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Abstract

We report on laboratory determinations of the shear resistance to sliding melting ice

with entrained particles over a hard, impermeable surface. With higher particle con-

centrations and larger particle sizes, Coulomb friction at particle-bed contacts dom-

inates and the shear stress increases linearly with normal load. We term this the5

sandy regime. When either particle concentration or particle size is reduced below a

threshold, the dependence of shear resistance on normal load is no longer statistically

significant. We term this regime slippery. We use force and mass balance consid-

erations to examine the flow of melt water beneath the simulated basal ice. At high

particle concentrations, the transition from sandy to slippery behavior occurs when the10

particle size is comparable to the thickness of the melt film that separates the sliding

ice from its bed. For larger particle sizes, a transition from sandy to slippery behav-

ior occurs when the particle concentration drops sufficiently that the normal load is no

longer transferred completely to the particle–bed contacts. We estimate that the melt

films separating the particles from the ice are approximately 0.1µm thick at this tran-15

sition. Our laboratory results suggest the potential for abrupt transitions in the shear

resistance beneath hard-bedded glaciers with changes in either the thickness of melt

layers or the particle loading.

1 Introduction

An understanding of the factors that control how ice deforms and slides is crucial for20

predicting how glaciers and ice sheets will respond to changing climate conditions.

The inaccessibility of glacier beds makes it particularly challenging to quantify the re-

sistance to glacier sliding. We conducted laboratory experiments to examine the fric-

tional resistance exerted between a hard, impermeable surface (glass) and melting ice

that contained known quantities and size distributions of entrained sediment particles.25

As particle size or concentration was increased we observed abrupt transitions be-
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tween low shear-resistance, fluid-dominated behavior and high shear-resistance, par-

ticle dominated behavior. We show that geometric requirements for the flow of melt

water from the sliding surface can explain these phenomena.

This study is motivated by an interest in the frictional resistance beneath hard-

bedded glaciers. A brief review of the controlling mechanisms for sliding beneath5

debris-free glacier ice is in order. Of primary importance are the size and spacing

of bedrock obstacles. Ice deformation accommodates flow over large, widely spaced

obstacles, whereas short-wavelength bed irregularities are traversed by the process of

melting and refreezing known as regelation (Weertman, 1957, 1964; Nye, 1969, 1970;

Kamb, 1970; Lliboutry, 1968). This combination of processes implies that obstacles of10

intermediate size (e.g. typically of m-scale, Paterson, 1994, p. 136) provide the most

significant resistance to sliding. The assertion that it is the shape of the bed that con-

trols sliding has served as the basis for theoretical treatments of glacial abrasion and

erosion (Shoemaker, 1988; Hallet 1979a, 1981; Boulton, 1979). Laboratory demon-

strations of the control exerted by bed irregularities on sliding resistance have helped15

to corroborate these theories (Chadbourne et al., 1975; Budd et al., 1979). More re-

cent theoretical work suggests that cavitation on the lee side of bedrock obstacles may

even lead to sliding instabilities by reducing glacier–bed coupling at high sliding rates

(Schoof, 2005).

The influence of entrained sediments on the resistance to glacier sliding is not well20

understood, though the common observation of bedrock striations attests to the poten-

tial significance of this component of the sliding resistance. Boulton (1974) postulated

that the frictional resistance between the glacier bed and entrained debris is propor-

tional to the volume fraction of entrained sediment, as is appropriate if the total normal

stress supported by bed-particle contacts is proportional to their areal coverage. Hal-25

let (1979a) suggested that the regelation of ice around entrained debris determines

the effective normal stress borne by bed-particle contacts, in which case the frictional

resistance should be proportional to the rate of melting and increase with the size of en-

trained particles. Using the subglacial access tunnel at Engabreen, Norway, Iverson et
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al. (2003) showed that the shear tractions imparted to the bed by sediment entrained

in the overlying glacier ice can be much greater than either of these theories would

predict. Cohen et al. (2005) developed a model that is consistent with the Engabreen

observations, based on the hypothesis that ice deformation around entrained debris

controls the effective normal stress at bed–particle contacts. Other laboratory studies5

have focused on the ability of sediment-laden cold (<–10
◦
C) ice to abrade (Mathews,

1979), and the influence of “plowing” by entrained particles on the resistance to glacier

sliding over water-saturated sediments (Thomason and Iverson, 2004), but none have

investigated how sediment entrained in the ice may control the resistance to sliding

over hard-bedded glaciers at the pressure melting point.10

The experiments we report on here explore how sliding behavior changes with vari-

ations in the size and concentration of entrained particles. In the following section we

describe our experimental set-up and procedure. Next, we present our results, which

demonstrate abrupt changes in sliding resistance at thresholds of particle size and

particle concentration. We interpret these results using simple models based on the15

conservation laws and well-established concepts from lubrication theory (e.g., Batch-

elor, 1994, pp 219–222). We then discuss the relevance of our laboratory results to

natural glacier sliding and offer a few concluding remarks.

2 Experimental method

We made 18 simulated basal “ice types” that mimic the regelation layer of Kamb and20

LaChapelle (1964). Eight were used to test the effect of particle size (median particle

sizes: 0.01 mm, 0.02 mm, 0.05 mm, 0.10 mm, 0.18 mm, 0.34 mm, 0.75 mm, 1.5 mm;

all with particle concentration 2.5 wt%), nine were used to test the effect of particle

concentration (0.01 wt%, 0.05 wt%, 0.10 wt%, 0.25 wt%, 0.50 wt%, 1.0 wt%, 2.5 wt%,

5.0 wt%, and 10.0 wt%; all with median particle size 0.34 mm), and the final was a25

“clean ice” control with no added particles. Sediment particles were evenly distributed

throughout the ice volume as follows: i) crushed ice (fragments up to approximately
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5mm in size) was mixed with the chosen particles and loaded in a columnar freezing

vessel (108 mm inner diameter), ii) the mixture was saturated with water and this resid-

ual liquid was frozen; iii) the simulated basal ice was removed from the freezing vessel

and cut into disks (0.0094 m
2

surface area). In addition to the simulated basal ice, we

made 5 “sandy” control disks by gluing 0.34 mm particles to foam-board.5

We built a stiff apparatus (see Fig. 1) to slide the ice over a pane of glass and

measure the shear resistance. We conducted all experiments at room temperature

(22±2
◦
C). Ice was constantly melting and the melt-water flowed freely from beneath the

ice disk. We weighed the ice when it was removed from the freezer and after the sliding

experiments to determine the vertical melt rate (10µm/s (mean) ±3µm/s (std. dev.)).10

Each disk slid in the apparatus three times: first with no additional imposed weight,

second with 2.25 kg on top of the ice holder, and third with 4.5 kg. A total displacement

of ∼0.3 m was traversed at a constant velocity of 8.7 mm/s. For each run, force-gauge

data were collected for 40 s with a sampling frequency of 50 Hz. Each 40 s record

included a short period with the ice at rest followed by approximately 35 s of sliding.15

The results reported here are based on 15 s sampling windows from 17–32 s of the

recorded data, examples of which are shown in Fig. 2. The large number of averaged

independent data points ensured that the standard errors in the measured shear forces

were small. We note, however, that stick-slip cycles of increasing and decreasing shear

stress values were observed on sub-second time scales. The experimental procedure20

was repeated five times to produce 15 shear force averages per ice type and control.

3 Results

For each ice type and control we plotted the shear (τ) vs. the normal (N) stress and

performed linear regressions, as shown in Fig. 3. We used the slope and its standard

error to calculate the significance of each regression. Our data fall into two distinct25

regimes (see Fig. 3 and Table 1) that we term: sandy and slippery.

Data in the sandy regime are characterized by significant regressions (at the 95%
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confidence level), which indicate that the measured shear stress is dependent on nor-

mal stress. The slope of the regression line is the friction coefficient µ. All ice types

with median particle diameters ≥0.18 mm and/or concentrations ≥1.0 wt%, as well as

sandy control disks were in this regime.

The slopes of the data regressions in the slippery regime were not significantly dif-5

ferent from zero, indicating that shear stress is independent of normal stress in these

cases. This makes the calculation of a friction coefficient dubious. We do, however, for

the sake of comparison display the values obtained in Fig. 4. All ice types with median

particle diameters ≤0.1 mm and/or concentrations ≤0.5 wt%, as well as the debris-free

ice control, were in the slippery regime (Fig. 3, Table 1). As shown in Fig. 4, abrupt10

transitions between the slippery and sandy regime occur when either the particle size

or the particle concentration crosses a threshold.

4 Interpretation

The resistance to basal sliding is determined by the nature of the ice-bed contact. In

our experiments, the melting ice provides a continuous supply of water to the sliding15

surface. The low-viscosity melt film produces very little shear resistance, as confirmed

by the low shear forces recorded for the clean ice controls (see Table 1). Hence, the

low effective friction coefficients (<0.1) observed in the slippery regime suggest that

water at the ice base controls the sliding behavior and particle–bed contacts bear only

a small fraction of the normal load. By contrast, when sediment particles entrained20

in the ice effectively couple to the bed, the shear resistance increases in proportion

to the normal stress and the sandy regime is attained. Significant friction coefficients

(>0.2) observed in the sandy regime suggest that particle–bed contacts bear most of

the normal load.
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4.1 Threshold behavior with increased particle size:

The experimental results show that there is a critical particle size (∼0.1 mm) above

which the shear stress depends on the normal stress and a meaningful friction coef-

ficient can be determined. We expect this size to be determined by the thickness of

the melt film that separates the ice from the underlying bed. Particles that are close to5

or smaller than the thickness of the melt film cannot remain effectively coupled to the

ice while in contact with the bed and are therefore incapable of bearing a significant

fraction of the normal load. This intuition is confirmed by an approximate calculation

of the average melt-film thickness h. As described in the appendix, we estimate h by

considering the vertical force balance beneath an ice disk of diameter D that is melting10

at rate Q. The pressure distribution in the melt water that is required to support the

normal stress N and maintain a steady-state configuration is

h =

(

3ηQD2

8N

)1/3

, (1)

where η=0.0018 Pa s is the liquid viscosity. This yields a value of approximately 40

microns for our typical experimental conditions (e.g. Q=10µm/s, D=0.1 m, N=1 kPa).15

This is comparable to, but somewhat smaller than the threshold particle size (radius 50

microns) determined from our experiments. We attribute the difference to the formation

of melt channels on the ice base that help to flush smaller particles from the system,

as observed in video footage filmed through the glass sliding surface from below.

4.2 Threshold behavior with increased particle concentration:20

Even when the particle size is large in comparison to the thickness of the melt film that

separates the ice from the sliding surface, our experiments indicate that a significant

friction coefficient is only attained once the particle concentration exceeds a critical

level. At very low particle concentrations, the low shear resistance we measure indi-

cates that only a small fraction of the normal load is transferred to the particle–bed25
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contacts. The magnitude of stress-transfer to the particles is determined by the distri-

bution of elevated fluid pressures in the very thin melt films that separate particles from

the overlying ice (Fig. 5, hp). At low particle concentrations, we deduce that the melt

films above the particles do not become thin enough for the fluid pressures to reach

the high values needed to transfer the entire normal load to the particle-bed contacts.5

For further insight, we consider the balance of forces on a sediment particle of di-

ameter d that is in frictional contact with the sliding surface, as shown schematically

in Fig. 5. The normal load transferred to the particle is inferred from the measured

shear resistance τ, volumetric particle concentration ψ , and an estimate of the effec-

tive particle–glass friction coefficient, µp=0.38, taken from the experiments with the10

sandy control disks. To a very good approximation, this normal load is balanced by

the fluid pressure distribution in a thin premelted film that separates the particle from

the overlying ice. As discussed further in the appendix, the thickness of this film hp is

estimated as

hp =

(

µpψηQd

τ

2
)1/3

. (2)15

In Fig. 6 we plot the calculated values of hp as a function of ψ for the experiments sum-

marized in Fig. 4b. The film thickness hp above the particles is always a small fraction

of h – the estimated ice-disk separation far from the particles (typically 40µm, see

above), and in fact hp<1µm for all of the experimental data we collected. At large ψ

the best-fit power law indicates that hp∝ψ
0.33

. With more dilute particle concentrations20

hp∝ψ
0.17

, which indicates that the fluid pressure away from the particle-glass contacts

must support part of the normal load, e.g. τ/µp<N. Striations produced in the glass by

the harder particles suggest that the effective friction coefficient at smaller particle con-

centrations may actually have been somewhat higher because of the additional shear

resistance required to produce these indentations. If a higher value of µp were used at25

low ψ , the exponent in the power-law fit would be reduced further below its calculated
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low-concentration value of 0.17. This supports the hypothesis that hp tends to a lower

bound as the particle concentration is reduced. The minimum hp inferred from our ex-

periments is approximately 0.1µm, though a weak dependence on ψ does appear to

persist to the lowest concentrations that we could reliably attain with our experimental

set-up.5

5 Discussion and conclusions

The abrupt thresholds that we observe in the frictional behavior of simulated basal ice

occur within the range of particle sizes and concentrations that are found in glaciers

(e.g., Kamb and LaChapelle, 1964). However, our experiments were performed at

rates of melting and sliding that are much more rapid than those that commonly oc-10

cur in nature. Both ice deformation and pressure regelation – the two mechanisms

that enable glacier flow over rough beds – are too slow to be effective with our labora-

tory set-up. Nevertheless, the melt-dominated regime that we consider here improves

our understanding of potential mechanisms for thresholds in frictional behavior within

natural glacier systems.15

The thicknesses of the melt films that separate glacier ice from the underlying

bedrock are expected to be highly variable, both spatially and temporally (e.g., Hallet,

1979b). For example, with D reinterpreted as the typical distance between subglacial

channels or bedrock fractures that enable efficient melt-water drainage, Eq. (1) gives

estimates for h ranging from 1–30µm for D between 10 cm and 10 m with Q=100 mm/a20

and N=10 kPa. This is sufficiently small that most entrained debris should easily span

such ice-bed gaps. Areas of much greater ice-bed separation are likely to be encoun-

tered on the lee-side of bedrock obstacles, and in these regions only the larger particles

are expected to make frictional contact.

The observed dependence of frictional resistance on particle concentration is more25

difficult to interpret. We infer that the thicknesses of the premelted films that separated

the ice from the particles in our experiments were not able to thin sufficiently for the fluid
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pressure to transmit the entire load once hp reached about 0.1µm. Equation (2) pre-

dicts that films of such thickness are reached above cm-scale particles once ψ reaches

about 2% when Q=100 mm/a and τ/µp=10 kPa. The effective friction-coefficients that

operate beneath glaciers (e.g., Iverson et al., 2003) are typically much lower than rock-

on-rock friction coefficients (e.g., Byerlee, 1978), so it is clear that the magnitude of5

stress-transfer to entrained particles is not normally able to support the entire normal

load. We have no theoretical justification for why hp=0.1µm should be a limiting film

size – only the observation that it seems to act as such in our experiments. At the low

melt rates encountered beneath glaciers, regelation and ice deformation may well con-

trol the magnitude of stress transfer to entrained particles (e.g., Hallet, 1981; Cohen10

et al., 2005). In either case, the stress transfer requires elevated fluid pressures in the

melt above the particles, with the implied presence of flow restrictions such as those

that would be provided by film thicknesses that are much smaller above the particles

than away from the particle-bed contacts. For comparison, the prediction of Boulton

(1974) that debris-bed friction should be proportional to ψ is consistent with the ex-15

pectation that the film thicknesses above and away from particles are essentially the

same. Persistent variations in film thickness could be explained by the existence of per-

sistent temperature gradients or by persistent compositional gradients in the melt films

(Shreve, 1984) – neither of which are easy to explain. Nevertheless, the repeatability

of our experiments and the enhanced roll of particle-bed frictional coupling observed in20

the field (e.g., Iverson et al., 2003) do raise the intriguing possibility of threshold sliding

behavior in nature with changes in particle concentration.

Variations in the hydraulic regime under glaciers are likely to modify the distance

between the ice and its bed. When the separation increases, for example, bedrock

irregularities are “drowned” and a smaller percentage of the heterogeneously sized25

sediment carried by a glacier is capable of coupling the ice to the bed. This can lead to

reduced frictional resistance through both the particle-size and particle-concentration

dependent mechanisms observed here. Reduced frictional resistance may contribute

to faster sliding rates that further enlarge subglacial cavities and reduce particle–bed
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coupling. Conversely, decreases in water pressure that produce reductions in melt-film

thickness can enhance the frictional coupling and possibly lead to reductions in sliding

rate. Additionally, sediment concentration may vary through time as ice deforms around

sediment and bedrock obstacles. When sediment loading is close to threshold values,

the frictional behavior we observe suggests the potential for rapid velocity fluctuations.5

In our experiments, the primary controls on frictional resistance are the size of en-

trained particles in relation to the thickness of the fluid layer that separates ice from

the bed, and the efficiency of stress-transfer across the melt layers that overly the

particles themselves. Particles that are too small or too dilute provide little frictional re-

sistance, but abrupt increases in frictional resistance occur as size and concentration10

are increased beyond threshold values. The wide variability of particle-loading in basal

glacier ice suggests that similar frictional thresholds may be encountered in nature.

Appendix A

Slippery regime film thickness:15

For small particles, the low shear resistance we measure is interpreted to imply that

the normal load is almost entirely supported by the melt film beneath the ice and the

sediment particles do not play a significant role. In our experiments, the particles only

occupy a small fraction of the ice surface. We estimate the thickness of the melt film

beneath the ice by considering the case of an idealized, smooth, particle-free, ice20

disk. Since the film is thin, we use the lubrication approximation to the Navier–Stokes

equations, which stipulates that all flow is parallel to the ice and glass surfaces, the

pressure gradients that drive flow are also radial, and inertial effects are negligible so

that the equation governing fluid flow is

η
d

2u

dz2
=

dP

dr
, (A1)25
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where u is the fluid velocity, η is the viscosity, P is fluid pressure, and z and r are the

vertical and radial coordinates (with the origin located immediately beneath the center

of the ice disk on the glass surface). We integrate this equation twice with respect to z
to get the fluid velocity profile

u = −
1

2η

dP

dr
z(h − z), (A2)5

where we have substituted in for the integration constants by making use of the no-slip

boundary conditions on the glass surface at z=0 and on the ice surface, where z=h. If

we consider a ring of radius r that is centered at the origin, then the total flux of fluid

q that passes by is equal to the circumference of the ring times the integral of the fluid

velocity over the thickness of the film10

q = 2πr

h
∫

0

udz=−
πr

6η
h3 dP

dr
. (A3)

We consider a steady state in which the film thickness is constant so that this flux is

supplied by melting. If the melt rate Q is constant over the surface of the ice then we

expect that q=−πr2Q. Solving for the pressure gradient, we have that

dP

dr
=

6ηQ

h3
r. (A4)15

The fluid pressure at the edge of the disk where r=D/2, is atmospheric so the fluid

pressure beneath the slider can be written as

P = −

r
∫

D/2

6ηQ

h3
rdr=

3ηQ

h3

(

D2

4
−r2

)

. (A5)
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The force imparted on the ice disk by this fluid pressure distribution is equal to the

normal force so

Nπ
D2

4
= 2π

D/2
∫

0

rP dr, (A6)

which implies a film thickness of

h =

(

3ηQD2

8N

)1/3

. (A7)5

Appendix B

Premelted film thickness over particles:

A thin premelted film is assumed to separate each particle from the overlying ice. We

can evaluate the thickness of the film by considering the force balance on the particle.10

The experiments give us the measured shear stress τ as a function of the normal load

N. Since the viscous resistance to shearing the melt film away from the particles is

small (as gauged by the experiments with the clean ice control), we assume that the

measured shear stress can be attributed to the frictional resistance at the particle–bed

contacts. The effective normal load borne by particles of diameter d and volumetric15

concentration ψ is

Fe =
πd2τ

4µpψ
, (B1)

where µp is the effective friction coefficient of the particle–bed contact. When the

particles bear the entire normal load we expect that Fe=πd
2N/ (4ψ), but Fe can be
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lower than this when the fluid pressure in the melt film distant from the particles bears

a significant fraction of the load.

There are two sources of downwards forces on the particle. The first of these is

probably more important in our experimental configuration. This is the force that is

produced by the distribution of fluid pressures around the particle. The melt generated5

above the particle must flow around it, and the fluid pressure gradient in the film above

the particle that is associated with this flow produces a net force on the particle surface

that can be written as (Rempel and Worster, 1999, Eq. 9)

Fµ =
3

4
πd4ηQ

θc
∫

0

sinθ cosθ







θ
∫

θc

sinφ

l3
dφ






dθ, (B2)

where θc is a cut-off angle which is set to a value where the film thickness l(θ) is10

much bigger than at the apex (the precise value of this angle is not important to the

calculations since the dominant contributions to the integrals come from angles near

zero).

In order for the fluid pressure to be elevated and transmit significant loads to the par-

ticles, the premelted film thickness l must be smaller immediately above the particles15

than the far-field film thickness h that separates the ice from the glass surface in regions

where particles are distant. As Shreve (1984) recognized, thinner melt films beneath

glaciers imply that the temperature of the ice-liquid interface is depressed from the nor-

mal bulk melting temperature Tm and here this premelting behavior suggests that the

temperature above the particles is slightly lower than in regions where the film thick-20

ness is h. We assume that the temperature gradient G is linear and the film thickness

follows a power-law dependence on temperature (e.g., Wettlaufer and Worster, 1995;

Dash et al., 2006) so that

λ3

l3
=
λ3

h3
+
G

Tm

[

d

2
− h +

(

d

2
+ h

)

cosθ

]

, (B3)
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where λ is a length scale that characterizes the strength of the intermolecular inter-

actions that cause premelting. We define the film thickness immediately above the

particles as hp and consider the limit where hp≪d/2 and hp≪h to find that

Fµ ≈ πd3ηQ

(

1 −
h

d

)2 (d + h)

4h3
p

. (B4)

As noted earlier, in many circumstances we expect that Fµ and Fe will be much bigger5

than any other vertical forces in the problem. Equating the two, we anticipate that

hp ≈

[

µpψηd
2Q

τ

(

1 −
h

d

)2 (

1 +
h

d

)

]1/3

. (B5)

In cases where h≪d , this simplifies further to

hp ≈

(

µpψηQ
d2

τ

)1/3

. (B6)

Further analysis shows that intermolecular forces produce a significant contribution to10

the vertical force balance that results in an increase to the film thickness when the

length scale

λ≫

(

3d2ηQ

4L

)1/3

, (B7)

where L≈300 MJ/m
3

is the latent heat of fusion per volume. During a typical exper-

iment with d=0.34 mm and Q=10µm/s, we are justified in neglecting the net force15

produced by intermolecular interactions as long as λ<17 nm. Typical values are an

order of magnitude or more smaller (e.g., λ=0.5 nm was reported by Wettlaufer and

Worster, 1995) and we neglect these effects in our treatment.
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Table 1. Observed friction coefficients for each ice type (third column). Italicized friction coef-

ficients indicate slopes that cannot be differentiated from zero at the 95% confidence interval.

All regressions based on 15 datum points except where noted by superscript, a: 14 points; b:

12 points.

particle particle regression standard

size concentration slope error of

(mm) (wt%) µ µ r
2

0.00 0 –0.0002
a

0.0005 0.02

0.01 2.5 0.0009
a

0.001 0.11

0.02 2.5 –0.004 0.003 0.15

0.05 2.5 0.004 0.01 0.011

0.10 2.5 –0.001
b

0.02 0.0005

0.18 2.5 0.22 0.04 0.66

0.34 2.5 0.30 0.04 0.78

0.75 2.5 0.32 0.04 0.85

1.50 2.5 0.42 0.03 0.95

0.34 0.01 0.005
b

0.004 0.16

0.34 0.05 0.002 0.02 0.001

0.34 0.10 0.04 0.02 0.26

0.34 0.25 0.03 0.03 0.06

0.34 0.5 0.08 0.04 0.23

0.34 1.0 0.24 0.04 0.75

0.34 2.5 0.30 0.04 0.78

0.34 5 0.23 0.02 0.88

0.34 10 0.24 0.04 0.76
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carriage

force gauge

sliding surface 

(glass not shown)

weights

force gauge

ice holder

ice

A.
Travel 0.5 m

inner diameter

 0.108 m

threaded rod

motor

B.

Fig. 1. (A) Experimental apparatus. The motor turns a threaded rod which drives the carriage.

The force-gauge height is adjusted to account for small differences in ice-disk thickness. (B)

Ice disks are placed in the ice holder and attached to the force gauge by a doubled threaded

nut. Weights are used to adjust the normal force.
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Fig. 2. Sample shear force data (5 point running average) for one of the ice disks with particle

concentration 2.5 wt% and diameter 0.75 mm. The different lines correspond to measurements

made with the labeled normal loads. The grey box shows the duration over which the data was

averaged to calculate µ: 750 datum points.
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Fig. 3. Measured shear stress as a function of normal stress for two “ice types”. One shows

sandy behavior (red) and the other slippery (blue). Error bars are one standard deviation of

the shear stress above and below the mean.
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ψ
Fig. 4. Friction coefficient as a function of (a) particle diameter, and (b) particle concentration.

Solid boxes indicate µ derived from regressions that are significant at the 95% confidence level,

hollow boxes indicate values derived from regressions that fall below this significance threshold.

Error bars are the standard error of the slope.

120

http://www.the-cryosphere-discuss.net
http://www.the-cryosphere-discuss.net/1/99/2007/tcd-1-99-2007-print.pdf
http://www.the-cryosphere-discuss.net/1/99/2007/tcd-1-99-2007-discussion.html
http://www.egu.eu


TCD

1, 99–122, 2007

The sliding

resistance of

simulated basal ice

L. F. Emerson and

A. W. Rempel

Title Page

Abstract Introduction

Conclusions References

Tables Figures

◭ ◮

◭ ◮

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

EGU
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Fig. 5. Schematic diagram of the sliding system in the vicinity of particle–bed contacts. We use

force and mass balance considerations to estimate hp and h as described in the text.
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Fig. 6. The average calculated thickness hp as a function of particle concentration for each

of the ice types with d=0.34 mm. Filled squares are the sandy regime ice-types with particle

concentration ≥0.1 wt% (ψ=0.0031). Open squares are slippery regime ice-types with concen-

tration ≤0.05 wt% (ψ= 0.0015). Solid lines are best-fit power-laws, with the labeled exponents.

The students t-test indicates that the exponents are different at a >99% confidence level.
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