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Abstract

The annual evolution of the ground temperatures from Incinerador borehole in Liv-

ingston Island (South Shetlands, Antarctic) is studied. The borehole is 2.4 m deep and

is located in a quartzite outcrop in the proximity of the Spanish Antarctic Station Juan

Carlos I. In order to model the movement of the 0
◦
C isotherm (velocity and maximum5

depth) hourly temperature profiles from: (i) the cooling periods of the frost seasons of

2000 to 2005, and (ii) the warming periods of the thaw seasons of 2002–2003, 2003–

2004 and 2004–2005, were studied. In this modelling approach, heat gains and losses

across ground surface are considered to be the causes for the 0
◦
C isotherm movement.

A methodological approach to calculate the Enthalpy change based on the thermody-10

namic analysis of the ground during the cooling and warming periods is proposed. The

Enthalpy change is equivalent to the heat exchange through the ground surface during

each season, thus enabling to describe the interaction ground-atmosphere and pro-

viding valuable data for studies on permafrost and periglacial processes. The bedrock

density is considered to be constant in the borehole and initial isothermal conditions at15

0
◦
C are assumed to run the model. The final stages correspond to the temperatures at

the end of the cooling and warming periods (annual minima and maxima).

1 Introduction

Climate change and permafrost in the Antarctic

Mesoscale modelling results indicate that air temperature increase will be highest in20

the high latitudes, with rapid changes prone to occur in the Polar Regions (Anisimov

et al., 1997). In the Antarctic, the 50 last years of meteorological observations show

that the climate variability was not homogenous. The climate of the Antarctic Penin-

sula region has experienced a major warming trend over the last 50 years with an-

nual mean air temperatures at Faraday/Vernadsky station having increased at a rate of25
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0.56
◦
C/decade and 1.09

◦
C/decade during the winter (King, 1994; Turner et al., 2005).

In this region the surface mass balance has increased at isolated sites (Peel, 1992),

the number of winter precipitation events in Rothera has increased by 50% (Turner et

al., 1997), and a number of ice shelves have retreated and disintegrated (Vaughan and

Doake, 1996; Scambos et al., 2003). Several factors contributing to the anomalous5

warming in the Antarctic Peninsula and the Weddell Sea region have been proposed,

some of them related to the increase in westerlies observed over the last 30 years

(Marshall, 2002).

Increasing air temperatures and precipitation may cause the degradation or even the

disappearance of permafrost in the sporadic permafrost zone, where current climatic10

conditions produce near-zero annual air temperatures, such us the South Shetlands

Islands, north of the Antarctic Peninsula.

The energy exchange between the ground surface and the atmosphere depends on

the radiation balance, ground heat fluxes and turbulent heat fluxes at the ground and

snow surfaces. These are especially complex in the alpine or polar maritime areas,15

where the relief is mountainous and snow cover influence is particularly strong (Van

Lipzig et al., 2004; King and Turner, 1997; King et al., 2003). The seasonal snow

cover, which presents a barrier to ground heat loss in winter, is a leading factor in

the ground thermal regime and active layer depth (Lachenbruch, 1959; Outcalt et al.,

1975; Goodrich, 1982; Williams and Smith, 1989; Zhang et al., 1996; Romanosky20

and Osterkamp, 2000; Ling and Zhang, 2004). Snow has a high surface albedo and

high emissivity, inducing cooling of the snow surface, while its low thermal conductivity

makes it a good insulator. The ground heat flux is another important magnitude in the

energy balance and the main factors that control it in permafrost terrain are: (i) moisture

content in the active layer, (ii) thaw effects at the free boundary, and (iii) non-conductive25

heat transfer effects (variable thermal diffusivity).

The active layer thickness and dynamics are extremely important factors in polar

ecology. Since most exchanges of energy, moisture, and gases between the atmo-

spheric and terrestrial systems occur through the active layer, its thickening has im-

155

http://www.the-cryosphere-discuss.net
http://www.the-cryosphere-discuss.net/2/153/2008/tcd-2-153-2008-print.pdf
http://www.the-cryosphere-discuss.net/2/153/2008/tcd-2-153-2008-discussion.html
http://creativecommons.org/licenses/by/3.0/


TCD

2, 153–184, 2008

Ground surface

Enthalpy balance

M. Ramos and G. Vieira

Title Page

Abstract Introduction

Conclusions References

Tables Figures

◭ ◮

◭ ◮

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

portant effects on physical, geomorphic, hydrologic and biological processes (Nelson

et al., 1993). Furthermore, the issue of active layer response to climate change is of

increasing concern, particularly in respects to its degradation and consequent physico-

chemical influences on the biogeochemical cycle of carbon and on global change mod-

elling (Anisimov et al., 1997; Osterkamp, 2003).5

Compared to the Arctic, very little is known about Antarctic permafrost (Bockheim,

1995). In 2004 only 4 active layer boreholes were being monitored in the Antarctic

Peninsula Region and a number as small as 21 in the whole Antarctic Region (Bock-

heim, 2004). Complex logistical and maintenance problems and the remoteness of the

Antarctic are the main causes for this scarcity. The limited knowledge of the ground10

temperature conditions led to a recent effort to increase active layer and permafrost

research in the Antarctic under the framework of international programs. Two core

projects of the International Polar Year 2007–2008 where Antarctic permafrost plays a

central role are under way: ANTPAS – Antarctic and Sub-Antarctic Permafrost, Soils

and Periglacial Environments and TSP – Permafrost Observatory Project – Thermal15

State of Permafrost (Guglielmin et al., 2001; Bockheim, 2004). The present research

is integrated in these projects and intends to monitor and model the active layer tem-

perature regime in a shallow borehole in Livingston Island (South Shetland Islands,

Antarctic Peninsula) (Ramos and Vieira, 2003).

The objective of this paper is to present a one-dimensional stationary heat transfer20

model without phase-change developed to calculate the seasonal (freezing and thaw-

ing) energy balance (Enthalpy) of the ground-atmosphere interface during the annual

periods of ground warming and cooling. The methodology is based on the measure-

ments of the temperature gradient evolution in a shallow borehole drilled in bedrock.

For modelling purposes we consider that the bedrock has negligible water content,25

there is no advective heat transfer and phase-change effects during freezing and thaw-

ing are not included in the modelling.
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2 Study area

2.1 Geological and geomorphological setting

Hurd Peninsula is a mountainous area located in the south coast of Livingston Island,

South Shetlands, Antarctic (62
◦
39

′
S, 60

◦
21

′
W). About 90% of the island is glaciated

with ice-free areas occurring at low altitude, generally in small but rugged relief penin-5

sulas. The study focuses on the ice-free areas of the north western part of Hurd Penin-

sula in the vicinity of the Spanish Antarctic Station (SAS) Juan Carlos I (Fig. 1). The

borehole where ground data is collected is located at 35 m a.s.l. at Incinerador Point.

The bedrock is a low-grade metamorphic turbidite sequence with alternating layers

of fine sandstones and shales, with conglomerates and breccias in some areas (Miers10

Bluff Formation – Arche et al., 1992). The succession dips 45
◦
NW and is affected

by open folds, mainly overturned (Pallàs, 1996). Dolerite dykes and quartz veins are

frequent (Arche et al., 1992). The surficial lithology is very heterogeneous inducing

different weathering styles and products.

During Marine Isotope Stage 2 Livingston Island was covered by an extensive ice-15

cap. It was only in the Holocene that deglaciation started and most ice-free areas of

the peninsulas became ice-free only after ca. 6.4 ka BP. Two glacier advances have

been reported for the Holocene, the first between 720 and 330 BP and the other after

300 BP. This has been interpreted as correlative to the Little Ice Age (Pallàs, 1996).

Glaciers are retreating steadily today.20

2.2 Climate

The circum-Antarctic low-pressure system controls the climate, which is cold-oceanic

with frequent summer rainfall at low altitudes and moderate annual temperature range.

Relative humidity is very high with average values from 80 to 90% (Simonov, 1977;

Styszynska, 2004). Mean air annual temperatures in the Antarctic Peninsula region25

vary between −5.2
◦
C (Esperanza) and −1.6

◦
C (Arctowski) and annual precipitation
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is ca. 500 mm (http://www.antarctica.ac.uk/met/READER/surface/stationpt.html) (King,

1994).

Continuous meteorological series for Livingston Island are lacking. Air temperature

data from loggers installed at a 15, 165 and 275 m a.s.l. in the study area show mean

annual air temperatures from 2003 to 2005 of −1.5 to −3.0
◦
C. From April to November5

mean daily air temperatures are generally below 0
◦
C and from December to March

temperatures are slightly positive (Fig. 2). Two contrasting seasons in what concerns

to freezing and thawing are well-defined.

2.3 Permafrost distribution

Permafrost distribution in Livingston Island has been studied using geomorphological10

evidence (Serrano and Lopez-Martinez, 2000; Vieira and Ramos, 2003), ground tem-

perature monitoring in shallow boreholes (Ramos and Vieira, 2003; Ramos et al., 2007)

and geophysical surveying (Hauck et al., 2007). Geomorphological and geophysical

observations indicate that permafrost occurs immediately above sea-level associated

to ice-cored moraines and rock glaciers, but in bedrock terrain its identification is more15

complex. Borehole data and excavations at Reina Sofia Hill (275 m a.s.l.) show the

presence of permafrost and an active layer ca. 90 cm thick in a boulderly diamicton.

Soil temperature data from 2000 to 2005 illustrate the significant control caused by

the type of substratum on the active layer thickness as shown also by other authors in

different regions (Washburn, 1979; Williams and Smith, 1989; French, 1996; Hoelzle et20

al., 2001). At Incinerador borehole, drilled in quartzite bedrock, a lithology showing high

thermal diffusivity (density – 2650 kg/m
3
, specific heat – 720 J/kgK, thermal diffusivity

– 1.23×10
−6

m
2
/s, thermal conductivity – 2.35 W/mK – Schön, 1996) and negligible

water content at this site, there is no zero-curtain effect related to latent heat exchanges

(Figs. 3 and 4). In these conditions the estimated active layer thickness is in the order25

of 2 to 5 m.
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3 Shallow borehole temperature data

This study focus on data from a shallow borehole installed in the vicinity of the Spanish

Antarctic Station Juan Carlos I at Incinerador Point (35 m a.s.l.). The borehole is 2.4 m

deep and is drilled in massive quartzite (very high thermal diffusivity) showing only

minor joints. The topographical position of the borehole in a small step reduces the5

possibility of water flow along the joints and the convex shape of the landform also

diminishes the water presence in the joints. The absence of freezing curtain effects in

the temperature series supports the negligible effect of ground moisture.

The borehole is cased with a plastic cylinder 90 mm in diameter. Ground tempera-

tures at different levels are recorded at hourly intervals since 2000, but only after 200310

continuous annual temperature series were recorded. Miniature single-channel data

loggers (Tiny Talk (Gemini Co., http://www.geminidataloggers.com/)) with a NTC-10K

thermistor with a resolution better than 0.05
◦
C and an accuracy of 0.1 to 0.2

◦
C have

been used. It was not possible to install a large number of temperature sensors in 2000

and only the subsequent years the number was increased. This fact and an error in the15

reinstallation of the chain in 2003 gave origin to changes of measuring depths during

the initial period.

In the slopes near the Incinerador borehole at ca. 20 m a.s.l. frozen ground has been

found in talus materials (Bergamin et al., 1997) suggesting that permafrost in bedrock

may also be present. Geophysical surveying in bedrock at the borehole site using 2-D20

electrical tomography resistivity, ground penetrating radar and refraction seismics were

inconclusive (Hauck et al., 2007). The borehole shows an annual cycle of freezing and

thawing down to 2.3 m, which could be representative of seasonal frost or of a very

thick active layer. This is related to the high diffusivity of quartzite, that shows values

allowing to estimate active layer depths of 2 to 5 m.25
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4 Method for the Enthalpy balance calculation

Temperature records from the Incinerador Point borehole for the winters of 2001 to

2005 and for the summers of 2002 to 2005 were used (Fig. 3). These data enable

calculating: (i) the Enthalpy change (equivalent to the heat exchanged with the atmo-

sphere through the ground surface during the active layer frost and thaw seasons),5

and (ii) the rates of cooling and warming of the ground (equivalent to the rate of heat

exchanged per unit of time through the ground surface during frost and thaw seasons).

The results of ground Enthalpy change during the processes of cooling during the

active layer frost season indicate the heat loss through the soil surface. This energy pa-

rameter is a function of the thermodynamical processes of energy exchange between10

ground and air (e.g. ground heat flux, sensible heat flux, turbulent fluxes and radiation

balance). In a similar way, during the thaw season the Enthalpy is the heat gained by

the soil across its surface.

The thermodynamic variables needed to calculate the Enthalpy change are: (i) soil

thermal diffusivity (α), (ii) thermal conductivity (K), (iii) density (ρ) and (iv) heat capacity15

(C).

The thermal diffusivity (α) was calculated experimentally from the ground tempera-

ture gradient in episodes with sinusoidal signal using harmonic temperature analysis

(Stearns, 1965; Deacon, 1969; Zhang et al., 1996). This was achieved using an inverse

analysis with the steady-state solution of the heat equation for a semi-infinite system20

with sinusoidal temperature conditions at the surface. The non-conductive factors as-

sociated with non-porous heat transfer in bedrock were considered negligible due to

the massive character of the bedrock (Hinkel et al., 1990; Kane et al., 2001). The

thermal diffusivity obtained for the periods of freezing and thawing show a small range

(α=1.23±0.2×10
−6

m
2
/s) and are in agreement with the tabulated limits values for this25

quartzite (Schön, 1996). Therefore we used the tabulated data for thermal conductivity,

density and specific heat capacity.

The ground surface heat flux exchange is a key parameter for studying the interac-
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tions between the ground and the atmosphere boundary layer (Oke, 1987; Williams

and Smith, 1989). Our approach is based on the following assumptions: (i) the ground

acts as a homogeneous mean (massive rock) with constant density and semi-infinite

geometry (one-dimensional heat transfer problem), (ii) the temperatures at some depth

below the borehole are stable and close to 0
◦
C, and (iii) heat transfer in the ground oc-5

curs only through the surface.

The Enthalpy balance (∆H), in this case, is equivalent to the change in internal En-

ergy of the ground between two thermodynamic states (∆U). Enthalpy change equa-

tion is:

∆H = ∆U + P∆V + V∆P (1)10

But since no volumetric change takes places (constant soil density) and since the pres-

sure is constant, Enthalpy change is equal to the ground internal Energy.

∆H = ∆U (2)

This corresponds to the heat exchange at the ground – atmosphere boundary layer

interface since energy exchanges occur across the soil surface. The energy is positive15

if the ground gains energy and negative if it looses energy.

The annual evolution of the ground temperature profiles at the Incinerador borehole

show two distinct periods: (i) the frost season when the temperature profile is below 0
◦
C

(T(x)<0
◦
C), (ii) the thaw season when the temperature profile is above 0

◦
C (T(x)>0

◦
C).

In the autumn the ground looses energy and active layer temperatures fall below 0
◦
C20

with a slight delay in depth. These conditions last until spring, when due to the net gain

of energy, the temperatures of the active layer rise above 0
◦
C and the thaw season

starts. Inside each of these two seasons, two periods marked by net ground heat loss

or gain can be identified. In our calculations these periods are especially significant

and they are defined as (Fig. 4): (i) the period of cooling in the frost season (tcf ), when25

T(x)<0
◦
C and the soil looses energy; (ii) the period of warming in the thaw season

(twt), when T(x)>0
◦
C and the soil gains energy.

161

http://www.the-cryosphere-discuss.net
http://www.the-cryosphere-discuss.net/2/153/2008/tcd-2-153-2008-print.pdf
http://www.the-cryosphere-discuss.net/2/153/2008/tcd-2-153-2008-discussion.html
http://creativecommons.org/licenses/by/3.0/


TCD

2, 153–184, 2008

Ground surface

Enthalpy balance

M. Ramos and G. Vieira

Title Page

Abstract Introduction

Conclusions References

Tables Figures

◭ ◮

◭ ◮

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

During the period of cooling in the frost season (tcf ), the heat lost by the ground

through its surface S (per m
2
) is equivalent to the ground Enthalpy change throughout

the same interval and surface (∆Hf/S). The continuous heat flow from depth towards

the surface during cooling (tcf ) is the average thermal heat flux:

< Φf >= ∆Hf/(Stcf ) (3)5

In the period of ground warming in the thaw season (twt), the ground will gain heat

through its surface (∆Ht/S) and its average thermal flux is:

< Φt >= ∆Ht/(Stwt). (4)

There are two classical methods in the simplest one-dimensional heat conduction prob-

lem to calculate the ground Enthalpy change. One is to use Fourier’s law to calculate10

the rate of heat transfer or heat flux in the vertical (x-) direction:

HG = −K

(

∂T

∂x

)

(5)

The other method consists in integrating the internal energy equation of the heat trans-

fer expression:

HG = HD +

∫ D

0

∂ρcT

∂t
dx (6)15

where D is a depth of reference where the soil heat flux HD is either zero or can be eas-

ily estimated. To apply accurately these procedures numerous sensors in the ground

and a high precision of differential temperature records are needed. Otherwise the

global error in the energy estimation would be too high. This limitation is linked to the

problems arising from the sums of the differences of the instantaneous temperatures20

(Arya, 1998).

With a small number of sensors in the borehole, as in the present situation (4 sensors

in 2001, 2002 and 2003 and 6 sensors in 2004 and 2005) and in the case of most
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shallow boreholes, a more robust method supported by thermodynamic arguments will

provide better results.

In the current approach, we consider that near the start of the cooling period in the

frost season (tcf ) the entire active layer is quite isothermal at 0
◦
C. This is an adequate

hypothesis since all the sensors show more or less this initial thermal equilibrium state5

at the initial condition and we can assume that there is a thermodynamic equilibrium

at the initial state (i): Ti f (x)=0
◦
C (initial state in the frost season – i). During the pe-

riod of cooling in the frost season (determined from the temperature data), the ground

looses heat until it reaches a final state (F) of minimum energy (TF (x)), characterized

by the depth profile of the minimum temperatures (TF f (x)=Tmin(x)). In the period of10

warming during the ground thaw season (twt) the initial state (i) is also Ti t(x)=0
◦
C.

The final state (F) corresponds to the depth distribution of the maximum temperatures

(TF t(x)=TMax(x).)

To estimate the heat flow during these periods, the Enthalpy change in the active

layer between the initial (i) and final (F) equilibrium states is calculated. The hourly15

records of the temperature profiles are used to determine the initial and final states in

both the warming and cooling periods.

On the other hand, the analysis of the temperature regimes at different depths allows

to estimate the penetration of the 0
◦
C isotherm versus time (respectively, Xf (t) in the

frost season and Xt(t) the thaw season). The velocities of the migration of the zero20

isotherm (slope of Xf−t(t)=dXf−t/dt (m/day)) are assumed to be constant and a linear

fit is used. Figure 5 shows an example for estimating Xf (t) during the periods of cool-

ing (tcf ) in the frost seasons 2003 and 2005 and Xt(t) during warming in the thawed

seasons of 2003–2004 and 2004–2005 (twt).

These linear fits enable the estimation of the maximum depth of the 0
◦
C isotherm:25

Cooling period: Df = Xf (tcf ) = mf tcf + nf (7)

Warming period: Dt = Xt(twt) = mttwt + nt (8)
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Following the assumptions indicated above, Df−t corresponds to the depth of zero

annual temperature range (down the heat flux ground is zero).

The experimental temperature profiles in the final states were calculated at each

level for the winters of 2001, 2002, 2003, 2004 and 2005 and also for the summers of

2002–2003, 2003–2004 and 2004–2005 (Figs. 6 and 7 represent any of these results).5

Log-fit functions (9) applied to the final (maximum and minimum) temperature profiles

show a good agreement. In both seasons, the area between the logarithmic fit and the

x axis is related to the change of Enthalpy between the initial isothermal condition (i)

and the final stage (F).

TF (x) = Tmin−Max (x) = a lnx − b (9)10

The infinitesimal change of Enthalpy in the system is defined by:

dHf−t = mcP dT (10)

The change of Enthalpy (∆H) is calculated from the temperature profiles defining the

initial (i) and final (F) equilibrium states. For this purpose, the ground is divided in

infinitesimal elements of thickness, dx, each of them experiencing a thermodynamic15

transformation from the initial state (Ti (x)=0
◦
C) to the final state accounting for its depth

in the profile (TF (x)=Tmin−Max(x)), choosing the minima for the freezing and the maxima

for the thawing seasons (Eq. 11):

dHf−t = ρScP dx [TF (x) − Ti ] (11)

The Enthalpy contribution of all the ground levels is calculated by integration along the20

maximum penetration of the zero isotherm fronts, Df−t:

∫ TF

TI

dHf−t = ρScP

∫ Df−t

0

[TF (x) − Ti ]dx (12)
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The value of ∆H/S is represented by the area between the log-function representing

TF (x)=Tmin−Max(x) and the axis Ti (x)=0
◦
C.

∆Hf−t

S
= ρcP

∫ Df−t

0

(TF (x) − Ti )dx =ρcP

∫ Df−t

0

(a lnx − b)dx (13)

Where, Df−t is the maximum depth of the zero isothermal front during freezing (tcf )
or thawing (twt) periods, and a and b are constants representing the final state of5

equilibrium in the log-fit of the minimum and maximum temperatures profiles (in the

frost and thaw season). To calculate the Enthalpy change per unit area, Eq. (13) is

integrated to provide the following exact solution:

∆Hf−t

S
=

K

α

∫ Df−t

0

(a lnx − b)dx =
KDf−t

α

[

a lnDf−t − a − b
]

(14)

The heat loss or gain (equivalent to the ground Enthalpy change) are produced during10

the time interval defined as, respectively, the period of cooling in the frost season (tcf ),
or the period of warming in the thaw season (twt) (Fig. 4). Therefore, the average

heat flux exchanged by the ground surface during those periods shows the following

definition:

〈Φf−t〉 =
∆Hf−t

Stcf−wt

=
KDf−t

αtcf−wt

[

a lnDf−t − a − b
]

(15)15

The Enthalpy change per unit area (∆H/S) allows to estimate the heat gained or lost by

the ground during the ground frost and thaw seasons, and to compare distinct years,

while the average heat flux (<Φf−t>) expresses the rates of cooling and warming.

5 Results and discussion

The methodology presented above was used to calculate the values of the Enthalpy20

change (∆Hf−t/S) and average heat flux (<Φcf−wt>), as well as other complementary
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parameters, like the air (Iaf−t) and ground freezing indexes (If−t) at 15 and 230 cm

depth (If−t(−15) and If−t(−230)). Due to the lack of measurements at 5 cm depth, the

ground freeze/thaw index at this level was only calculated for 2004, for the winter of

2005 and for the summer of 2004–2005. Other measured parameters are: mean air

temperature (<Ta>f−t), daily minima and maxima temperatures (Tf−tmin and Tf−tMax)5

and length of the frost and thaw seasons (winters of 2000 to 2005 and summers of

2002 to 2005) (Table 1). The incomplete setting of the monitoring devices in 2000 did

not allow calculating the Enthalpy and associated parameters for that year.

The results show that generally the mean ground frost season is around two months

longer than the thaw season (Table 1). The exception was 2005 with 183 days for10

the thaw season and 134 days for the frost season. Annual variations in the length of

the frost season are not large, with a standard-deviation of 48 days and a mean value

of 187 days. The average air temperatures during the frost season show a value of

−3.2
◦
C with daily maximum and minimum temperatures of 2.2

◦
C and −14.4

◦
C. These

contrast with average temperatures during the thaw season of 1.2
◦
C and daily maxi-15

mum and minimum temperatures of 5.0
◦
C and −4.9

◦
C, respectively (Table 2).

The values of the ratio of air and ground (15 cm) freezing indexes (Ia/If (−15)) show

large interannual variability and are probably controlled by the snow thickness during

the winter (Table 1). As an example of this control, the 2002 and 2005 frost sea-

sons show relatively similar air freezing indexes (1027
◦
Cday in 2002 and 1102

◦
Cday in20

2005). However, the modelled ground-atmosphere energy balance in the frost season

was about 3 times larger in 2002 than in 2005. The ratio between the air and ground

freezing indexes during the frost season was also very different (1.42 in 2002 and 3.69

in 2005), a fact that also indicates the differences in snow conditions. The snow seems

also to have controlled the length of the freezing season, which lasted for 227 days in25

2002, but only for 134 days in 2005 (Table 1).

Notwithstanding the small time frame with comparable data between the ground frost

and thaw series, a preliminary analysis of the period of 2003 to 2005 deserves a closer

insight. The differences between the mean annual values of this period for the ground
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frost and thaw seasons are significant in the energy balance, with average losses of

−1.81 MJ/m
2

and gains of 2.8 MJ/m
2

(Table 2). The same trend is visible in the freezing

and thawing indexes at both 5 and 15 cm depth. In average, the air freezing index in

the frost season (<Iaf>) is 871
◦
Cday, while the air thawing index in the thaw season

(<Iat>), shows values of 173
◦
Cday. The large differences that appear between the air5

and the ground thawing index suggest that one of the more important energy terms

and effective mode for the ground to gain energy in summer is through solar radiation.

Despite the energy budget differences between the two seasons, the length of the

periods of cooling during the frost season (70±34 days) and of warming during the

thaw season (71±3 days) is somewhat similar (Table 2). It is also significant that the10

length of the period of cooling (tcf ) in the frost season of 2004 almost tripled the length

of the same period in 2002. However, the total energy exchanged was much higher in

the winter of 2002 (Table 1).

The absolute value of the heat lost by the ground during cooling in the frost sea-

son showed too a high interannual variability (Table 1) and was always smaller than15

the heat gained during warming in thaw season. The difference between both terms

of energy lost in the frost and gained in the thaw seasons allow to calculate the net

ground energy exchange during the year. The three complete years of record (2003

to 2005) show the increment of energy into the soil (Table 3) with a mean value of

9.9 MJ/m
2

but the 3-years of data available for complete the thaw and frost seasons20

are still not enough for statistical significance. The heat flux during cooling (<Φcf>) in

the ground frost season, a parameter that indicates the average rate of cooling during

winter, shows also a significant interannual variation. For example, in 2002 its value

was ca. 8 times higher than the value in 2004. However, the difference between the

maximum estimated depths of the 0
◦
C front (Df ) is small between the same periods25

(7.2 m in 2002 and 5.6 m in 2004). The difference between the energy losses is also

very significant (−48.1 MJ/m
2

in comparison with −16.3 MJ/m
2
) (Table 1). On the other

hand, the average value of (<Φcf>=−3.5 W/m
2
) with a standard deviation of 1.5 W/m

2
,

in contrast with the heat flux during warming in the thaw season that shows a smaller

167

http://www.the-cryosphere-discuss.net
http://www.the-cryosphere-discuss.net/2/153/2008/tcd-2-153-2008-print.pdf
http://www.the-cryosphere-discuss.net/2/153/2008/tcd-2-153-2008-discussion.html
http://creativecommons.org/licenses/by/3.0/


TCD

2, 153–184, 2008

Ground surface

Enthalpy balance

M. Ramos and G. Vieira

Title Page

Abstract Introduction

Conclusions References

Tables Figures

◭ ◮

◭ ◮

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

standard deviation (<Φwt>=4.6±0.5 W/m
2
) (Table 2). This indicates that the summer

warming is more regular interannualy, a fact that is probably related to the well known

effect of the radiative heat transfer. During the winter, interannual snow cover variability

is probably the responsible for the higher variability in the apparent heat flux.

In what concerns to the meteorological variables, the mean air temperature during5

cooling in the frost season of 2001 was significantly higher (−2.3
◦
C) than the value

recorded in 2002 (−4.2
◦
C). Nevertheless, the maximum depth of the freezing front was

rather similar in both periods.

The simple analysis of air temperatures is insufficient to characterize the processes

of energy exchange between the ground and the atmosphere boundary layer. In the10

same sense, no significant correlation is found between the Enthalpy change and the

average and minimum and maximum air temperatures. Absolutely minimum/maximum

daily temperature in freezing season was in 2005 (−18.8
◦
C/2.3

◦
C) in contrast with 2002

(−15.4
◦
C/3.4

◦
C) while the difference Enthalpy between the 2002 (−48.1 MJ/m

2
) and

2005 (−12.6 MJ/m
2
) was very important.15

6 Conclusions

The results of the calculation of the Enthalpy balance and average heat fluxes between

the active layer and atmosphere boundary layer seem adequate for the study of en-

ergy factors influencing the thermal evolution of the active layer. The data supports the

fact that the independent study of air temperature regimes or air freezing indexes is20

insufficient to characterize the net energy exchanges between the ground and the at-

mosphere, since the later depends also from snow cover thickness, radiation balance,

turbulent heat fluxes and many other factors. All these factors, show an extremely vari-

able interannual and non-linear behaviour are, however, integrated in the calculated

Enthalpy balance.25

Despite the limitations arising from the assumptions used in the modelling approach,

we consider that a borehole in bedrock where latent heat exchanges are minimal in an
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area with the climate characteristics of the Maritime Antarctic is prone to the application

of the method of Enthalpy change estimation. For this, it is important that every year

two distinct periods of freezing and thawing, with nearly isothermal states at 0
◦
C occur.

Our current field monitoring programmes are continuing and improved using sensors

for snow thickness monitoring and summer radiation. These data will be used to study5

the effect of these parameters in the soil Enthalpy balance. The field validation of the

approach presented here will be also analysed in our future research.

Nomenclature

α Soil thermal diffusivity (m
2
/s).

K Thermal conductivity (W/mK).

ρ Density (kg/m
3
).

C Heat capacity (J/K).

c Specific Heat (J/kgK).

H Enthalpy (J).

<Φ> Average thermal heat flux (W/m
2
).

∆H/S Enthalpy variation per surface unit(J/m
2
).

U Internal Energy (J).

P Presion (Pa).

V Volume (m
3
).

tcf Period of ground cooling in the frost season (s).

twt Period of ground warming in the thaw season (s).

ρ Density (kg/m
3
).

t Time (s).

x Spatial coordinate (m), deep into the soil.
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D Reference depth where the soil heat flux is either zero (m).

X Zero isotherm free boundary layer (m).

Iaf−t Air freezing or thawing index (
◦
Cday).

If−t(−15) Freezing and thawing index at (−15 cm) deep (
◦
Cday).

<Ta>f−t Mean air temperature in freezing or thawing seasons (
◦
C).

Tt−Max Maximum temperature in thawing season (
◦
C).

Tf−min Minimum temperature in freezing season (
◦
C).

m and n Terms of the linear function fit that shows the position of zero isothermal

front into the soil (7) and (8) in (m/s) and (m), respectively.

a and b Terms of the logarithmic adjust function of the Maximum or minimum

soil temperatures during thaw or frost seasons (16) (
◦
C).

Sub-index

f Freezing.

t Thawing.

f−t Freezing or thawing.

cf−wt Cooling during frost season or warming during thaw season.

c Cooling.

w Warming.

G Ground.

i Initial state.

F Final state.

min minimum.

Max Maximum.

min – Max minimum or Maximum.
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Pallàs, R.: Geologia de l’Illa de Livingston (Shetland del Sud, Antàrtida), Del Mesozoic al
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Ramos, M. and Vieira, G.: Variabilidad térmica de la capa activa y evaluación de la energı́a

perdida por el suelo durante el proceso de congelación en la isla Livingston (Antártida),
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Table 1. Calculated values of Enthalpy change, soil heat fluxes, freezing indexes, air tempera-

tures and duration of frost and thaw seasons for the Incinerador borehole (2000 to 2005).

2000 2001 2002 2002–2003 2003 2003–2004 2004 2004–2005 2005

(Frost) (Frost) (Frost) (Thaw) (Frost) (Thaw) (Frost) (Thaw) (Frost)

Modelled zero

isotherm depth

Df (m) – 7.7 7.2 3.8 4.2 3.6 5.6 4.6 2.6

Ground cooling in

frost season and

warming in thaw

season

t (s×10
6
) – 8.57 3.44 5.88 6.05 6.31 9.31 6.00 2.76

t (days) – 99 40 68 70 73 108 69 32

Energy Enthalpy/S

(J/m
2×10

−7
)

– −3.24 −4.81 2.95 −2.53 2.53 −1.63 2.91 −1.26

Heat flux

(W/m
2
)

– −3.78 −13.98 5.03 −4.18 4.00 −1.75 4.85 −4.57

Freezing Indexes

(
◦
Cday)

Iaf and Ia 657 – 1027 198 730 158 781 164 1102

If (−5) and

It(−5)

– – – – – – 420 490 354

N-Factor

(Ia/If t(−15))

1.99 1.42 0.42 1.62 0.42 1.95 0.33 3.69

If (−15)

and

It(−15)

330
∗

536
∗

721 475 450 379 400 505 299

If (−230)

and

It(−230)

149 274 474 331
∗∗

261 245 139 381 92

Air Temperature

(
◦
C)

Mean −3.1 −2.3 −4.2 1.5 −2.7 1.2 −3.5 0.9 −3.4

Minimum −12.4 −14.7 −15.4 4.7 −11.9 5.1 −12.6 5.2 −18.8

Maximum 1.8 – 3.4 −2.7 1.5 −4.7 2.9 −7.2 2.3

Seasonality

(190 cm depth)

Length

(days)

186
∗∗∗

236
∗∗∗

227 151 229 145 197
∗∗∗

183 134
∗∗∗

Start (date) 4 Jun 2000 1 May 2001 9 May 2002 22 Dec 2002 22 May 2003 7 Jan 2004 30 May 2004 11 Dec 2004 11 Jun 2005

End (date) 7 Dec 2000 23 Dec 2001 22 Dec 2002 22 May 2003 6 Jan 2004 31 May 2004 13 Dec 2004 12 Jun 2005 23 Oct 2005

∗
Data at 25 cm depth,

∗∗
Data at 190 cm depth,

∗∗∗
Data at 230 cm depth.
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Table 2. Mean values (and standard deviations) of the modelled thermodynamic parameters

for the active layer in three consecutive frost and thaw seasons in the period of 2003–2005.

Frost season Thaw season

Df t (m) 4.1 4.0

(1.5) (0.6)

tcf and twt (s) 6.03×10
6

6.06×10
6

(2.94×10
6
) (0.2×10

6
)

tcf and twt (days) 70 71

(34) (3)

Enthalpy/S (J/m
2
) ∆Hf−t/S −1.81×10

7
2.80×10

7

(0.65×10
7
) (0.2×10

7
)

Flux (W/m
2
) <Φcf−wt> −3.5 4.6

(1.5) (0.5)

Ia (
◦
Cday). 871 173

(202) (22)

If (−15) and It (−15) (
◦
Cday) 383 453

(77) (66)

If (−230) and It (−230) (
◦
Cday) 164 319

(87) (69)

Length of the frost and thaw season at −230 cm (days) 187 160

(48) (20)

Mean air temperature (
◦
C) <Ta>f−t −3.2 1.2

(0.4) (0.3)

Maximum daily air temperature (
◦
C) Tf−Max/Tt−Max 2.2 5.0

(0.7) (0.3)

Minimum daily air temperature (
◦
C) Tf−min/Tt−min −14.4 −4.9

(3.8) (2.3)
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Table 3. Net energy balance in the 2003, 2004 and 2005 years.

Period Enthalpy/S (MJ/m
2
). Enthalpy/S (MJ/m

2
). Enthalpy Balance/S (MJ/m

2
).

∆Hf−t/S Frost season. ∆Hf−t/S Thaw season.

2003 −25.3 29.5 +4.2

2004 −16.3 25.3 +9.0

2005 −12.6 29.1 +16.5
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Fig. 1. Location of the study area in Livingston Island. SAS – Spanish Antarctic Station Juan

Carlos I. The black area shows the snow free terrain in summer (adapted from López-Mart́ınez

et al., 1992).
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Mean daily air temperature in Livingston Island. BAE. (15 m asl).
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Fig. 2. Mean daily air temperature at the Spanish Antarctic Station (15 m a.s.l.) from 2000 to

2005.
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Incinerador borehole. Livingston Island (35 m asl).
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Fig. 3. Temperatures recorded at Incinerador borehole during the study period (2001–2005).
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Incinerador borehole. Livingston Island (35 m asl).
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Fig. 4. Definition of the periods of cooling during the frost season (tcf ) and warming during the

thaw season (twt). The cooling and the warming seasons start when the thermal gradient is

constant and close to 0
◦
C/m.
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Zero Isotherm front during winter 2003
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Fig. 5. Penetration of the 0
◦
C

isotherm during the winters of

2003, 2005 and summers 2003–

2004, 2004–2005 at the Incin-

erador borehole. The best-fit

equation is used to estimate the

maximum depth of penetration

of the zero isotherm front during

cooling and warming, Df−t.
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Minimum Temperature distribution in the 2005 frost season.
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Maximum Temperature distribution in the 2004-05 thaw season.
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Fig. 6. Temperature profiles at the Incinerador borehole in 2005 freezing season at the final

stages of cooling (minimum temperatures) and 2004–2005 thaw season and its corresponding

logarithmic best-fits. ∆H/S is represented by the area between the log-function representing

TF (x)=Tmin/max(x) and the axis Ti (x)=0
◦
C in the x-interval [0, Df /t].
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Freezing and Thawing final temperatures - 2003
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Fig. 7. Temperature profiles at the Incinerador borehole in 2003 and 2004, thaw and frost

seasons, at the final stages of cooling (minimum temperatures) and warming (maximum tem-

peratures) with its corresponding logarithmic best-fits.
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