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Abstract

Methods enabling the retrieval of oceanic parameter from the space borne instrumenta-

tion Scanning Imaging Absorption Spectrometer for Atmospheric ChartographY (SCIA-

MACHY) using Differential Optical Absorption Spectroscopy (DOAS) are presented.

SCIAMACHY onboard ENVISAT measures back scattered solar radiation at a spectral5

resolution (0.2 to 1.5 nm). The DOAS method was used for the first time to fit mod-

elled Vibrational Raman Scattering (VRS) in liquid water and in situ measured phy-

toplankton absorption reference spectra to optical depths measured by SCIAMACHY.

Spectral structures of VRS and phytoplankton absorption were clearly found in these

optical depths. Both fitting approaches lead to consistent results. DOAS fits correlate10

with estimates of chlorophyll concentrations: low fit factors for VRS retrievals corre-

spond to large chlorophyll concentrations and vice versa; large fit factors for phyto-

plankton absorption correspond with high chlorophyll concentrations and vice versa.

From these results a simple retrieval technique taking advantage of both measure-

ments is shown. First maps of global chlorophyll concentrations were compared to the15

corresponding MODIS measurements with very promising results. In addition, results

from this study will be used to improve atmospheric trace gas DOAS-retrievals from

visible wavelengths by including these oceanographic signatures.

1 Introduction

Ocean color sensors on board earth orbiting satellites provide a long-term record of20

remotely sensed aquatic parameters. In practice such parameters are retrieved using

appropriate radiance or reflectance ratios. Despite of their limitations these approaches

have been very successful leading to significantly improved knowledge of inherent and

apparent properties of sea water, chlorophyll concentration, and provided important

information about the carbon cycle.25

In recent studies Vassilkov et al. (2002) and Joiner et al. (2004) showed an alterna-
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tive approach using backscatter ultraviolet instrumentation utilizing Vibrational Raman

Scattering (VRS) spectral signature of liquid water. They clearly demonstrated the

capability to evaluate oceanic chlorophyll content using VRS at a spectral resolution

from GOME (Global Ozone Monitoring Experiment). Vountas et al. (2003) confirmed

the coherence between VRS and chlorophyll concentration using Differential Optical5

Absorption Spectroscopy (DOAS) analysis of GOME data .

In this study DOAS, which is a wide-spread technique in atmospheric trace gas re-

trieval, is applied to backscatter measurements from the spaceborne instrument SCIA-

MACHY (SCanning Imaging Absorption spectroMeter for Atmospheric CHartographY)

to retrieve ocean parameters. SCIAMACHY is a follow-on mission of GOME with ex-10

tended characteristics. It was launched on board ESA’s ENVIronmental SATellite, EN-

VISAT, in 2002.

As for example shown in Vountas et al. (2003) VRS spectral signature can clearly

be detected in oligotrophic waters due to larger penetration depths of light. Opposite

behavior is shown in eutrophic waters such as large parts of the coastal zones. DOAS15

retrievals in such regions will not show significant spectral structure from VRS because

of increased absorption by dissolved matter and phytoplankton.

As direct and scattered UV-Vis. light penetrates the ocean surface and therefore

interacts with phytoplankton the phytoplankton absorption spectra are imprinted on the

backscattered radiance spectrum in the visible also. The molecules of the photosyn-20

thetic pigments exhibit well structured absorption features in the visible wavelength

range. Analogue to the VRS approach, a straightforward way to detect the phytoplank-

ton biomass is therefore the DOAS evaluation of phytoplankton absorption.

The objective of this publication is to show the potential of the DOAS analysis to re-

trieve oceanic parameters (as fit factors) using two complementary methods taking into25

account i) VRS spectral imprint in the UV and ii) the spectral fine structure of phyto-

plankton absorption bands in the visible. Such evaluations require spectral resolution.

Modern spaceborne spectrometers for analysis of atmospheric constituents, such as

SCIAMACHY measure radiances at a spectral resolution around 0.2 nm (within the
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spectral intervals used in this study). On the other hand the instrument provides only a

rather coarse spatial resolution 30×60 km
2

compared to established ocean color mis-

sions like for example MODIS or SeaWiFS. In order to resolve scales of variability in

the ocean at least a spatial resolution of 1 km
2

is necessary. Therefore this study aims

to show the feasibility to retrieve valuable oceanic information from hyperspectral data5

and provides the opportunity to further exploit spectral fine structure for other oceanic

applications.

The publication is structured as follows: After giving some information about the

SCIAMACHY instrument in Sect. 2.1 we describe briefly the DOAS method in Sect. 2.2.

While phytoplankton absorption spectra can be measured, VRS spectra have to be10

modelled. Therefore Sect. 2.3 gives a description of a simple model to compute VRS

spectra (which is a brief summary of Vountas et al., 2003). Finally both approaches

are applied to SCIAMACHY backscatter measurements (Sect. 3) and the retrieval of

chlorophyll concentration is demonstrated (Sect. 4).

2 Data sets and methods applied15

2.1 SCIAMACHY

SCIAMACHY (Scanning Imaging Absorption Spectrometer for Atmospheric CHartog-

raphY) (Bovensmann et al., 1999) was launched on board ESA’s ENVIronmental SATel-

lite, ENVISAT, in 2002. The instrument is designed to measure a broad band of solar

radiation, spanning from the UV to the near infrared. Apart from its broad spectral20

coverage, a unique feature of SCIAMACHY is the ability to detect sunlight that has

been transmitted, scattered and reflected in the Earth’s atmosphere in different ob-

servation geometries. In particular, the spectrometer continuously alternates between

limb and nadir modes, which allows the observation of the same volume of air under

different viewing angles, facilitating the separation of stratospheric and tropospheric25

components of molecular absorbers. The instrument takes backscatter measurements
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at high spectral resolution (in the UV-Vis.: 0.26–0.44 nm).

This study exclusively uses spectra measured in nadir-viewing. The main objective

of SCIAMACHY, as well as the new Ozone Monitoring Instrument (OMI) on AURA

and GOME-2 (Global Ozone Monitoring Experiment-2) on METEOSAT, is to determine

the abundances of atmospheric trace gases. Although SCIAMACHY is primarily an5

atmospheric mission, part of the detected solar radiation penetrates the ocean surface

and picks up absorption and backscattering signals from sea water.

2.2 Differential Optical Absorption Spectroscopy (DOAS)

The DOAS method (Perner and Platt, 1979) has proven to be a powerful, computionally

fast and simple tool in atmospheric remote sensing. As already shown to be feasible10

for GOME (Vountas et al., 2003) data we will apply and further develop DOAS retrievals

of ocean parameters using SCIAMACHY data.

The DOAS technique usually exploits the sharp spectral features in backscatter radi-

ance spectra that are caused either by absorption due to atmospheric constituents or

spectral re-distribution features as induced by VRS in ocean waters (Vassilkov et al.,15

2002; Vountas et al., 2003). Spectrally dynamic features are separated from the slowly

varying attenuation due to scattering by subtracting a low-degree polynomial (typically

of a degree of three) in a spectral fit procedure. However, depending on the size of the

fitting window and the degree of the polynomial the algorithm is also able to retrieve

broad spectral structures (Eisinger et al., 1996).20

The DOAS retrieval involves the fitting and scaling of a set of spectra within a certain

wavelength window, which can be composed of:

– atmospheric trace gas absorption cross-sections,

– a polynomial,

– so-called pseudo-absorber spectra for example a reference spectrum for VRS in25

liquid water and

– additional spectra for chlorophyll absorption
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to the measured optical depth τ(λ, θ)= ln(I/I0). With I being the backscattered radi-

ance, I0 the extraterrestrial irradiance. τ is a function of the wavelength λ and the solar

zenith angle θ (dependence omitted in the following). The fitting is formalized as a

least-squares minimization:

∣

∣

∣

∣

∣

∣

∣
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→ min. (1)5

Here the input parameters to DOAS are:

– σi (λ) being the cross-sections for each atmospheric trace gas i (total number of

gases is L),

– a(λ): is the spectrum for phytoplankton absorption and

– v(λ): is a spectrum accounting for VRS (see below).10

– M pseudo-absorber spectra rj (λ). Taking into account other pseudo-absorbers is

often necessary and depends on the wavelength range investigated.

The output of DOAS are the fit factors for each spectrum and coefficients for each

polynomial variable (here the wavelength λ). Where Sk is the fit factor of the kth at-

mospheric absorber and Sj the fit factor of the j th pseudo absorber. xl is the l th poly-15

nomial coefficient (degree of the polynomial is N) accounting for spectral broadband

features like Rayleigh and Mie scattering in atmosphere. The fit factor of chlorophyll

absorption is Sa and the one of VRS is Sv .

The DOAS fit factors Sa and Sv contain specific information about ocean optical

characteristics and will therefore be the target quantities in the following.20

It should be noted that the DOAS method will lead to erroneous results if the refer-

ence spectra used in the fit have spectral correlation, i.e. the fit algorithm will not be

able to distinguish between similar spectral features.

As a scalar indicator of fit quality χ2
values are often used. The χ2

values are defined

as the square of the wavelength-integrated fit residual weighted with the square of the25

measurement error.
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2.3 Optical properties of ocean water

Before we can use DOAS to determine the fit factors Sv and Sa to derive further infor-

mation from them all relevant input spectra have to be selected carefully. Of particular

importance are v(λ) and a(λ).

Determination of v(λ): In order to account for VRS in DOAS retrievals an adequate5

VRS spectrum has to be used in the analysis. Such a spectrum can be considered as

a-priori information for the retrieval.

VRS is an inelastic scattering process which provides a mean wavenumber shift

of 3357 cm
−1

. It involves two fundamental OH stretch vibration modes of the water

molecule that are further modified by hydrogen bonding and rotational fine structure.10

These interactions induce a broad band of emissions around the mean wavenumber

shift so that water Raman emissions occur over a band of ≈30–50 nm. In order to ac-

count for this redistribution of photons a spectroscopic model of VRS has to be embed-

ded in an adequate description of the interaction between light, water and atmosphere.

This requires a coupled atmosphere-ocean radiative transport model.15

As a first step we will have to define a reference spectrum v accounting for VRS in

liquid water at a wavelength λ as:

v(λ) = ln
I+VRS

(λ)

I−VRS(λ)
. (2)

With I+VRS
being the modeled radiance taking into account VRS and I−VRS

neglecting

it (Vountas et al., 2003). A prerequisite for taking into account VRS in DOAS-type20

retrievals is therefore a precise knowledge of the quantities I+VRS
and I−VRS

.

The following paragraphs list the underlying spectra and assumptions necessary to

create the reflectance being the central input for the determination of I+VRS
and I+VRS

.

The way how the reflectance is determined is shown elsewhere in detail (Vountas et al.,

2003; Sathyendranath and Platt, 1998).25

We adopt a reflectance model, originally proposed by Sathyendranath and Platt
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(1998) which is based on a modified Quasi-Single-Scattering Approximation. It takes

into account elastic backscattering and photon redistribution by VRS at the sea surface.

This model has been incorporated into an atmospheric model, SCIATRAN (Rozanov

et al., 1997, 2005), by passing the reflectance function for a given chlorophyll concen-

tration to the atmospheric model which computes the radiance or flux for a given mea-5

surement geometry and atmospheric scenario. This hybrid model version will hence-

forth be referred to as SCIATRAN-OC (OC: Ocean).

Apparent optical properties such as the reflectance require the knowledge of inher-

ent optical properties (IOP) of the water body. With the exception of the VRS (back)

scattering coefficient which is determined through a simple exponential expression both10

IOPs, the total absorption coefficient at and the total backscattering coefficient bt will

depend solely on chlorophyll concentration [mg/m
3
], i.e. we consider case-1 waters

(Morel and Prieur, 1977). It should however be noted that measurements and corre-

sponding parametrizations of IOPs in the UV are rare and often unreliable (Vassilkov

et al., 2002b). Accordingly, errors in the IOPs will translate into the determination of15

the VRS reference spectra.

For the determination of at two pure water absorption spectra from Buiteveld et al.

(1994) and Quickenden and Irvin (1980) have been used. In the UV-overlap region

both spectra were smoothly spline-interpolated.

The (specific) phytoplankton absorption is taken from Bracher and Tilzer (2001).20

These spectra were derived from in situ measurements of particulate absorption be-

tween 300 and 750 nm on water samples from different biogeochemical provinces of

the South Atlantic Ocean which were afterwards corrected for detritus absorption and

normalized to chlorophyll concentration according to the method developed by Yentsch

(1962) and modified by Bricaud and Stramski (1990) using the β-correction of Mitchell25

and Kiefer (1988).

Current operational schemes for determining phytoplankton biomass from ocean

color data use a single bio-optical model. For instance OC4V4 by O’Reilly et al. (2000)

is currently used to generate global maps of chlorophyll-a from both SeaWiFS and
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MODIS imagery. Global remote sensing algorithms, such as version four of the NASA

algorithm (OC4) are designed for use at global scales and are found to be less accu-

rate at local and regional scales. This is because the simplified parameterization of

seawater composition in terms of chlorophyll-a concentration alone does not account

for much of the optical variability observed in natural waters. This is in case-1 waters5

mainly caused by the variation of the specific phytoplankton absorption among species,

but also within the same species depending on the photoacclimative state due to differ-

ences in packaging (package effect) and the composition of photosynthetic pigments

(see e.g. Sathyendranath et al., 1987; Hoepffner and Sathyendranath, 1991; Bracher

and Tilzer, 2001; Ciotti et al., 2002).10

For the determination of bt the pure sea water scattering coefficients bw were taken

from (Smith and Baker, 1981) and used within the bio-optical model for the elastic

backscattering coefficient proposed by Morel (1988). The VRS backscattering coeffi-

cient is computed following the approach described in Vountas et al. (2003).

Finally, absorption from dissolved organic matter (DOM) is treated according to the15

model of Morel (1988). Here, the DOM absorption at 440 nm is 20% of the total ab-

sorption of pure seawater and particulate matter and an exponential function is used

to describe the spectral variation. The spectral slope of DOM is set to the wide-spread

value of 0.014 nm
−1

. As can be seen in Fig. 1 DOM absorption changes smoothly

with respect to the wavelength within a typical DOAS wavelength window of a size of20

30–70 nm used here. Such spectral imprint is safely removed by the fitted polynomial.

For a wavelength range of 300 – 550 nm relevant scattering and absorption coeffi-

cients are shown in Fig. 1.

Determination of a(λ): As in case of the determination of v(λ) a phytoplankton

absorption spectrum from Bracher and Tilzer (2001) has been used. We expect most25

reliable DOAS fits in regions where the selected spectrum has been measured (i.e. in

the South Atlantic). Even though we will not restrict our DOAS retrievals to this region

but perform global fits the results can give valuable and simple information and show

the feasibility of the approach.
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3 Applications

Prior to application of DOAS using a VRS spectrum and phytoplankton absorption

spectrum, additional fit parameters have to be defined. Dependending on the target

quantity slightly different wavelength windows have been selected: the regular VRS

retrieval is performed between 349.5 nm and 382 nm, where the spectral structure of5

VRS can easily be distuingished from other spectral components (Vountas et al., 2003).

First tests of Sierk et al. (2004) could show that fitting of phytoplankton absorption spec-

tra performs well in another wavelength window located at about 428–496 nm, where

photosynthetic pigments of phytoplankton have generally their maximum absorption.

In the considered wavelength ranges are weak atmospheric absorbers potentially10

disturbing the DOAS fit if not accounted for such as ozone, bromine monoxide, nitro-

gendioxide and the oxygen dimer. These spectral features have been accounted for

using the appropriate reference spectra in the DOAS fits.

Additionally (inelastic) rotational Raman scattering at air molecules can fill-in solar

Fraunhofer and telluric lines and is able have large impact on DOAS retrievals if not15

properly accounted for. The effect became known as the Ring effect (after Grainger

and Ring, 1962) and can be accounted for by fitting a modelled pseudo-absorber- also

called Ring-spectrum, defined as in Vountas et al. (1998).

For the retrievals described in the following, a fixed setup for the VRS and Ring spec-

trum computations has been used. SCIATRAN-OC computed VRS (Vountas et al.,20

2003) and Ring spectra (Vountas et al., 1998) with a fixed chlorophyll concentration of

0.1 mg/m
3

at a solar zenith angle of 30
◦

. A maritime aerosol setup with moderate visi-

bility has been used. Trace gas and temperature profiles were taken from a climatology

(Brühl and Crutzen, 1992
1
) for 25

◦

southern latitude.

Small wavelength shifts due to tiny differences in the wavelength scale used in the25

VRS, Ring, cross-sections, SCIAMACHY irradiance and radiance spectra are corrected

1
Brühl, C. and Crutzen, P.: Chemo-dynamical model of the atmosphere: Profile data base,

personal communication, 1992.
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by allowing a non-linear shift-and-squeeze of the wavelength axis for each spectrum

relative to an arbitrary reference, here the SCIAMACHY radiance.

One important prerequisite is that the groundpixel has to be cloud-free. A very sim-

ple but effective approach has been used to identify clear sky pixels: the measured

radiance is integrated over the wavelength window and normalized to the number of5

wavelengths. The resulting value is compared to an empirical threshold value deter-

mined beforehand. The underlying physical principle goes back to increased backscat-

ter over cloudy scenes leading to significantly larger radiance values. This approach

helps masking cloudy pixels fast and effective but is very sensitive to the threshold

used. In this study we have fixed the threshold for all cases conservatively low in order10

to reject even partially cloudy pixels.

As the spatial resolution of SCIAMACHY is rather poor compared to spectrally lower

resolving imagers such as SeaWiFS, MERIS or MODIS larger periods of data have to

be investigated. For the global maps shown here one month of cloud-free SCIAMACHY

nadir data served as a basis. Depending on the data density on overcast situation15

shorter periods of about two weeks are possible.

3.1 Regional VRS-fitting

The above described retrieval technique has been applied to several thousand SCIA-

MACHY groundpixels but as a first step a study on a regional scale has been performed

to identify the spectral signature of VRS, v(λ), in SCIAMACHY data. As an example20

orbit 12429 measured on 16 July 2004 has been selected. In Fig. 2 the fit factor Sv

of a VRS reference spectrum modelled for a chlorophyll concentration of 0.1 mg/m
3

is

shown in a color-coded way.

An obvious feature is the water-land contrast: pixels over land are significantly down-

scaled to values of around zero. This indicates, as expected, that the VRS spectral25

signature cannot be found in land pixels. For coastal zone pixels, where water and land

has been in the field of view of the sensor the fit factor is diluted to values around −0.3.

Interestingly some pure land pixels still have fit factors different from zero. We suspect

469

http://www.ocean-sci-discuss.net
http://www.ocean-sci-discuss.net/4/459/2007/osd-4-459-2007-print.pdf
http://www.ocean-sci-discuss.net/4/459/2007/osd-4-459-2007-discussion.html
http://www.copernicus.org/EGU/EGU.html


OSD

4, 459–489, 2007

Spectral studies of

ocean water

M. Vountas et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

◭ ◮

◭ ◮

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

EGU

uncompensated spectral Ring effect structures to be the reason for this. This mismatch

could be reduced when modelling the Ring reference spectrum for the adequate scene

albedo. The sign of the fit factors is negative. This fact is a consequence of our DOAS

implementation, defining ln(I/I0)=τ and not like the physical law ln(I0/I)=τ (compare with

Eq. 1). Changing the sign of the resulting fit factor after retrieval is uncritical but has5

not been performed.

The consistent picture persists if the spectral fit results over land and open water are

compared. A widespread approach testing the fit quality for a specific target species

using DOAS retrievals is to plot the scaled reference spectrum and overplot the scaled

reference spectrum with the added fit residual. This approach simplifies the spectral10

and quantitative comparison of the scaled reference and the residual. Figure 2 (upper

right panel) shows the spectral fit results for an open water retrieval of the selected

orbit in the Mediterranean sea. Obviously the VRS reference spectrum fits well and is

clearly uncorrelated to the residual. Expected opposite behaviour is seen for results

over land (lower right panel): the scaled VRS spectrum is almost zero which indicates15

that no spectral signature of VRS could be retrieved.

Yet an important issue is that over open water the VRS reference spectrum is not ad-

equate for every groundpixel but has a fit factor different from (negative) unity. The rea-

son for this can easily be understood if the relation between Fraunhofer line filling and

chlorophyll concentration is recapitulated. Figure 3 shows the modelled dependence20

of the in-filling at 397 nm (a Calcium Fraunhofer line) and the chlorophyll concentration.

With increasing chlorophyll concentration the filling in for this line decreases rapidly.

The same mechanism can be seen in Fig. 2. Here, a fit factor larger than −1 (tend-

ing to zero) means that the modelled VRS reference spectrum provides more filling-in

than necessary for the SCIAMACHY spectrum currently evaluated. As a consequence25

the reference has to be scaled down in order to fit to the effective situation during

measurement. A lower net-in-filling corresponds to a scene with higher chlorophyll

concentration, according to Fig. 3. The VRS spectrum has to be downscaled in prac-

tically all cases which indicates that the chlorophyll content for the particular ground

470

http://www.ocean-sci-discuss.net
http://www.ocean-sci-discuss.net/4/459/2007/osd-4-459-2007-print.pdf
http://www.ocean-sci-discuss.net/4/459/2007/osd-4-459-2007-discussion.html
http://www.copernicus.org/EGU/EGU.html


OSD

4, 459–489, 2007

Spectral studies of

ocean water

M. Vountas et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

◭ ◮

◭ ◮

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

EGU

pixels is larger than the one related to the modelled VRS spectrum (therefore the ac-

tual chlorophyll concentration can be considerered larger than 0.1 mg/m
3
).

3.2 Global VRS-fitting

Applying the above described technique to one month of SCIAMACHY nadir data leads

to a dense global map of VRS fit factors. July 2005 has been selected and 999 Orbits5

have been evaluated. As in the regional study a clear water-land contrast can be shown

globally (for clarity land retrievals are not depicted).

Regions with practically no scaling for VRS (fit factors near −1) correspond to well

known large fields of oligotrophic waters. The reason for this has been described

above.10

Low overall χ2
values can be found and indicate good global fit quality. Figure 4

shows the map of VRS fit factors. The global fits have been performed with a solar

zenith angle limit of 60
◦

due to signal to noise issues. However, in the southern hemi-

sphere this still seems to be insufficient because of very low fit factors for VRS over the

whole range of longitudes. The reason for this is still not understood.15

Not shown are the fit factors for the Ring reference. They show no systematic and

significant scaling in oligotrophic waters. Therefore the Ring effect does not induce ar-

tificial spectral structures that are erroneously compensated by VRS. Interesting is that

the Ring fit factor shows a clear latitudinal variation, arising from strong solar zenith an-

gle dependence and is significantly smaller over mountain areas which is in full agree-20

ment with our model.

3.3 Regional phytoplankton-fitting

The next step has been to fit phytoplankton spectra, a(λ), to SCIAMACHY optical

depths in the wavelength window of 428–496 nm taking into account atmospheric ab-

sorption and pseudo absorbers (VRS and Ring reference spectrum).25

For our retrieval of phytoplankton distribution from SCIAMACHY data we used sev-
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eral (23) specific absorption spectra derived from surface water samples (from Bracher

and Tilzer, 2001) in the DOAS fit. As for the current operational chlorophyll-a algo-

rithms used in case-1 waters by MODIS, SeaWIFS and MERIS, we chose one single

specific absorption spectrum as standard for the DOAS-fit with SCIAMACHY data in

order to obtain distributions of phytoplankton: Our investigations showed that global5

distributions of phytoplankton absorption retrieved from SCIAMACHY data compares

very well to global distributions derived from MODIS operational chlorophyll-a level-2

data (see below) when a specific absorption spectrum measured at surface water sam-

ples from the Antarctic Circumpolar Current was used. Here, the phytoplankton was

characterized by low biomass (<0.5 mg chl-a/m
3
), high specific phytoplankton absorp-10

tion, a mixed phytoplankton composition with almost all within the size class smaller

than 20 µm and where diatoms, dinoflagellates, prymnesiophytes and chrysophytes

contributed more or less equally to the overall biomass.

Figure 5 depicts fit factors of a phytoplankton spectrum over an upwelling region near

the African West coast. The figure shows clear indication of increased chlorophyll con-15

centration near the upwelling. Here, the phytoplankton absorption spectrum is strongly

scaled (color-coded in green and red). Both plots on the right hand side show fit results

(so-called differential optical depths) for phytoplankton absorption near the upwelling

(upper right panel) and over the open oligotrophic ocean (lower right panel). As ex-

pected, low scaling can be observed for oligotrophic and strong for eutrophic waters.20

3.4 Global phytoplankton-fitting

An example for a global fit of chlorophyll created for the whole month of July 2005 from

SCIAMACHY nadir data is shown in Fig. 6.

The map shows that increased fit factors for the phytoplankton reference spectrum

clearly correlate to high chlorophyll concentrations (as for example seen in the corre-25

sponding MODIS global chlorophyll concentration map in Fig. 7). Clearly this approach

is not only valid on a regional scale, but shows consistent global results.

Improved DOAS fits can be expected when pre-defining ocean provinces and using
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appropriate phytoplankton absorption spectra which will be performed in a successive

study.

4 Quantitative assessment

4.1 Sa vs. chlorophyll concentrations

We performed a large quantitative comparison between MODIS OC4V4-Aqua5

chlorophyll-a data (≈1 km
2
) with results derived from SCIAMACHY data using DOAS-

fitting of phytoplankton absorption. Collocations were chosen with comparing the mean

of all MODIS data measured within a SCIAMACHY pixel at the same day. In order to

avoid artifacts, only comparisons were made when at least 10 MODIS pixel were col-

located to a SCIAMACHY observation.10

Figure 8 (left) shows a scatter plot for all collocations in July 2005. Results show a

“gamma”-shaped (Γ) relation between the DOAS fit factor and the MODIS chlorophyll

concentration. A simple exponential curve could be fitted according to the equation

f (φ)=a0−a1 exp(−a2 ∗φ), with φ being the chlorophyll concentration as obtained from

MODIS. The scatter around the fitted curve is still not fully understood and might par-15

tially be attributed to spatial and temporal variations of chlorophyll-concentrations.

The curve shows a “saturation” of the SCIAMACHY fit factors for MODIS chlorophyll

concentrations higher than 0.5 mg/m
3
. Obviously the input radiance spectra from SCIA-

MACHY are not changing significantly with higher chlorophyll concentrations which is

likely to be related to the selected wavelength interval where the penetration depth of20

light is not sufficient and should be adapted in further studies.

4.2 Sv vs. chlorophyll concentrations

MODIS chlorophyll-concentrations have also been compared to VRS-fitting results from

SCIAMACHY. The procedure was analogous to the one described above. A compa-

rable but mirrored “gamma”-shape relation between the DOAS fit factor for VRS and25
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the MODIS chlorophyll concentration could be found (see Fig. 8, right). The functional

dependence was again as for f (φ) (see above), with φ being the chlorophyll concen-

tration as obtained from MODIS.

The absolute value of the VRS fit factor decreases with increasing MODIS chloro-

phyll concentrations, which is expected behavior. A similar “saturation” effect as in the5

comparison of chlorophyll concentrations and chlorophyll fit factors can be observed.

4.3 Chlorophyll concentrations

Both approaches, fitting VRS or phytoplankton absorption spectra, exhibit expected

clear correlations to chlorophyll concentrations. Obviously both methods could be used

to retrieve this quantity. An optimized retrieval technique would take advantage of a10

hybrid approach: VRS fits strongly in regions where low chlorophyll concentrations

prevail whereas direct fitting of phytoplankton behaves vice versa. One method could

potentially stabilize the other.

The fit factor Sa for phytoplankton (or to be precise for the specific absorption spec-

trum) is given in [mg/m
2
] which is a mass column. If the penetration depth δ of light15

for the wavelength window considered is known this column can be converted into a

concentration by the ratio:

C = Sa/δ (3)

VRS is strongly related to δ and serves therefore as a proxy: A single vibrational Ra-

man scattering event is always accompanied by an elastic scattering process. There-20

fore, the fit factor of VRS, Sv , is directly related to the same quantity for elastic scatter-

ing only. As described above (and in more detail in Vountas et al., 2003) a bio-optical

model from Morel (1988) has been used to describe the dependence of the elastic

backscattering coefficient bb.

The backscattering coefficient scaled with the same factor as the VRS spectrum25

(Sv ) can be understood as the true bb for the real situation considered. As b−1
b is the

modelled penetration depth, Sv ∗ b−1
b can be associated with the measured one. For

474

http://www.ocean-sci-discuss.net
http://www.ocean-sci-discuss.net/4/459/2007/osd-4-459-2007-print.pdf
http://www.ocean-sci-discuss.net/4/459/2007/osd-4-459-2007-discussion.html
http://www.copernicus.org/EGU/EGU.html


OSD

4, 459–489, 2007

Spectral studies of

ocean water

M. Vountas et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

◭ ◮

◭ ◮

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

EGU

the whole retrievals of Sa for July 2005 (as described above) all corresponding values

of Sv have been used within Eq. (3) to model a global map of chlorophyll concentra-

tions C, which is displayed in Fig. 9. A first visual comparison with MODIS chlorophyll

concentrations (Fig. 7) shows good agreement. Further studies will optimize this ap-

proach and will also include a thorough quantitative comparison. An important point of5

investigation must be the impact of the “saturation effects” (shown in Sect. 4.1) on the

chlorophyll concentration convertions. The patchy appearance of the mapped chloro-

phyll concentrations is related to the fact that due to fitting failures, either in case of

VRS, or phytoplankton fitting, not both corresponding quantities could be related.

However, there are alternative ways to use hyperspectral “imagery” data to retrieve10

chlorophyll concentrations. For instance, fitting a liquid water spectrum also has been

tested with interesting results: first a stand-alone chlorophyll concentration retrieval

from phytoplankton-fitting has been tested. One advantage of the DOAS approach

retrieving phytoplankton absorption is that in the wavelength range considered the ef-

fective liquid water path can be determined. As the fit factor of the liquid water spec-15

trum Slw represents the number of water molecules encountered by photons along

the average propagation path the under-water light path, Lwp can easily be estimated

(assuming constant water density near surface) from:

Lwp =
Slw

rlw
(4)

with rlw being the density of liquid water. Assuming a constant chlorophyll concentra-20

tion along the identical average light path yields:

rchl =
Schl

Lwp

(5)

First tests (Sierk et al., 2004) showed promising results but this approach has still to

be used in global retrievals and must be validated.

Yet another promising stand-alone test has been performed for VRS-fitting. Here25

we have calibrated VRS fit factors (Sv ) with MODIS chlorophyll concentrations (C), as
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given in Fig. 8. Using the exponential dependence between Sv and C we applied this

function to one month of SCIAMACHY VRS fit factors. The validation will be part of a

subsequent study. First comparisons of SCIAMACHY’s and MODIS’ chlorophyll con-

centrations show good agreement. However, this approach is strongly dependent on

the quality of MODIS data. Problems with MODIS’ chlorophyll concentrations signifi-5

cantly interfere with such a retrieval.

5 Conclusions

For the first time the DOAS retrieval method has been used fitting VRS reference

spectra to optical depths measured from SCIAMACHY. We clearly have found spec-

tral structures of VRS in SCIAMACHY measurements. Furthermore, a novel approach10

has been described to fit phytoplankton absorption spectra within DOAS.

Both fitting VRS or phytoplankton reference spectra lead to consistent results. VRS

fit factors clearly correlate with chlorophyll concentrations. Low factors correspond to

high chlorophyll concentration and vice versa. As expected opposite behavior is ob-

served when fitting phytoplankton spectra: Here, low factors correspond to low chloro-15

phyll concentration and vice versa. Both approaches are promising tools for retrievals

of chlorophyll concentration. First results of a hybrid approach show good agreement

with chlorophyll concentrations derived from MODIS and confirm the feasibility of the

approach. However, more fine-tuning of the retrievals will be necessary. A more in-

depth validation result will be shown in a consecutive study.20

Despite the spatial resolution of SCIAMACHY being far lower than for the ocean color

imagers such as MODIS, SeaWIFS, MERIS, MOS, etc. further developments of our

method to identify phytoplankton absorption in satellite spectra are of great relevance

for improving chlorophyll concentration determinations for ocean color imagers. So far

it has become clear that remote sensing algorithms derived for ocean color imagers25

are designed for use at global scales but less accurate at regional and local scales

(Sathyendranath et al., 2004). Phytoplankton and associated particulate and dissolved
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material absorb and scatter light, and their collective influence dominates the optical

variability of the water column, at least in the open ocean waters generally referred to

as case-1 waters. Phytoplankton absorption varies between species and phytoplank-

ton groups but also in dependence to their physiological states (see Sathyendranath

et al., 1987; Mitchell and Kiefer, 1988; Babin et al., 1993; Bracher and Tilzer, 2001).5

Therefore, errors arise in the common ocean color retrievals because the corrected

water-leaving radiance can vary independently of changes in chlorophyll concentra-

tions, as in dependence to the specific phytoplankton absorption. In our study we

sought to to use the high resolution spectra of the satellite instrument SCIAMACHY in

order to look for phytoplankton absorption in open ocean areas. These retrievals could10

be used to improve chlorophyll retrievals from common ocean color sensors by using

the right regional phytoplankton spectrum, which will improve modelling primary pro-

duction and food web dynamics in the global open oceans. In addition, also retrievals

of atmospheric constituents from backscatter UV satellite measurements will improve

when the ocean optical signals, such as phytoplankton absorption are also considered15

in radiative transfer models used in these retrievals.

Further analyses are planned to check whether discrimination between different phy-

toplankton groups dominating the chlorophyll concentration is possible since the DOAS

method is highly sensitive to spectral structures. If this parameter can be retrieved from

remote sensing data, further improvements for regional and global marine chlorophyll20

and marine primary production estimates are expected.
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Fig. 1. Absorption coefficients for phytoplankton (Bracher and Tilzer, 2001) (assuming a

chlorophyll concentration of 0.1 mg/m
3
), DOM (Morel, 1988), pure water (Buiteveld et al., 1994;

Quickenden and Irvin, 1980) and total backscattering (Smith and Baker, 1981) in [1/m], as

well as a VRS spectrum [without units] as defined in Eq. (2). Each of both dominant peaks in

the VRS spectrum correspond to two strong CaII Fraunhofer lines in the solar spectrum. The

values between 0.04 – 0.05 can be interpreted as filling-in of 4 – 5 % w.r.t to non-filled lines.
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Fig. 2. Left: VRS fit factor for SCIAMACHY orbit 12429. Right: VRS fit for readout 2 of state 5

over open water (above) and readout 253 of state 5 over land (below).
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483

http://www.ocean-sci-discuss.net
http://www.ocean-sci-discuss.net/4/459/2007/osd-4-459-2007-print.pdf
http://www.ocean-sci-discuss.net/4/459/2007/osd-4-459-2007-discussion.html
http://www.copernicus.org/EGU/EGU.html


OSD

4, 459–489, 2007

Spectral studies of

ocean water

M. Vountas et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

◭ ◮

◭ ◮

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

EGU

-90

-60

-30

0

30

60

90

-180 -120 -60 0 60 120 180

-90

-60

-30

0

30

60

90

-180 -120 -60 0 60 120 180

-90

-60

-30

0

30

60

90

-180 -120 -60 0 60 120 180

-1.000 -0.875 -0.750 -0.625 -0.500 -0.375 -0.250 -0.125 0.000

Fit factor

Fig. 4. Global VRS fit factors from SCIAMACHY data for July 2005.
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Fig. 5. Left: Phytoplankton fit factor for SCIAMACHY orbit 17712. Right: Phytoplankton fit

fit for readout 214 of state 7 over upwelling (above) and readout 6 of state 7 over oligotrophic

water (below).
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Fig. 6. Global chlorophyll fit factors from SCIAMACHY data for July 2005.
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Fig. 7. Global chlorophyll concentration from MODIS for July 2005.
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Fig. 9. Global chlorophyll concentration from SCIAMACHY for July 2005.
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