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Abstract

A study of the sea-ice dynamics in the periods of time prior to and during the cycles

of basin-wide fragmentation of the ice cover in the Arctic Ocean is presented. The

fractal geometry of the ice-sheets limited by leads and ridges was assessed using the

satellite images, while the data on the correlated sea-ice motion were obtained in the5

research stations “North Pole 32” and “North Pole 33” established on the ice pack. The

revealed decrease of the fractal dimension as a result of large-scale fragmentation is

consistent with the localization of the fracture process (leads propagation). At the same

time, the scaling properties of the distribution of amplitudes of ice-fields accelerations

were insensitive to the event of sea-ice fragmentation. The temporal distribution of the10

accelerations was scale-invariant during “quiet” periods of sea-ice drift but disordered

in the period of mechanical perturbation. The period of decorrelated (in time) ice-field

motion during the important fracture event was interpreted as an inter-level transition

in the hierarchic dynamical system. The mechanism of the long-range correlations in

the sea-ice cover, including the fracture process, is suggested to be in relation with the15

self-organized oscillation dynamics inherent in the ice pack.

1 Introduction

Two continuous processes determine, mainly, the mechanical behavior of the ice pack

in the Arctic Ocean: the sea-ice drift and pervasive fracturing. These processes are

highly interrelated because the fracture events occur due to interaction between ice20

floes, and the large scale deformations are caused by the non-uniform pack motion. In

recent years, it was revealed that the mechanical behavior of the Arctic sea-ice cover

(ASIC) can be characterized by various scaling exponents related to the elastic and

strength properties of ice sheets. First of all, the plate-size distribution (number of ice

pieces as a function of their dimension) follows the power law over several orders of25

magnitude (Matsushita, 1985; Korsnes et al., 2004) as well as the geometric propor-
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tions between the area and “coastline” of ice floes (Chmel et al., 2005). This suggests

that the plate dimension distribution in the ASIC is fractal (Hopkins et al., 2004). The

deformation rate that determines the fracture pattern in the ASIC is also scale invariant

(Marsan et al., 2004). These spatial characteristics are combined with the temporal

invariance of the sea ice motion (Chmel et al., 2005).5

The mentioned above scaling features signalize that the mechanical behavior of the

ice pack is highly correlated on scale levels, at least, 10 to 10
3

km (Weiss, 2003;

Marsan et al., 2004) (or, in terms of Overland (1995), from the level of individual

plates to climate geophysical scales). This work is to demonstrate the response of

the fractal properties of the lead-and-ridge pattern to basin-wide fracture events, and10

to consider the underlying mechanism of the correlated fracture in the ASIC issuing

from the dynamics of pack motion. In other words, we show some intrinsic features of

the sea-ice-drift dynamics and pack fracture seen by statistical physicists. The sources

of information were the databases of field observations carried out in the ice-research

stations of series “North Pole” (NP) NP 32 and NP 33 supplemented with the images15

from the NOAA satellite.

2 Fractality

2.1 Guiding analogy

In order to illustrate the scale invariance of the fracture events in nature, we shall con-

sider the following example. Let us imagine a stone wall that bears a load or, at least,20

its own weight. The wall undergoes the action of wind pressure, temperature gradients,

solar radiation, etc. The aging processes develop themselves step by step. One day,

or to be more precise, at a certain moment, the internal deformations overcome the

aging-modified ultimate values, and the wall breaks down to pieces of different sizes.

Numerous experiments and observations of fracture events of different kind suggest25

that if one measures the size distribution of pieces, it would be turned out that the
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number of wall fragments (n) is corresponded to their size (r) by the power law:

n(r) ∝ r−D (1)

where the power index D is the fractal dimension of the ensemble of fracture prod-

ucts. The experiment similar to this mental illustration was carried out by Carpinteri

et al. (2004) who studied the breakage of blocks of constructional materials and con-5

firmed the validity of relation (1). The occurrence of the power-law statistics evidences

the absence of characteristic lengths because the function n(r) satisfies the scaling

equation:

n(λr) = λ−Dn(r). (1a)

where λ is the scale factor. In our example, this means that the number of wall frag-10

ments of different sizes changes with the scale of observation λr as given by the

Eq. (1a). The power law distribution of fracture products results from the long-range

correlation of the fracture process itself: each new breakage of links affects not only

the neighboring sites but the whole ensemble of sites in a way to maintain the critical

state (Caldarelli et al., 1996).15

The ice cover is a kind of “horizontal” wall. Individual ice plates are restricted by

leads (open water), cracks or pressure ridges. The action of compressive, tensile and

shear stresses causes its fragmentation on various scale levels. Matsushita (1985)

was the first who analyzed the size distribution of ice pieces (in the aerial photos of

the frozen Okhotsk Sea) and he found the same relation (1) between the number and20

linear dimension of ice plates. Thus he had shown that the ice-cover fragmentation

occur in a similar way on all scale levels.

The scale invariance of this kind can be characterized quantitatively be the value of

fractal dimension, which is available, in particular, from measurements of the area (S)

and perimeter (L) of fractal collection of two-dimensional objects; the relation between25

S and L is also expressed by the power law (Mandelbrot et al., 1984):

SD∝ L2. (2)
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In the next section we shall demonstrate the validity of the relation (2) as applied to the

vast areas of the fragmented ice cover, and consider the response of the value D to

large scale mechanical perturbations in the ASIC.

2.2 Sea-ice cover fragmentation

2.2.1 Shore interference5

Figure 1 shows a series of AVHRR images of April 1999 where a large-scale event

was detected in the geographical region depicted in the cut-in. The appearance of the

branching lead on 14 April was followed by prevailing transverse fragmentation with

formation of smaller “debris” (compare Fig. 1b and Fig. 1c). We suppose that this frac-

ture event was caused by the shore interference that affected strongly the ice cover10

drift in April 1999. This was concluded from the monitoring of a set of reference points

(well-recognizable patches of free water selected throughout the region of observa-

tion). From 7 to 12 April the distances between reference points gradually decreased

so indicating the effect of ice compression. The quasi-stationary drift was disturbed

on 12–13 April by the appearance of a strong rotational component accompanied with15

translations along the leads. Such the behavior is typical for ice-cover/offshore interac-

tion. The measured dependences of S on L referred to images obtained prior to and

after ice fracturing are depicted in Fig. 2. One can see a difference in the slope of two

L versus S linear dependences plotted in doubly logarithmic coordinates. According

to relation (2), the increase of the slope after the event of fragmentation signifies the20

decrease of the D-value (from 1.14±0.04 to 1.04±0.04). Physically, the decrease of D
evidences the localization of the process; in our case, this indicates a partial loss of the

planar structure with a trend to one-dimensional organization (propagating leads). The

fractal dimension was also determined from satellite images obtained a few days prior

to 14 April 1999, and a few weeks after that day. Unfortunately, during the posterior25

period the cloudiness shaded the ice-cover pattern, and it was impossible to measure

the geometric parameters of ice pieces. A variation of the fractal dimension value of
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the sea-ice cover pattern in the available period of time is shown in Fig. 3a.

2.2.2 Atmospheric depression

The ice-drift in the Arctic Ocean is driven, mainly, by the wind forcing (Lewis et al.,

1994; Richter-Menge and Elder, 1998), and the variability of the weather pattern cause

cycles of redistribution of stresses and deformations with ice breaking (Hopkins et al.,5

2004) followed by refreezing (Korsnes et al., 2004). On 10 February 2004, a basin-wide

sea-ice fragmentation occurred, and it was detected in the satellite images. Figure 4

shows the NOAA satellite images of the region of drift obtained on 9 February and 10

February 2004. In Fig. 4b one can see large-scale leads (up to 400 km in length), which

formed in one day between two subsequent images and a position of the research10

station NP 32 that drifted on the pack during that period of time. The displacements

and fragmentation of the ice-cover lasted during the whole February; on 2 March 2004

the research station NP 32 was abandoned in connection with multiple breakage of the

ice-field on which the observations were carried out.

Any shore interference is not seen in the images; therefore, the large-scale pertur-15

bation was referred to a passage of the deep atmospheric depression over the re-

gion. This depression was recorded in the database of the station NP 32 (Chmel and

Smirnov, 2005) in the time interval covering the event of 10 February 2004. The pres-

ence of the station NP 32 in the region of perturbation gave us a rare opportunity to

put in comparison the visual data obtained using the remote technique with the results20

of field observations.

A variation of the D-value in the period of interest (Fig. 3b) was available from the

analysis of a series of satellite images obtained before and after the catastrophic frag-

mentation. Similar to the event of 14 April 1999, a certain decrease of D was detected

in the day of event of 10 February 2004.25

A posterior analysis of the database of field observations revealed a response to the

event of 10 February not only in the geometric relations of ice floes, but also in the

dynamics of sea-ice motion. In the next Section, the temporal correlation of ice-field
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accelerations in quiet and excited periods of the ice drift will be considered.

3 Drift dynamics

3.1 Accelerations

The drift of the station NP 32 was monitored with the help of the GPS system with

space and time resolutions 15 m and 10 min, respectively. On the base of these data,5

the ice-field speed (V ) and accelerations A = ∆V/∆t were calculated (here ∆V is the

variation of drift rate measured in regular intervals ∆t = 10 min).

It has been shown previously (Chmel et al., 2005), that both positive and negative

accelerations produce an approximately equivalent contribution to the total distribution

of accelerations. Therefore, when processing the database, only the absolute values10

of accelerations were under consideration:

A ≡ |A| = |∆V |/∆t. (3)

A sequence of ice-field accelerations recorded in the time interval covering the event

of 10 February 2004 is depicted in Fig. 5.

3.2 Temporal correlation15

A temporal correlation between events can be found from the time distribution of events

of a certain importance. In this work, a time series of values A determined during

January–February, 2004 was used to construct the function of distribution of intervals

(waiting times, τ) between the most significant accelerations, that is between those

whose amplitudes exceed a certain cut-off value Acut−off: NA>Acut−off(> τ). To specify20

the value of Acut−off, one should take into account a well-established trend in correlated

statistical series of different nature: the greater event the more correlation (Christensen
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and Olami, 1992). In this analysis we considered the contribution of accelerations with

amplitudes

A > Acut−off= 8 × 10−4m/s
2
. (4)

These accelerations constituted ∼20 per cent of all drift-rate variations detected during

the given period of time. A range of variation of times τ covered the range from 6×10
2

s5

to ∼1.3×10
4

s.

The functions NA>Acut−off(> τ) were found for three periods of observations: (a) from

17 January to 31 January (a “remote” period); (b) 1 February to 10 February (a period

prior to the “catastrophic” ice perturbation); (c) 11 February to 28 February (a “poste-

rior” period).10

To construct NA>Acut−off (> τ) graphically, the number of subsequent events

NA>Acut−off separated by the time interval that exceeds τ was plotted against τ in dou-

bly logarithmic coordinates (Fig. 6). Three constructed distributions of waiting time

are unambiguously different. In Figs. 6a and c, corresponded to remote and posterior

periods, respectively, the NA versus τ dependences exhibit a power law:15

NA>Acut−off(> τ) ∝ τδ (5)

shown by straight lines in these figures. The power law distribution of waiting times

is an indication of the long-time correlation between events: “the system refers to its

history in order to define its future” (Kapiris et al., 2003). At the same time, the time

sequence of ice-field accelerations does not follow the power law in the immediate time20

interval before the “catastrophic” perturbation (Fig. 6b).

3.3 Force scaling

The distribution of forces acting on the ice-field of a given mass is identical to the

distribution of its accelerations. Therefore, in order to determine the distribution of local

forces that induced the accelerations, the amplitude distribution functions N(>A) (here25

N is the number of events, in which the amplitude of acceleration exceeds A) were
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constructed using the January and February databases of the NP 32. The functions

plotted in log-log coordinates (Fig. 7) exhibit portions approximated with straight lines

over at least one and a half decade. The exponents of the power law:

N(> A) ∝ A−γ (6)

were found from the graphs’ slope. Unlike the exponent τ that characterizes the tem-5

poral pattern of accelerations, the values γ were found to be close to each other in

January and February (3.0±0.1 and 3.2±0.3, respectively). The dividing of the Febru-

ary database into two portions related with “catastrophic” and “posterior” periods did

not affect the result (not shown) but made the statistics worse. Consequently, the force

distribution in the sea-ice remains scale-invariant both in quiet and excited periods of10

the drift.

4 Oscillation processes

The above described scale invariance of the fragmentation and drift of the sea ice

was formally derived from either spatial or temporal relations between the parameters

characterizing, respectively, the geometry and the motion of the ice cover. The shown15

satellite images give a picture of the self-organized behavior of the sea-ice both during

the quasi-stationary drift, and in the periods of mechanical perturbations. Meanwhile,

the mechanism, which controls the long-range interaction of sea-ice cover fragments

and the “memory” about preceding events (expressed by the power law distributions

of, respectively, dimensions and times), remains shaded since the driving force of the20

self-organization cannot be determined in the framework of the statistical physics (ex-

cluding general thermodynamical principles, Arneodo, 1995). A formalistic descrip-

tion of events restricts the possibility of the analysis and prediction of the behavior

of sea ice even with taking into account the features of self-organization. Therefore,

one should search the physical processes in the ice pack, which could result in cor-25

related fracture events in the ASIC. In this light, the pack oscillations are of particular
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interest since the oscillation processes of various nature arise and extend in the sea

ice permanently thus maintaining the dynamical connectedness between components

and realizing long-range interactions over this dynamical system (Smirnov, 1995, and

references therein).

The spectrum of oscillations is composed of periodic motions due to ripple and those5

due to slip-stick and impact interactions accompanied with hummocking and crack-

ing. In contact interactions the amplitudes of the horizontal displacements are much

higher than the amplitudes of the vertical components (Martin and Drucer, 1991). The

character of elastic waves is directly connected with the value and distribution of the

deformations and stresses.10

Figure 8a represents a typical example of horizontal oscillations excited by shear-

ings, which were recorded with the help of accelerometers in the station NP 33 in

June, 2005. Chaotic oscillations at 0.8 Hz (Fig. 8b) transformed to quasi-harmonic

auto-oscillations; in a few minutes the process ceased due to aligning of the interacting

components. No relations with meteo-factors were detected in this and other simi-15

lar records; consequently, the observed auto-oscillations emerge as a self-organizing

process under the permanent (non-periodic) external force. Synchronous observations

carried out using sensors established on adjacent ice fields showed that the correlation

radius of such phenomena could exceed the dimensions of individual pack components

with involving into the correlated motion important areas up to the basin scale (Smirnov,20

1995).

The oscillation processes in the sea ice are highly affected by the rheological prop-

erties of this medium. Under the prolonged (non-impact) action of the compres-

sive/tensile force, a feedback between the energy input and the deformation proper-

ties of the oscillating domain composed of adjacent sheets takes place; this effect25

causes the parametric redistributing of the vibrational energy. As a result, the period

and amplitude of oscillations do not depend on the outer forcing and are determined by

the properties of the vibrational system. The parametric interaction leads to the auto-

oscillations seen in Fig. 8. In contrast to forced oscillations under the action of periodic
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force, the energy input from a non-vibrational external source to the auto-oscillation dis-

sipative system is dosed by the system itself. Thus, the energy of compression/tension

transforms to the correlated motion of ice sheets.

5 Discussion

The scaling properties of the sea-ice drift dynamics and fracturing in the ASIC are5

shown to be sensitive to large-scale perturbations. The fractal dimension of the col-

lection of fragments limited by leads, cracks and ridges decreases in response to the

fracture events in agreement with well-established trend of decreasing the dimension-

ality of the fracturing system due to fault nucleation (Zang, 1998; Kapiris 2004). (A term

“fault” in this context is applicable to giant leads like those seen in Fig. 1b and Figs. 4b,10

c, Weiss, 2003).

The response of scale-invariant parameters of the drift dynamics is not so well de-

fined. The distribution of the amplitudes of accelerations, which is equivalent to the

force distribution in the ice cover, was found to be almost the same both in the pe-

riod of quasi-stationary drift and during the basin-wide ice cover fragmentation. The15

temporal correlation (expressed by the power-law distribution of waiting times between

significant accelerations in the quiet period of drift) was, in contrast, disturbed during

the intensive fracture process.

Scaling is inherent to critical phenomena where an insignificant event could trigger

a “global” perturbation. The lack of the time correlation in the behavior of a critical20

system occurs, for example, under the condition of phase transition when the tempo-

ral sequence of events is fully disordered. In this light, the fracture of heterogeneous

materials could be regarded as a sort of dynamic phase transition (Bouchaud, 1997).

The used term “heterogeneous” implies the presence of multi-scale or hierarchic struc-

ture. The hierarchic concept of sea-ice morphology was put forward by Overland et25

al. (1995). They pointed out the existence of a set of scale levels related to specific for-

mations, such as crystals, blocks, floes, and the basin as a whole. In the framework of
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the hierarchic approach, the fracture processes that take place on different levels are,

to a significant extent, independent (as controlled by forcing of different nature) but they

are self-similar. The degree of disconnection of events constitutes the organization of

the hierarchic system. The damages of a lower scale level could form a “cluster” of

damages that would be an isolated (but structurally similar) damage of a higher level.5

The inter-level transition in a multi-scale system can disturb a time sequence of events

at adjacent levels if the “reservoir of weak points” on the lower level is depleted, and

the number of newly-forming damages of higher level is insufficient for statistics. How-

ever, the force distribution remains all the time scaled and unchanged since it does not

depend on the events’ sequence.10

Consequently, the observed response of the temporal statistics of the sea-ice drift to

the large-scale perturbation in combination with the invariability of the force distribution

can be interpreted as a manifestation of the transient process in the critical, hierarchic

system.

The feedback mechanism needed for maintaining the critical state is realized through15

ice shearings under the action of both external and internal forces. A spectrum of such

shearings is related with different modes of deformation and fracture of contact zones

in the sea-ice. The horizontal ice shearings result in auto-oscillations of different spatial

and temporal scales, which provide the local stress release; the whole system returns

to the equilibrium/critical state until another event occur. Thus, the spectrum of cyclic20

shearings of ice reflects a variety of self-similar processes in the permanently critical

system. The parametric interactions of oscillations provide conditions for the energy re-

distribution over vast areas, what is the requirement for self-organizing of the system.

6 Conclusions

The temporal invariance of the ice drift dynamics in combination with the fractal ge-25

ometry of ice sheets allows one to consider the ASIC as a space-time fractal domain.

Large-scale perturbations in the ASIC, which manifest themselves by the short-time
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basin-wide fragmentations of the ice cover, do not affect neither scaling properties of

the fracture pattern, nor self-similarity of the force distribution in the pack; however,

the temporal correlation of the ice-field motion becomes disturbed in the periods of

fragmentation. This kind of decorrelation is similar to the phase transition in the het-

erogeneous system whose transient metastable state is characterized by disordered5

sequence of events. The mechanism of the long-range correlation in the sea-ice cover

is related with the self-organized oscillation dynamics inherent in the ice pack.

References

Arneodo, A., Bacry, E., and Muzy, J. F.: The thermodynamics of fractals revisited with wavelets,

Physica A, 213, 232–275, 1995.10

Bouchaud, E.: Scaling properties of cracks, J. Phys.: Cond. Matter 9, 4319–4344, 1997.

Caldarelli, G., Di Tolla, F. D., and Petri, A.: Self-organization and annealed disorder in a fractur-

ing process, Phys. Rev. Lett., 77, 2503–2506, 1996.

Carpinteri, A., Lacidogna., G., and Pugno, N.: Scaling of energy dissipation in crushing and

fragmentation: a fractal and statistical analysis based on particle size distribution, Int. J.15

Fracture, 129, 1, 131–139, 2004.

Chmel, A. and Smirnov V. N.: Forestalling response of the correlated sea-ice drift dynamics

to the approaching atmospheric depression, Fifth Annual Meeting of the European Meteoro-

logical Society, Utrecht, Abstract A-00131, 2005.

Chmel, A., Smirnov, V. N., and Astakhov, A. P.: The fractality of sea ice drift dynamics as20

revealed from the “North Pole 32” monitoring, JSTAT P02002, 2005.

Christensen, K. and Olami, Z.: Scaling, phase transitions, and nonuniversality in a self-

organized critical cellular-automation model, Phys. Rev. A, 46, 1829–1838, 1992.

Hopkins, M. A., Frankenstein, S. F., and Thorndike, A. S.: Formation of an aggregate structure

in the Arctic ice pack, J. Geophys. Res., 109, C01032, doi:10.1029/2003JCool1855, 2004.25

Kapiris, P. G., Balasis, G. T., Kopabas, J. A., Antonopoulos, G. N., Peratzakis, A. S., and

Eftaxias, K. A.: Scaling properties of multiple fracturing of solid materials, Nonlin. Processes

Geophys. 11, 137–151, 2004.

Kapiris, P. G., Eftaxias, K. A., Nomikos, K. D., Polygiannakis, J., Dologlou, E., Balasis, G. T.,

119

http://www.ocean-sci-discuss.net
http://www.ocean-sci-discuss.net/4/107/2007/osd-4-107-2007-print.pdf
http://www.ocean-sci-discuss.net/4/107/2007/osd-4-107-2007-discussion.html
http://www.copernicus.org/EGU/EGU.html


OSD

4, 107–128, 2007

Sea-ice-drift

dynamics and pack

fracture

A. Chmel et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

◭ ◮

◭ ◮

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

EGU

Bogris, N. G., Peratzakis, A. S., and Hadjicontis, V. E.: Evolving towards a critical point:

A possible electromagnetic way in which the critical regime is reached as the rupture ap-

proaches, Nonlin. Processes Geophys. 10, 511–524, 2003.

Korsnes, R., Souza, S.R., Donangelo, R., Hansen, A., Paczuski, M., and Sneppen, K.: Scaling

in fracture and refreezing of sea ice, Physica A, 331, 291–296, 2004.5

Lewis, J. K., Tucker, W. B., and Stein, P. J. Observation and modeling of thermally induced

stresses in first-year ice, J. Geophys. Res., C99, 16 361–16 371, 1994.

Mandelbrot, B. B., Passoja, D. F., and Paullay, A. J.: Fractal character of fracture surfaces of

metals, Nature, 308, 721–723, 1984.

Marsan, D., Stern, H., Lindsay, R., and Weiss, J.: Scale dependence and localization of the10

deformation of Arctic sea ice, Phys. Rev. Lett., 93, 178501, 2004.

Martin, S. and Drucer, R.: Observation of short-period ice floe accelerations during leg II of the

Polarbjorn drift, J. Geophys. Res., 96, 10 567–10 580, 1991.

Matsushita, M. L.: Fractal viewpoint of fracture and accretion, J. Phys. Soc. Japan, 54, 857–

860, 1985.15

Overland, J. E., Walter, B. A., Curtin, T. B., and Turet, P.: Hierarchy and sea ice mechanics: a

case study from the Beaufort Sea, J. Geophys. Res., 100, 4559–4571, 1995.

Richter-Menge, J. A. and Elder, B. C.: Characteristics of pack ice stress in the Alaskan Beaufort

sea, J. Geophys. Res., C103, 21 817–21 829, 1998.

Smirnov, V. N.: Dynamic processes in sea ice. Ed. Timokhov L.A., Gidrometeoizdat, St. Peters-20

burg, (In Russian), 1995.

Weiss, J.: Scaling of fracture and faulting of ice on earth, Surv. Geophys. 24, 185–227, 2003.

Zang, A., Wagner, F. C., Stanchits, S., Dresen, G., Andresen, R., and Haidekker, M. A.: Source

analysis of acoustic emission in Aue granite cores under symmetric and asymmetric com-

pressive loads, Geophys. J. Intern., 135, 1113–1130, 1998.25

120

http://www.ocean-sci-discuss.net
http://www.ocean-sci-discuss.net/4/107/2007/osd-4-107-2007-print.pdf
http://www.ocean-sci-discuss.net/4/107/2007/osd-4-107-2007-discussion.html
http://www.copernicus.org/EGU/EGU.html


OSD

4, 107–128, 2007

Sea-ice-drift

dynamics and pack

fracture

A. Chmel et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

◭ ◮

◭ ◮

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

EGU

Fig. 1. A series of images dated of April 1999 when a giant lead nucleated and propagated

over about 300 km. The region covered by the image is shown on the top.
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Fig. 2. Area versus perimeter dependences for ice-floes fragments resolved in images ob-

tained prior to the large event (a), on the day of event (b) and a few weeks after the event (c).

The straight lines fit the power law dependence (2). The shown values of D were found from

the slope of lines. The accuracy of the determination of D was estimated from the deviation

of the slope at the end points of log-log plots with respect to the best-fit data of S versus L

dependences.
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Fig. 3. Variation of the fractal dimension value of the sea-ice cover pattern in 1999 (a) and

2004 (b). The lines serve as guides for the eyes. The data in the periods of time after large

events were not available due to the dense cloudiness (designated by dotted curves).
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Fig. 4. 400×400 km fragments of satellite images of the region of NP 32 drift obtained on 9

February (a) and 10 February (b) 2004. A branched, newly formed lead is seen in (b).
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Fig. 5. Amplitudes of accelerations measured in the time interval from 4 February to 22 Febru-

ary 2004. A gap on 14–15 February is caused by excluding the data recorded during the ice

breakage in the close vicinity of the GPS sensor position.
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Fig. 6. Number of waiting times NA(> τ) with duration higher than given by the corresponding

abscissa. The straight lines fit the power law NA(> τ) ∝ τγ . Only accelerations with amplitudes

higher than Acut−off = 8×10
−4

m/s
2

were taken into account.
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Fig. 7. Number of accelerations with amplitudes higher than that given by the corresponding

abscissa. The straight lines show the power law N(>A) ∝ A
−δ

.
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Fig. 8. Spectrum of oscillations induced by horizontal displacements of the ice-field recorded

in the NP 33 in June, 2005 (a). (b) shows the formation and frustration of quasi-harmonic

oscillations at frequency 0.8 Hz.
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