is

intended to be a benchmark in this sense.

By contrast, the EISMINT II report (Payne et al., 2000) more-or-less disowns the

benchmark claim. There is widespread acknowledgement that EISMINT II revealed an5

important feature of the nonsliding thermomechanically coupled shallow ice approx-

imation, namely its instability as a fluid model in certain circumstances (a flat bed).

There was futher complication related to the use in one experiment of a pressure-

melting-temperature-activated sliding law; these complications have yet to be directly

addressed. The organizers of EISMINT II may have felt apologetic about the lack of10

benchmark results at the time, but in fact their intercomparison was successful in spark-

ing further research (Payne and Baldwin, 2000; Hindmarsh, 2004, 2006; Saito et al.,

2006; Bueler et al., 2007). This research occurred because the intercomparison ad-

dressed a problem of sufficient complexity and subtlety (at the time, and perhaps still)

so that “success” by any standard was not certain.15

The draft ISMIP-HOM report (Pattyn et al., 2008) is not so clear about about whether

the average of the results from the participants, among the full Stokes results in par-

ticular, is or is not a benchmark result. But purpose (iv) is implied by the design of

ISMIP-HOM. An intercomparison report should not claim, on the one hand, that no

benchmark results were sought or found, while, on the other, claim that the results20

show the success and agreement of the models.

In any case I am not impressed with the “benchmark results” claim implied in ISMIP-

HOM (Pattyn et al., 2008) or stated for EISMINT I (Huybrechts et al., 1996). Certainly

in the latter case (Bueler et al., 2005), and I suspect in the case of ISMIP-HOM, exact

solutions will appear to address the same issues and actually provide benchmarks. If25

exact solutions only appear ten years after an intercomparison then they are irrelevant

to the publishability or “success” of the intercomparison. If exact solutions are submit-

ted for publication in the next couple of years, or if we find that they already exist in the

literature, then this becomes an indication that the organizers of an intercomparison
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did not look around for better options.

In the case of ISMIP-HOM an “experiment 0”, done before the others, would have

been helpful. Namely an experiment based on an exact solution of the flow line, lin-

ear, constant viscosity Stokes problem for some boundary conditions like those of the

simpler ISMIP-HOM experiments. An exact solution technique in that case, at least,5

is completely addressed by “potential fluids” (biharmonic) methods in well-known and

classical sources (for example, Ladyzhenskaya, 1963, as well as many other places).

The exact solutions in that case are easy enough to write down that one “benchmark

result” improvement is immediate: checking future model results against a one-line for-

mula is a lot easier and more precise than checking results against a bunch of pictures10

in a “supplemental” Cryosphere Discussions supplemental file. This issue alone sug-

gests that simplified geometry intercomparisons should start with exact solutions even

if they are inadequate in the modeling sense.

An “experiment 0” exact solution as described for ISMIP-HOM circumstances is not

shear-thinning, but surely any Stokes solver for non-Newtonian fluids can be modified15

easily for constant viscosity. On the other hand there are exact solutions to shear-

thinning, power law Stokes flow. The “manufactured solutions” idea (Roache, 2004;

Bueler et al., 2005, 2007) can be applied to full power-law Stokes flow, by inserting a

divergence-free velocity field into the full Stokes model and determining the body force

necessary to make that velocity field a solution. This has been done already in the case20

of the (Blatter, 1995) higher order model by Glowinski and Rappaz (2003). It is also

possible that the technique can be modified to get a field of flow factors, interpretable

as a temperature field, and have the body force be the physical one (gravity).

If the goals are “simplified geometry experiments” or “benchmarks”, without the warts

of real data, then automatically a significant part of the job is mathematical. Clear25

thought about the qualities of predictions from the continuum model, and about the

particular initial/boundary value problem, is worthwhile even if no one knows what that

prediction is. There are professionals for this job.

Organizers of an intercomparison could at least consult with mathematicians on this
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task, if nothing else as insurance against possible embarrassment. Imagine the re-

versed situation: Mathematicians Alice and Bob build computer models of glaciers

based on deeply understood first principles (working only from a well-worn copy of Eu-

clid, say). They want to know if the model results correspond to reality. Should they

seek the advice of glaciologists on how to do field measurements? Or just wing it?5

Surely it is easy to just throw a GPS on the ice and watch it for a few days . . .

Here is an example of the mathematical attention which could be paid in future in-

tercomparisons. Suppose there is an easier, simplified experiment for which an exact

solution is known, and a harder “serious” problem of actual interest, for which no exact

solution is known. The intercomparison could compare the typical size of numerical10

errors for individual numerical models on the easier problem to the average pairwise

differences between numerical results on the harder problem(s). The choice of norm

for this comparison would be of some importance, perhaps.

If this were done then the published intercomparison could, if lucky, conclude with an

assertion of numerical “significance”, analogous to but not as precise as statistical sig-15

nificance, for the differences between numerical models based on different continuum

assumptions. If pairwise differences between models on the harder problem exceed

the individual model’s numerical errors on the easier problem then one has some ba-

sis for claiming the models have revealed a difference between models comes from

differences between the underlying continuum models. Conversely, if the differences20

between models are all about the same size as the numerical errors made on the

easy problem, then this is a useful result, too. It says you should implement whichever

continuum model is easiest to handle, or make whichever numerical choices are most

convenient (within the range of possibilities considered by the intercomparison).

Of course there are mathematicians and there are mathematicians. The ice flow25

modeling community is perhaps most familiar with mathematicians whose primary con-

cern is the formulation of continuum models (Hutter, 1983; Fowler, 1997; Blatter, 1995,

among other sources). Such mathematics is essential. It may be a surprise to the

reader to learn, however, that the main stream of the mathematics of continuum mod-
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els has, in the last fifty years, been devoted to something else. Namely the study of

the qualities of predictions and the quantification of behavior of particular continuum

models and not the derivation of new models. For instance, far more time has been

devoted to the mathematical consequences of linear Navier-Stokes than to formulating

variations on Navier-Stokes which might be better models of different fluids. Physicists5

justifiably complain about this mathematical obsession with a particular case, but such

obsessions are exactly appropriate to creating effective simplified geometry intercom-

parisons and “benchmarks”.

Said another way, there is a difference between the mathematics of small parameter

arguments which derive new differential equations (much practiced in ice flow), and the10

mathematics associated to estimating the size of the solution to a particular differential

equation, or the degree of approximatability of solutions of a particular equation. The

latter areas of mathematics, more-or-less characterized by use of the phrase “Sobolev

space”
4
, must be accepted, even if peripherally, into the world of intercomparison for

ice flow. By comparison, standard statistical measurements like “χ
2
” are already ac-15

cepted (MacAyeal et al., 1996). Only by quantitatively relating the smoothness of inputs

to the smoothness (and other qualities) of model predictions will the relative difficulty of

various ice sheet modeling tasks be addressed. Only by considering problems mathe-

matically posed in their natural spaces will the dependence of results on parameters be

clearly understood (Carey et al., 2004, takes steps in this direction). Only mathematics20

can explain the inevitable, frustrating inconsistencies between simplified geometry in-

tercomparison results. Mathematical clarification of such inconsistencies will allow the

4
A space of functions with a specified amount of smoothness, along with a method for mea-

suring size which penalizes non-smoothness (the “Sobolev norm”). Sobolev spaces has been

common in the last 50 years of study of all sorts of fluids models related to ice flow, including

Navier-Stokes equations (Ladyzhenskaya, 1963) and the nonlinear porous medium (Vázquez,

2007, and references therein) among others. Sobolev spaces are essential to determining

when the finite element method (Braess, 2007) will succeed. Sobolev spaces were absent

from the mathematical ice flow literature until quite recently (Colinge and Rappaz, 1999; Calvo

et al., 2002a; Schoof, 2006, for example).
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broader community to see what the models say about nature.

3 On comparisons with observations

More broadly than simplified geometry experiments alone, the short history of com-

pleted geophysical ice flow intercomparison suggests other possible outcomes:

(a) the intercomparison revealed or explored issues of communal confusion, or5

(b) the intercomparison measured model results against observations of real ice flow.

Category (a) is highly desirable. Issues get dealt with out in the open, instead of

festering. EISMINT II is a premier example, as described above. MISMIP probably fits

in this category, more-or-less by public acknowledgement in advance. I think time will

reveal that HEINO also fits in this category, for technical reasons not pursued here.10

Category (b) is subject to a well-known caveat which is nonetheless worth repeating

(van der Veen, 1999). Namely, if the intercomparison involves measurements against

observations then some observations must be set aside for this purpose and not used

in initializing models, or as boundary conditions to models, or for tuning the models.

Only one case of category (b) has been published to my knowledge: MacAyeal et al.15

(1996). Two additional intercomparisons of this type have been completed without

publication, the EISMINT-Greenland (Ritz, 1997) and EISMINT-Antarctica (Huybrechts,

1998) intercomparisons.

As an outsider to these intercomparisons, I am impressed by their usefulness to

researchers not involved in the intercomparison itself. They involved the posting of20

public data sets. These intercomparisons have, thereby, set a standard for the mini-

mum quality of a model for the system under consideration. This standard is effective

because the model inputs are public and (hopefully) permanent. Modelers can test

whether new models reach a minimum level of quality independent of the availability of

improved data, which always makes models work better.25
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The public-ness of the data sets is critical. It breaks the stranglehold of proprietary-

in-practice data sets (though usually generated using public funding). It allows a model

developer to grab real data and then be forced to deal with all its warts because, after

all, others have already done so with some success. One can hardly be satisfied

with new work until it is at least as good as the old intercomparison results, however5

messy those results were from the point of view of intercomparison. Such has been the

impact of these observations-based intercomparisons on the design of the ice sheet

model PISM (Bueler et al., 2008), in any case.

Ice shelf intercomparisons already have a gold standard. EISMINT-Ross (MacAyeal

et al., 1996) performed quantitative, statistically-based comparison of model results10

and observations. That is, the model velocity results were compared to observations

by measuring differences, by summing the squares of point differences in the usual way.

As a result it is also qualitatively clear that ice shelf models based on the shallow shelf

approximation (Weis et al., 1999) are doing the intended job, namely computing flow

velocity from boundary conditions. The available surface velocity data were sufficiently15

numerous to leave no question that the tuning of at least one parameter (ice hardness)

was appropriate. More sophisticated tuning experiments (inverse modeling) have been

performed since EISMINT-Ross, with evident confidence in the effectiveness of the

basic diagnostic ice shelf paradigm (Humbert et al., 2005; Rommelaere and MacAyeal,

1997; Larour et al., 2005).20

Where is the grounded case for ice sheets? Could we recall Mahaffy (1976) and go

back to the Barnes Ice Cap and check that the nonsliding thermomechanically coupled

shallow ice approximation (TSIA) can be tuned, using few knobs, to give good agree-

ment with observed surface velocities, or that it does not? Will there forever be the

suspicion that the TSIA is good for nothing on earth, but never a test to establish, more25

firmly, one way or the other?

Of course, for grounded ice the critical lower mechanical boundary condition is not

itself observed. Furthermore, major ice sheets have some sliding base regions. Sup-

posing that intercomparison is a good approach at all, is intercomparison of inverse
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models needed more than for forward models? If so, what do you measure, against

what observations, if the observed surface velocities have already been used for the

inverse modeling?

4 On language

So far I have avoided the use of the words “verify” and “validate”. Ink has been spilled,5

though so far no blood to my knowledge, on the meaning of these terms. Nonetheless

“verification” and and “validation” are useful terms corresponding to pragmatic, achiev-

able processes of measurement of model outputs. These processes can be parts of

intercomparison, and perhaps these terms can be used without causing trouble.

The broader computational fluid dynamics (CFD) community defines “verification” to10

mean the comparison of results from a numerical approximation to exact, or possi-

bly high-quality numerical, solutions of the same continuum model equations (Pierce,

2004; Roache, 2004; Wesseling, 2001, among many examples). It defines “valida-

tion” to mean the comparison of model results to trusted observations of real systems.

Here “trusted” means that observations are complete enough to determine the initial15

and boundary values for the model, and that experimental measurement error for the

observations is believed to be small. Thus, the difference between model results and

observations reflects on the quality of the model not the quality of the observations.

Note that both terms may apply to a particular numerical code approximating a par-

ticular continuum model. There is no automatic association of these terms with inter-20

comparison, but an intercomparison project can use the terms, and the processes to

which they refer, as part of the “measurements of differences” advocated here.

A minor hiccup first: Reference van der Veen (1999) reverses these terms, and that

reversal is propagated to van der Veen and Payne (2004). Note van der Veen (1999)

cites Oreskes et al. (1994) as a source for the terms, though they are not reversed25

there. This is a minor point, because what is crucial is that two different measurement

processes are possible. The particular names are only significant in avoiding commu-
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nication errors. The CFD community is sufficiently large so that the ice sheet modeling

community should conform, however.

The views in Oreskes et al. (1994) are both well known and extreme. The abstract in

that source starts with the sentence “Verification and validation of numerical models of

natural systems is impossible,” and the authors proceed accordingly. I see no reason5

to squeeze practical language, which within CFD describes particular measurement

processes applied to model outputs, into a philosophical corner, but that is done in

Oreskes et al. (1994). Adding a third term, “confirmation”, helps not at all.

What is perhaps worth extracting from Oreskes et al. (1994), and this point is made

in van der Veen (1999) as well, is that there is no purpose in claiming that a nontrivial10

numerical model for a nontrivial natural system has been either “verified” or “validated”.

In fact, I will try to never again say, though I have in the past, that my ice sheet model

“has been verified” or “has been validated”. Though processes of verification and vali-

dation improve them, models do not tell the truth once these processes are performed.

The finality of the present perfect tense leaves a needless false impression.15

A model is more trustworthy if there is a record of measuring its output relative to

exact solutions, and if there is a parallel record of measuring its output relative to ob-

servations of real systems. These measurement processes can be built into ice sheet

models and their supporting documentation. These processes can be, and should be,

repeated routinely as part of the maintenance of models. These processes of verifica-20

tion and validation can be components of, and complement, intercomparison itself.
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