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Abstract

Following meteorological practice the definition of available potential energy in the

ocean is conventionally defined in terms of the properties of the global ocean. However

there is also a requirement for a localised definition, for example the energy released

when shelf water cascades down a continental shelf in the Arctic and enters a boundary5

current.

In this note we start from first principals to obtain an exact expression for the avail-

able energy (AE ) in such a situation. We show that the available energy depends on

enstrophy and gravity. We also show that it is exactly equal to the work done by the

pressure gradient and by buoyancy.10

The results are used to investigate the distribution of AE in the Barents Sea and

surrounding regions relative to the interior of the Arctic Ocean. We find that water en-

tering the Barents Sea from the Atlantic already has a high AE , that it is increased by

cooling but that much of the increase is lost overcoming turbulence during the passage

through the region to the Arctic Ocean. However on entering the Arctic enough avail-15

able energy remains to drive a significant current around the margin of the ocean. The

core of raised available energy also acts as a tracer which can be followed along the

continental slope beyond the dateline.

1 Introduction

Recently Levine (2005) investigated the dynamic height or pressure field of the Arctic20

Ocean making use of results from the OCCAM global ocean model (Webb et al., 1998).

He found that along the boundary of the Arctic, at depths of a few hundred metres, the

largest dynamic heights occur where dense Barents Sea shelf water cascades down

the continental slope in the St Anna Trough. This water becomes part of a bound-

ary current whose waters can be followed eastwards around the Arctic and out in the25

Atlantic as far as Cape Hatteras.
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This result raises a number of questions concerning the energetics of the flow.

Boundary currents need energy to start the current and to overcome boundary tur-

bulence. So how much of the energy available to the current comes from the release

of potential energy as the water descends the St Anna Trough? What effects do the

density changes due to cooling and ice formation in the Barents Sea have on the pro-5

cess? How much of the energy is implicit in the water flowing into the Barents Sea from

the Atlantic? We also need to know how changes in internal energy and, in analogy to

Bernouilli’s equation, the large scale oceanic pressure field may also be involved.

If we concentrate first on gravitational potential energy, previous studies of the ocean

have been based on the atmospheric definition of Available Potential Energy (AP E ).10

Lorenz (1955) defined this to be the difference between the Potential Energy (P E )

of the atmosphere under study and the P E of a reference atmosphere produced by

moving the air parcels adiabatically (i.e. reversibly) so that the atmosphere reaches its

minimum P E state. Thus,

AP E =

∫
V1

gρz dV −

∫
V2

gρrz dV, (1)15

where ρ is the density, ρr the density of the reference system, z is height, and the

integrals are over the volume of the original system V1, and the reference system V2.

However for our study we are more interested in the energy available to the current

while it is in the Arctic. Thus we need the potential energy relative to the offshore

Arctic Ocean. We also should include changes in internal energy. For a perfect gas,20

the global change of internal energy is proportional to the AP E (Wells, 1997), a result

which is often sufficient for atmospheric studies. For the ocean, with its more complex

equation of state, we need to be more specific.

Finally we need to include the effects of pressure. A boundary current is usually

driven by pressure differences along the current, the energy for the process ultimately25

coming from changes in potential or internal energy elsewhere in the system. If the

energy for the Arctic boundary current comes ultimately from outside the region then

the large scale pressure field should contain this information.
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To make some sense of this we start from some fairly basic thermodynamics and

investigate the energy released when a parcel of water is transferred from one region

of ocean, at a depth z1 and pressure P1, to a second region of ocean, at depth z2 and

pressure P2. As energy is a conserved quantity, this equals the total energy released

when the parcel is extracted for the ocean at pressure P1, moved vertically from z1 to5

z2 and injected back into the ocean at pressure P2.

We show that if the parcel of water stays within the ocean, then this equals the energy

change due to the horizontal pressure gradient and vertical buoyancy forces, the total

being independent of the path chosen. The result thus includes the contribution of

gravity and pressure but we show that it also includes the contribution of any change10

in internal energy. The form of the equation also allows us to split the total energy

available, at each point in the fluid, into its gravitational and pressure components.

In writing this paper we have had a problem in the correct description of the energy

available to drive a current. The terms potential energy or relative potential energy

are obviously wrong because they leave out the contribution of pressure and internal15

energy. Relative enthalpy has a similar problem. It includes the internal energy and

pressure components but leaves out gravity. We therefor use the term available en-

ergy (AE ) with the understanding that a more apt description is always welcome (see

Appendix 2).

As an example of how the concept may be used, we investigate the distribution of20

AE in the water masses passing through the Barents Sea into the Arctic Ocean. We

find that the inflowing Atlantic water has a large AE compared to the central Arctic,

that the AE increases as the water flows through the Barents Sea, but that much of

the increase is later lost overcoming turbulence. However on entering the Arctic Ocean

enough AE remains to drive a significant current around the margin of the ocean. The25

core of raised available energy also acts as a tracer which can be followed far along

the continental slope.

900

http://www.ocean-sci-discuss.net
http://www.ocean-sci-discuss.net/4/897/2007/osd-4-897-2007-print.pdf
http://www.ocean-sci-discuss.net/4/897/2007/osd-4-897-2007-discussion.html
http://www.egu.eu


OSD

4, 897–931, 2007

Available energy in

the Barents Sea

R. C. Levine and

D. J. Webb

Title Page

Abstract Introduction

Conclusions References

Tables Figures

◭ ◮

◭ ◮

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

EGU

2 Internal energy and enthalpy

As shown in many textbooks (Pippard, 1961), the internal energy ∆U of a mass of fluid

may be changed by the addition or removal of heat Q or mechanical energy W ,

∆U = Q +W (2)

By convention such quantities are defined per unit mass of fluid. If a change is carried5

out adiabatically, then there is no heating or cooling and Q is zero. If in addition the only

mechanical energy change is due to compression then W is equal to −P dV , where P
is the pressure and dV is the change in volume. Thus for adiabatic changes in the

ocean,

dU = −P dV (3)10

To calculate the available energy of a small parcel of water, we first consider how much

energy is required to move it into position from a reservoir at the same depth using a

piston. If the fluid in a reservoir is at pressure Pr and the ocean at pressure P1 then the

work required to do this W1 is given by,

W1 = −

∫ V1

Vr

P dV + P1V1 − PrVr , (4)15

where Vr and V1 are the volume per unit mass before and after injection. Physically,

the first term on the r.h.s is the change in internal energy, the work expended by the

piston during the initial compression phase when the pressure increases from Pr to P1

and the volume decreases from Vr to V1. The term P1V1 is the work expended by the

piston pushing fluid into the ocean at pressure P1 and the last term is the help given to20

the piston by the pressure from the reservoir as the fluid is injected
1
.

1
Pumping up a bicycle tyre is similar with an initial compression stage followed by an (ap-

proximately) constant pressure injection stage.
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If the injection occurs at the bottom of the ocean, then the term P1V1 is also the

energy required to raise the column of water above the point of injection to make way

for the injected water. This is because the pressure equals the weight of the column of

water,

P1 = g

∫ z0

z1

ρ(z)dz. (5)5

where z0 is the ocean surface. So, if the column has unit area, it is raised by a distance

V1. Thus,

P1V1 =

∫ z1

z0

(gρ(z)V1)dz, (6)

is the total change in potential energy of the column. If the injection is above the ocean

bed, the injected water compresses the deeper water slightly, so some of the energy10

goes into extra internal energy of the deeper water.

A more compact form of the energy involved can be obtained in terms of the thermo-

dynamic quantity enthalpy H . This is defined as,

H = U + P V. (7)

Using this, Eq. (4) simplifies to become,15

W1 = H1 − Hr , (8)

where Hr and H1 are the enthalpies of the fluid before and after injection.

If the reservoir and injection points are at different depths, then there is also a change

in gravitational potential energy. The total energy change, the available energy, is thus,

AE = (H1 + g z1) − (Hr + g zr ). (9)20

where z1 and zr are the heights of the injection point and the reservoir respectively.
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The result is related to Bernoulli’s equation for a fluid in a gravitational field. If the

two points are joined by a streamline and if the flow is both inviscid and adiabatic, then

the available energy equals the change in kinetic energy per unit mass (Landau and

Lifshitz, 1959) along the streamline. If the fluid is also incompressible, V is a constant,

so H equals P/ρ and AE equals the change of (P/ρ+gz). The latter is often called the5

Montgomery potential.

For the problem considered later in this paper, the points may not be linked by steam-

lines, the flow may not be adiabatic and much of the energy may be lost in turbulence.

However the concept of available energy is still useful because of the insight it provides

into the energy potentially available at each point in the flow.10

3 Available energy as a path integral

The expression for AE (Eq. 9) depends on scalar quantities H and z, both of which are

continuous throughout the ocean. As a result the equation can be rewritten as a path

integral between the initial and final points S1 and S2. Thus,

AE =

∫ S2

S1

ds · (∇H + g ẑ). (10)15

From Eq. (7),

∇H = ∇U + ∇(P V ) = −P ∇V + ∇(P V ) = V ∇P (11)

The volume per unit mass (V ) is the inverse of the density ρ, so,

AE =

∫ S2

S1

ds · V (∇P + gρ ẑ), (12)
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the first term on the r.h.s including both the effects of the pressure gradient and any

change in internal energy. If the ocean is in hydrostatic balance,

AE =

∫ S2

S1

ds · V (∇hP + g(ρ − ρ0) ẑ), (13)

where ∇h denotes the horizontal version of the gradient operator and ρ0 is the ambient

density field. At each point along the path, the force per unit volume acting on the5

parcel of water is,

F = ∇hP + g(ρ − ρ0) ẑ, (14)

the second term corresponding to Archimedes’ Principle.

For analysing the available energy of shelf waters relative to the neighbouring ocean

it is convenient to split the path integral of Eq. (13) into a horizontal section, in which10

the water is first moved horizontally without change in depth, and a vertical section,

in which energy is released as the partical moves vertically, within a reference water

column, to a final depth where it has the same density as the surrounding water mass.

Thus,

AE = AEp + AEg, (15)15

where,

AEp =

∫ S ′

2

S1

ds · V ∇hP, (16)

=

∫ P2

P1

dP V, (17)

is the contribution from the constant depth section and

AEg =

∫ z2

z1

dz V g(ρ − ρ0), (18)20

904

http://www.ocean-sci-discuss.net
http://www.ocean-sci-discuss.net/4/897/2007/osd-4-897-2007-print.pdf
http://www.ocean-sci-discuss.net/4/897/2007/osd-4-897-2007-discussion.html
http://www.egu.eu


OSD

4, 897–931, 2007

Available energy in

the Barents Sea

R. C. Levine and

D. J. Webb

Title Page

Abstract Introduction

Conclusions References

Tables Figures

◭ ◮

◭ ◮

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

EGU

is the contribution from the final vertical section. Here z1 and z2 are the initial and final

depths and P1 and P2 are the pressures at points S1 and S ′

2, the latter being at the final

geographical position but at the initial depth. In the rest of this paper we refer to AEp

and AEg as the pressure and gravitational contributions to the Available Energy.

As V equals 1/ρ, and ρ is almost constant within the ocean,5

AEp ≈ (P1 − P2)/ρ′ , (19)

AEg ≈ (1/ρ′)

∫ z2

z1

dz g(ρ − ρ0) , (20)

where ρ′
is a typical density in the region. The approximation is similar to that used in

Eq. (1), in that it ignores the changing internal energy due to changes in pressure. The10

size of the error introduced depends on the range of densities involved but will usually

be of order 1% of the total or less.

If AE ′

p and AE ′

g represent the corresponding values per unit volume, then to the same

approximation,

AE ′

p ≈ (P1 − P2) , (21)15

AE ′

g ≈

∫ z2

z1

dz g(ρ − ρ0) . (22)

4 Available energy in the Barents Sea

As an example of how these concepts may be used, we consider the results from a

model study of the flow through the Barents Sea towards the St. Anna Trough. The20

data that we use comes from a run of the 1/12
◦

version of the OCCAM global ocean

model (Webb et al., 1998; Coward and de Cuevas, 2005).
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The model is forced by NCAR surface fluxes and the run presently covers the period

1985 to 2004. Time series from the Barents Sea region of the model show year to year

variability but no long term drift. The model Barents Sea is well mixed in the vertical at

the end of winter and becomes stratified during the summer months with a warmer and

fresher surface layer. For the results presented here we used the monthly averaged5

model data from February 1998.

4.1 The Barents Sea water masses

The Barents Sea (Fig. 1) is a relatively deep region of continental shelf, with large

areas below 200 m. The main central region is connected to the Norwegian Sea in the

west via a deep trough, the Bear Island Trough, with depths below 400 m. In the north-10

east there is an even deeper trough, the St Anna Trough, with depths below 500 m

connecting the region to the Arctic Ocean. The velocity field from the model shows a

significant flow between the two troughs, the main restriction to the flow appearing to

be a narrow sill near 57.5
◦
E 78

◦
N, with a depth of approximately 200 m.

Figures 2 and 3 show the mean temperature and salinity on model level 21 in Febru-15

ary 1998. This model level has a central depth of 205 m and a thickness of 20 m and

so includes the lowest water mass passing through the sill. In the south-west, warm

(> 5
◦
C) water enters the Barents Sea along the southern edge of the trough. Offshore

this is saline (>34.9) Atlantic Water but there is also a fresher coastal current with

salinities below 34.5. This water is cooled and freshened in the Barents Sea, part then20

returns west to join the West Spitzbergen Current and part flows northwards, eventually

entering the Arctic near 45
◦
E.

The remainder continues east, where at the end of winter it forms a large water

mass in the Central Basin (45
◦
E, 75

◦
N) with temperatures near freezing (−1.9

◦
C) and

salinities near 34.8. The flow continues north-east via the sill, mixing with other water25

masses including cold fresh Kara Sea water, until it reaches the St Anna Trough where

it sinks down the continental slope into the Arctic.

Vertical profiles of potential temperature and salinity, for the representative points
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marked in Fig. 1, are shown in Fig. 4. In the western and central Barents Sea, illus-

trated by profiles A and B, stratification is weak or non-existant. The temperatures and

salinities shown in Figs. 2 and 3 for this region are thus representative of the whole

water column. Further east and north, in the St Anna Trough and the offshore Arctic

Ocean (profiles C and D), a fresh surface mixed layer is found with salinities below 335

in the offshore Arctic. Here the mixed layer is around 100m deep and the surface fresh-

ening extends down to almost 400 m. In the St Anna Trough the depth and amount of

freshening is reduced, but further east in the Kara Sea the near surface salinities are

again below 33. The hydrography and flows in the region are discussed further by

Aksenov et al. (2007)
2
.10

4.2 Density profiles

The density profiles for the seven representative stations are shown in Figs. 5 and 6.

In Fig. 5, the profiles for the Barents Sea inflow (red) and the Arctic reference region

(black) are plotted together with two adiabatic curves (blue). These show how the

Barents Sea near surface (or bottom) water changes density as it sinks (or rises) to a15

depth where it is in equilibrium with the offshore water mass.

The near surface water, point Q, is denser than that of the Arctic, P , so it has the

potential to sink down the Arctic continental slope, to R, releasing energy. The total

amount of gravitational energy released is approximately proportional to the area P-

Q-R. (Eq. 20). Although the offshore is represented here by a single point, G, the20

comparisons and results are similar if one uses an area average of the offshore Arctic.

Deeper in the water column, the water entering the Barents Sea is lighter than that

at the same depth in the offshore Arctic. As a result it can release gravitational energy

by rising up in the water column. For the bottom water at point q in Fig. 5, the amount

of energy released is given approximately by the area p-q-r. Water at other depths25

2
Aksenov, Y., Bacon, S., and Coward, A.: The North Atlantic Inflow into the Nordic Seas and

Arctic Ocean:A High-resolution Model Study, Deep-Sea Res. Part I, submitted, 2007.
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of profile A would also tend to settle out near 180 m, so that if it could easily enter

the Arctic the whole water column should generate a layer or boundary current at this

depth.

The density profiles of Fig. 6 can be interpreted in a similar manner. In the central

Barents Sea, location B, the whole water column is well mixed so the adiabatic profiles,5

if plotted, would overlie the actual density profile. The cooling has also increased

the density, but although the change is small, the equilibrium depth in the Arctic has

increased from 180 m to nearer 1000 m. Thus it now has the potential of forming one

of the deepest layers of the Arctic Ocean.

As this water masses passes the sill connecting the region with the St Anna Trough,10

it mixes with cold fresher water from the Kara Sea and with warm saline Atlantic Wa-

ter which has followed the longer path north of Spitzbergen. As a result the deeper

water in the St Anna Trough may still release energy by sinking into the Arctic, but the

equilibrium depth is reduced to 300 m.

4.3 Components of available energy15

For analysis of available energy in the Barents Sea we make use of Eqs. (19) and (20).

The range of depths involved is only a few hundred metres so the errors from ignoring

the density changes due to pressure will be less than 1%.

We need to define a region that is “representative” of the offshore Arctic Ocean.

For the results presented in this section we used a region roughly 100 km by 100 km20

surrounding point G. Calculations which used a single vertical column at point G as

the representative region gave similar results.

In terms of the model variables, the component of AE due to the pressure difference,

Eq. (19), is

AE ′

p(x, zn) = (P (x, zn) − P0(zn))/ρ′. (23)25

P (x, zn) = AP (x) + g((SSH(x) + dz1)ρ(x, z1)
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+

n−1∑
i=1

(dziρ(x, zi ) + dzi+1ρ(x, zi+1)))/2, (24)

where P (x, zn) is the pressure at position x and model level n, AP is the atmospheric

pressure, SSH the sea surface height, g gravity, dzi the thickness of model level i and

ρ the density. P0(zn) is the average pressure at level n in the offshore reference region.

The component due to gravity is5

AE ′

g(x, zn) = (g/ρ′)(

m∑
i=n

abs((ρ(x, zi ) − ρ0(zi ))dzi )

−((ρ(x, zn) − ρ0(zn))dzn

+(ρ(x, zm) − ρ0(zm))dzm)/2), (25)

where ρ0(z) is the density in the offshore region and zm the level at which the initial

water mass reaches the same density as the offshore water.10

Vertical profiles of these quantities and their sum are shown in Fig. 7, for the water

columns discussed previously. Horizontal plots are presented in Figs. 8 to 13, for

depths of 25.5 m and 205 m. These correspond to levels 5 and 21 of the model.

We have taken point A to be representative of the water masses entering the Barents

Sea. The point lies on the south side of the deep trough where a current enters the15

Barents Sea region. It also lies just outside the narrow region of high near surface

pressures found along the Norwegian Coast (Fig. 9). Inflow is also found in this region

but dynamically it appears to be more complicated. For example the higher pressures,

due to high sea level, drop off rapidly towards 30
◦
E, possibly due to mixing. This is

discussed further below.20

Near the surface (Fig. 8), the gravitational component of AE is generally low through-

out the inflow region. Further south in the Norwegian Coastal Current, values of AE
range from 1.1 J/kg in the surface fresh water near the coast to 1.7 J/kg on the central
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Norwegian Sea side of the current
1
. Most of the inflow to the Barents Sea comes from

the coastal side of the current but the value of 1.53 J/kg as found at point A, although

slightly high, is not unreasonable.

4.4 Vertical profile of AE

The profile of AE for point A (Fig. 7) shows that, near the surface, the gravitational5

component dominates. It drops off rapidly with depth, a result of the rapid reduction

in the area integral of Fig. 5, and becomes zero near 180 m, where the density of

the water in the main column equals that in the reference region. The gravitational

component then increases nearer the bottom.

In contrast the pressure component has a minimum at the surface and increases with10

depth, reaching a maximum at 180 m. Like the reduction in the gravitational term, the

increase arises because the water at these depths is denser than that in the reference

region. Lower in the water column the pressure difference is steadily reduced.

An important consequence of this behaviour is that the total AE is almost constant

throughout the water column. This is because the column is well mixed and because15

the total AE is independent of the path of integration. If AE (z1) and AE (z2) are the

values of AE at two depths in the same water column, then from Eq. (13),

AE (z1) − AE (z2) =

∫ z2

z1

dz V g(ρ(z) − ρ1(z)). (26)

where ρ1(z) is the density of the water column at depth z and, as before, ρ(z) is the

density of the water at z1 when moved adiabatically to z. If the water is well mixed20

between two depths, then the value of the integral is zero over the range and the

available energy is constant.

1
If fully converted to kinetic energy, an AE of 1 J/kg generates a current of approximately

140 cm/s
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4.5 The central Barents Sea

Reference point B lies near the centre of the dense water region. At the surface the

gravitational component of AE increases to near 3.2 J/kg, over twice its initial value,

due to the water getting colder and denser. The pressure component decreases slightly

but their sum increases from 1.8 J/kg at station A to 3.0 J/kg at B.5

Deeper in the water column, the gravitational component (Fig. 11) drops to around

0.5 J/kg and the pressure term (Fig. 12) increases such that the total remains almost

constant. What is also interesting here is that the pressure term is similar to that found

near 20
◦
E, along the northern coast of Norway. However there it is due to high sea

level whereas at point B, where sea level is lower, it is due to high densities in the water10

column.

4.6 St. Anna Trough

Figure 13 shows that the main exit route for the high AE water mass is through the

narrow sill region at 58
◦
E, 77.5

◦
N, into the St. Anna Trough. The total AE has values

of around 2.5 J/kg at the entrance to the sill. After passing the sill, the value has15

dropped to around 2.1 J/kg. The flow then forms a narrow boundary current along the

southern and eastern boundaries of the trough. At the same time the available energy

continues dropping, to values near 1.8 J/kg on the eastern side and to 1.6 J/kg at the

exit of the trough. The vertical profile of AE remains almost constant near the bottom,

so although the current tends to descend in the St Anna Trough, the values of AE20

shown in Figs. 8 to 13 are similar to the near bottom values.

Comparison of Figs. 11, 12 and 13, shows that the change in AE across the sill is

primarily due to the change in pressure. There is a slight increase in kinetic energy,

the current increases from 10 cm s
−1

to 26 cm s
−1

, but in the model the pressure drop

is balanced primarily by the bottom friction term in the lowest model layer. Thus AE is25

being lost overcoming the resistance due to turbulence near the sea bed.

The model uses variable thickness bottom boxes and in this region, where the total
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depth is around 200 m, the bottom model level has a thickness of from 5 to 20 m. Above

the bottom, viscous and inertial effects are small, so there is only a slight pressure drop

along streamlines. However in the south of the trough, the flow follows topography and

so it is strongly affected by bottom friction along most of the path. On the eastern side

of the trough the current moves into deeper water and there is less decline in total AE .5

4.7 The Arctic Ocean

At the exit of the St Anna Trough the water mass extends down to 350 m, with values

of AE above 1.4 J/kg. This then forms a band of high AE which can be followed

eastwards along the edge of the Siberian Shelf. The model water shows some dense

water entering the Arctic from a second trough, the Voronin Trough near 28
◦
E, but10

St Anna Trough outflow appears to the dominant water mass involved. Waters with

similar AE also enter at this depth directly from the Norwegian Sea, passing north of

Spitzbergen, but by the time they reach the St Anna Trough their AE has dropped to

below 1.2 J/kg.

As an example, Fig. 14 shows profiles of AE along two sections. Both are roughly15

at right angles to the continental slope, the first near 155
◦
E, the second near 180

◦
W.

Water mass with AE greater than 1.3 J/kg shows up clearly in both sections adjacent

to the continental slope. High values of AE are also found further east as far as the

Alaskan continental slope but in this region the separation from the surface layer is less

clearly defined.20

Profiles of potential temperature and salinity, on the sections of Fig. 14, show a

slight dipping of the constant temperature and salinity surfaces near the slope, but they

provide no comparable signature to the St Anna Trough waters. It may be possible

to use a combined T/S property as a tracer but the present results indicate that, in

numerical models at least, AE is a useful independent property that can be used in this25

way.
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5 Summary and discussion

This paper has introduced a local version of available energy to quantify the energy

available relative to some nearby large body of water. This energy, which is available

to accelerate currents and overcome friction, results from the changes in both enthalpy

and gravitational potential energy that could occur if the water was to move from its5

initial position to a position of equilibrium in the reference water column.

We have shown that the available energy can also be expressed as a path integral

and that the integral involves two terms. The first depends primarily on the horizontal

pressure gradient and the second on the vertical buoyancy force.

5.1 The Barents Sea10

We have used these results to investigate the energetics of the Barents Sea in a high

resolution ocean model. The model shows that the Atlantic inflow in the Norwegian

Sea does have significant available energy relatively to the Arctic Ocean, but that this

is significantly increased by cooling in the Barents Sea. The cooling also significantly

increases the depth at which the Barents Sea water would settle in the Arctic Ocean.15

The model also shows that much of the increased available energy is lost to bottom

turbulence as the water crosses the Barents Sea and enters the St Anna Trough. How-

ever sufficient energy remains for the outflowing St Anna Trough water to be traced far

along the continental slope. This means that available energy may be a useful tracer

quantity for such flows.20

5.2 Wider impact

The results emphasise that even without the Barents Sea, the Alantic inflow has signif-

icant available energy relative to the Arctic. As a result it is surprising that there isn’t a

greater exchange flow through Fram Strait.

Figures 9 and 12 show that there is a significant pressure drop at the strait, geostro-25
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phy steering much of the Spitzbergen Current into the East Greenland Current. The

small throughflow may therefore be due to the limited width of Fram Strait and to the

weak stratification, both of which can limit the strength of baroclinic instabilities which

could mix the Atlantic water northwards. Weak stratification, together with the rough

topography of the region, may also produce topographic blocking of any throughflow.5

Given the importance of geostrophy it is noticeable that the only water continuing

northwards tends to be in the boundary currents, adjacent to continental slope and the

ridge offshore, where frictional effects due to turbulence allow the current to cross pres-

sure contours. The importance of turbulence, in allowing ocean currents to overcome

geostrophy and cross pressure contours, is often overlooked. However it is important10

in western boundary currents and appears to be important in Fram Strait.

The present work also highlights a similar role for turbulence in the Barents Sea

where it impedes the flow but also allows the flow to cross pressure contours into

the Arctic Ocean. If there were no turbulence, the flow would be geostrophic and

presumably there could then be no flow via the Barents Sea into the Arctic.15

So turbulence in the Barents Sea may be increasing the flow of Atlantic Water into

the Arctic. Further work is needed, for example to check that the Barents Sea trans-

port does not indirectly reduce the Fram Strait transport through some other process.

However even if it does, as shown by Levine (2005), the St Anna Trough outflow still

has a significant impact on a flow which reaches around the Arctic and Atlantic Oceans20

as far as Cape Hatteras.

Appendix A

Total available energy

In analogy with Eq. (1), we define the total available energy (AEtot) to be the integral of25

AE relative to an ocean in which it is in its minimum state. Assume that the water is

initially in a reservoir where both the pressure Pr and height zr are zero. We split the
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ocean into columns of water and fill each column from the bottom. If Ur is the internal

energy of the water in the reservoir, then from Eq. (9) the energy required is

AE =

∫
dx dy

∫ zb

zt

dz ρ(H1 − Ur + gz1) (A1)

where x and y are the horizontal coordinates and z the vertical co-ordinate. H1, Ur and

ρ are functions of all three coordinates and the ocean bottom, zb, is a function of x and5

y only. Substituting for H1and replacing dxdydz by the volume integral dV ,

AE =

∫
dV ρ(U1 − Ur + P1V1 + gzb). (A2)

Substituting for P1 from 5 and rearranging,

AE =

∫
dV ρ (U1 − Ur + g z). (A3)

Thus,10

AEtot =

∫
V1

dV ρ (U1 + g z) −

∫
V0

dV ρ (U1 + gz). (A4)

where the second integral is over the minimum P E ocean and the Ur terms for the two

oceans have cancelled.

As expected the result is equal to the gravitational APE (Eq. 1) plus the difference in

the internal energies of the initial and minimum AE oceans. The latter arises from the15

different pressure distributions in the two oceans (Eq. 3).

Appendix B

Terminology

The origin of the concept of enthalpy appears to be in dispute, but Heike Kamerlingh-20

Onnes, who received a Nobel prize for his work at low temperatures, is reputed to have
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originally defined the enthalpy function H ,

H = E + P V, (B1)

where E is the total energy of the system including the contribution of any external field

such as the gravitational potential. If this were still in use then Eq. (9) would describe

relative enthalpy. Unfortunately enthalpy as commonly used now (Eq. 7) includes only5

the internal energy.

Other possibilities besides “available energy” are the terms “relative total enthalpy”

and “relative gravitational enthalpy”. Note the term “gravitational enthalpy” is also used

in describing hydrodynamical equilibrium in the theory of pulsars (Chubarian et al.,

2007).10
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Fig. 1. Bathymetry of the Barents Sea and surrounding regions, showing the depth in metres.

The points marked A to G are the positions of the profiles of Figs. 4 to 7. A – Inflow current;

B – Central Basin; C – Sill region; D – St Anna Trough; E – Arctic Boundary Current; F –

Norwegian Sea; G – Offshore Arctic Ocean reference profile.
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0 4 62-2

Fig. 2. Potential temperature (
◦
C) at a depth of 205 m (model level 21).
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34.5 3534

Fig. 3. Salinity at a depth of 205 m (model level 21).
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Fig. 4. Potential temperature and salinity profiles at the seven locations of fig. 1. Location: A –

red; B – brown; C – green; D - blue-green; E – blue; F – grey; G – black.
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Fig. 5. Density profiles for location A (red), at the Atlantic entrance to the Barents Sea, and for

the reference location G (black) in the offshore Arctic. Using Eq. (20), the gravitational part of

the available energy at depth A, relative to the offshore water column, is proportional to the area

of the region P-Q-R. The upper blue line Q-R shows the change in the density of the water as

it sinks adiabatically to its equilibrium depth offshore. The lower blue line q-r shows the density

change as the bottom water on the shelf rises to its equilibrium depth offshore.
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Fig. 6. Density profiles for locations A to G of Fig. 1. Location: A – red – Barents Sea inflow;

B – brown – Central Basin; C – green – Sill region; D – blue-green – St Anna Trough; E – blue

– Arctic Boundary Current; F – grey – Norwegian Sea; G – black – Arctic Ocean reference

region.
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Fig. 7. Gravitational (red), pressure (green) and total (blue) components of available energy at

locations A to F of Fig. 1 relative to location G.
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0 1 32-2 -1

Fig. 8. Gravitational component of available energy (J/kg) at a depth of 25.5 m (model level 5).
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Fig. 9. Pressure component of available energy (J/kg) at a depth of 25.5 m (model level 5).
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Fig. 10. Total available energy (J/kg) at a depth of 25.5 m (model level 5).
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Fig. 11. Gravitational component of available energy (J/kg) at a depth of 205 m (model level

21).
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Fig. 12. Pressure component of available energy (J/kg) at a depth of 205 m (model level 21).
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Fig. 13. Total available energy (J/kg) at a depth of 205 m (model level 21).
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Fig. 14. Available energy (J/kg) on sections across the continental slope near (a) 155
◦
E and

(b) 180
◦
E. In order to emphasise the core associated with the shelf current, the colour bar

differs from that used in Figs. 8 to 13.
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