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Abstract

Laminated sediments in the Shaban Deep, a brine-filled basin in the northern Red
Sea, were analyzed with backscattered electron imagery. Here we present possible
mechanisms involved in the formation of laminae of various types and homogenous in-
tervals arising from the detailed investigation of multicore GeoB 7805-1 (26 ˚ 13.9’N5

and 35 ˚ 22.6’E; water depth 1447 m) and gravity core GeoB 5836-2 (26 ˚ 12.61’N,
35 ˚ 21.56’E; water depth 1475 m). Sediment makeup includes six types: a) a lam-
inated structure with alternating light (mainly coccoliths) and dark (diatom frustules)
layers, where the diatom component is indicative of the intra-annual variability between
stratification and mixing events; b) a pocket-like structure attributed to the sinking of10

particles within fecal pellets and aggregates; c) a matrix of tightly packed diatoms that
relates to extended stratification/mixing periods of the water column; d) homogenous
intervals that result from turbidity deposition; e) silt accumulations which origin may
lie in agglutinated foraminifers; and f) pyrite layers with pyrite formation initiated at the
seawater-brine interface.15

1. Introduction

The Shaban Deep, a brine-filled basin in the central axis of the northern Red Sea,
has been the focus of our previous research on laminated sediments as recorders of
abrupt changes in productivity and circulation for this region (Seeberg-Elverfeldt et al.,
2004a). The deep itself consists of four basins with near equal brine levels at about20

1325 m water depth (Hartmann et al., 1998).
Previous work has dealt with the detailed composition of mid-Holocene to Last

Glacial Maximum (LGM) laminated sediments from the southern basin of the Shaban
Deep (core GeoB 5836-2; 26◦12.61′ N, 35◦21.56′ E; 1475 m water depth) (Seeberg-
Elverfeldt et al., 2004a). We showed that sediments encompassing the period 4–15 ka25

have a light and dark alternating pattern where light layers are mainly composed of coc-
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coliths, terrigenous material of eolian origin and diatom fragments, and dark layers con-
sist of almost exclusively diatom frustules (monospecific or mixed assemblage). It was
further proposed that different diatom assemblages reflect changing conditions in strat-
ification/mixing in the northern Red Sea (Seeberg-Elverfeldt et al., 2004a). This was
discussed against the background of already existing paleoceanographic data from an5

oxic core from the northernmost Red Sea (GeoB 5844-2; 27◦42.81′ N; 34◦40.90′ E;
963 m water depth) (Arz et al., 2003). It was concluded that brine sediments from
the Shaban Deep can be used for reconstructing paleoceanographic and paleoclimatic
changes in the region at high resolution. Based on our detailed studies, schematic
models of paleoflux scenarios for laminae formation at different time-slices were pro-10

posed.
In this study, we extend our previous records into the late Holocene and move one

step further in our understanding of laminae formation within brine sediments. Very
few studies exist that investigated the mechanism of sediment formation within brine
environments. Erba et al. (1987) and Erba (1991) focused their work on laminated sed-15

iments from various anoxic brine-filled depressions in the Eastern Mediterranean Sea
and discovered that “deep mid-water bacterial mats” are responsible for the formation
of laminated sediments.

We summarize within this study the different types of sediment structure preserved
in Shaban Deep sediments of late Holocene through LGM age, and deliver possible20

mechanisms involved in their genesis.

2. Study area

As it is known from the literature, the Red Sea is a very unique environment. There
are no permanent river inflows, rainfall is sparse and evaporation largely exceeds pre-
cipitation. The seawater exchange with the Arabian Sea in the south is limited due to25

the very shallow sill (137 m) of the Strait of Bab el Mandab (e.g. Edwards, 1987). The
circulation is mostly driven by thermohaline forcing while wind forcing is only of minor
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importance. A description of the anti-estuarine circulation pattern of the Red Sea can
be found in Eshel et al. (1994) and Eshel and Naik (1997).

The Red Sea plankton is characterized by the dominance of autotrophic picoplank-
ton while larger cells are scarce in this region (Lindell and Post, 1995; Shaikh et
al., 1986). Four different groups of phytoplankton are important in the annual cycle5

of the Red Sea (Shaikh et al., 1986): diatoms are present most of the year and
are the predominant group in winter; blue-green algae (Trichodesmium spp.) and
nanoplankton dominate in late spring and summer, and dinoflagellates in the fall.
The diatom winter peak (December-February) is clearly dominated by Bacteriastrum,
Chaetoceros, Nitzschia and Rhizosolenia (Shaikh et al., 1986). While the plankton10

is dominated by fragile forms (e.g. Nitzschia bicapitata group), surface sediments of
oxic settings are enriched in robust taxa (e.g. Alveus marinus, Azpeitia neocrenulata,
A. nodulifera and Roperia tesselata), and only anoxic brine sediments preserve the
fragile diatoms to some extend (up to 26% of the assemblage; Seeberg-Elverfeldt et
al., 2004b).15

The Shaban Deep

About 25 brine-filled deeps are found along the central axis of the Red Sea.
The Shaban Deep (formerly named Jean Charcot Deep, Pautot et al., 1984) is one20

of these axial depressions in the northern Red Sea. It consists of four small basins
(southern, eastern, northern and western; Fig. 1) that are separated by two ridges
running N-S and W-E, respectively (Hartmann et al., 1998; Pautot et al., 1984). The
basins have the seawater-brine interface (SBI), which has a thickness of only ∼2 m,
at nearly the same water depth (∼1325 m; Hartmann et al., 1998) and a salinity25

of about 260 psu. The high salinities are due to leaching of sub-bottom Miocene
evaporites (Manheim, 1974). The top of Miocene evaporites (so called S-reflector)
crops out within the brine basin at the modern level of the SBI (Pätzold et al., 2003;
Pautot et al., 1984). The temperature within the brine is only slightly higher (∼3◦C)
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than the surrounding seawater (Hartmann et al., 1998). The density of the brine is
about 1.2 g cm−3 (Millero et al., 1982). There is only minimal exchange (diffusion and
convection) at the SBI (Hartmann et al., 1998). The brine body itself has a thickness
of up to 200 m, is almost depleted in dissolved oxygen (<0.3 mg L−1), and sulphide is
absent (Hartmann et al., 1998). Methane concentrations increase sharply at the SBI5

and are several orders of magnitude higher within the brine that in the overlying sea-
water (Faber et al., 1998). No evidence for benthic life has been found, although a rich
prokaryotic community has been described to thrive at the SBI (Antunes et al., 2003;
Eder et al., 2002). The Shaban Deep has been described as being hydrothermally
active (e.g. Pautot et al., 1984), and Stoffers et al. (1990) found diagenetically-formed10

dolomite and rhodochrosite within organic rich layers in the sediments.

3. Material and methods

Two cores from the Shaban Deep were used in this study (Fig. 1): Gravity core GeoB
5836-2 was retrieved from the southern basin (26◦12.61′ N, 35◦21.56′ E; 1475 m water
depth ; total length of core=790 cm) during RV Meteor cruise M 44/3 in 1999 (Pätzold15

et al., 2000). This core was used in a previous investigation (Seeberg-Elverfeldt et al.,
2004a), and results are re-analyzed here. Multicore GeoB 7805-1 from the eastern
basin of the Shaban Deep (26◦13.9′ N and 35◦22.6′ E; 1447 m water depth; total length
of core=60 cm) was collected during RV Meteor cruise M 52/3 in 2002 (Pätzold et al.,
2003). Because of its high water content and soupy texture, the multicore was left in20

cold storage (4◦C) for ∼12 months. After this period, it had compacted down to 48 cm
in length.

Both cores were logged with a Multi Sensor-Core-Logger (MSCL) with 3 Linescan
CCD’s Digital Imaging for determination of the color scale (Fig. 2). In addition, Fe was
measured every 0.2 cm with an X-ray fluorescence (XRF) scanner on multicore GeoB25

7805-1 (Fig. 3).
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A general overview of sediment composition and texture was gained through smear
slide analysis which followed standard ODP procedures.

The working halves of both cores were first sampled with “cookie cutters” of 15 cm
(L)×1 cm (W)×5 cm (D) following the method described by Schimmelmann et al. (1990)
and Dean et al. (1999). X-radiographs of slabs were taken to record differences in5

sediment density and structure. In this study, the X-radiograph negatives were scanned
to establish a direct relationship with the thin sections that are described below. In the
scanned negatives, light bands represent layers of very dense material and dark bands
indicate layers of lower density.

Polished thin sections of resin-embedded sediment for gravity core GeoB 5836-210

were prepared from the cookie cutter slabs at the Cardiff University, Wales, following
the methodology of Pike and Kemp (1996a) with one small modification: the samples
were first soaked in deionized water to remove the salt before they were embedded.
Details can be found in Seeberg-Elverfeldt et al. (2004a).

Polished thin sections of resin-embedded sediments from multicore GeoB 7805-15

1 were prepared at the GeoForschungsZentrum Potsdam, Germany (pers. comm.,
Köhler and Berger). There, 7 cm long samples were taken with a 3 cm overlap to the
adjacent samples, shock-frozen with liquid nitrogen and freeze-dried for 48 h. After-
ward these sediment blocks were embedded stepwise under vacuum in Araldit 2020,
a two-component epoxy resin.20

All polished thin sections were carbon coated and studied using scanning electron
microscopy (SEM). A Leo (Cambridge Instruments) S360 SEM with an Oxford Instru-
ments INCA Wave elemental analysis system was used at Cardiff University and a
Philips XL 30 ESEM was used at the Alfred-Wegener-Institute for Polar and Marine
Research in Bremerhaven, Germany, both equipped with a backscatter detector. BSEI25

(backscattered electron imagery) mosaics were produced for every thin section. These
photomosaics may be considered as porosity maps where porous diatomaceous sed-
iment appears darker while terrigenous and calcareous sediment is less porous and
therefore brighter. After first producing low magnification (30X for GeoB 5836-2 and
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80X for GeoB 7805-1) BSEI photomosaics that act as basemaps of each sample, high
resolution pictures at higher magnifications (up to 3500X) were taken to study the com-
position of individual lamina in detail and to identify the species present.

4. Results

4.1. General characteristics of Shaban Deep sediments5

Brine sediments from the Shaban Deep are “diatom-bearing nannofossil ooze, partly
laminated, olive-gray to black, with varying contents of carbonate, opal, and terrigenous
material, and with a very high content of hypersaline pore water” (Pätzold et al., 2000).
Smear slide analysis reveal that sediments of both cores mainly consist of varying
contents of coccoliths (sometimes coccospheres), diatoms, and terrigenous material.10

Foraminifers, pteropods, silicoflagellates and radiolarians are also present. Dominant
coccolith species are Emiliania huxleyi, Gephyrocapsa oceanica and Aligosphaera
robusta, while Umbilicosphaera sibogae, Helicosphaera sellii (?), Calcidiscus lepto-
porus and Florisphaera profunda are also present. The genus Amaurolithus is spread
throughout the sediments, always sparse. The diatom assemblage is dominated by the15

genera Azpeitia, Bacteriastrum, Chaetoceros, Coscinodiscus, Nitzschia, Rhizosolenia,
and Thalassionema.

Analyzed sediments of gravity core GeoB 5836-2 cover the time interval between
4 and 22 ka (Seeberg-Elverfeldt et al., 2004a) while multicore GeoB 7805-1 encom-
passes the time interval between about 200 and 1700 yr BP (unpublished 14C ages).20

Multicore GeoB 7805-1 is laminated with two prominent homogenous intervals be-
tween 7.6–9.5 cm and 10.9–18.4 cm (Fig. 3). Both homogenous intervals are bound
at the top by a distinct bright layer and a slightly darker interval directly beneath it; the
rest of each homogenous interval is lighter (greyish) than the laminated intervals in the
core. Several prominent, very bright white layers of variable thickness are observed at25

18.4–18.7 cm, 21.7–22.1 cm, 22.7–22.9 cm, 26.5–26.7 cm, 31.7–32.3 cm, 32.7–33 cm
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and 42.2–43 cm. Most of them contain a blue/black layer which is located directly in
the middle of the white layer or shifted towards the top. These blue/black layers show
up white in the X-radiographs and correspond well with Fe-intensities measured with
XRF (Fig. 3). It was previously established (Seeberg-Elverfeldt et al., 2004a) that these
layers (dark within the sediment and light in X-radiograph and BSEI) are composed of5

coccoliths and framboidal pyrite. In addition, there are several yellowish layers present.
The core ends with another homogenous interval starting at 46.2 cm. This one also
carries a bright layer at the top and a pyrite layer directly beneath it.

Core GeoB 5836-2 has three main laminated sections: 1) Phase I, from 21 to 65 cm,
representing 4–6 ka; 2) Phase II, from 417–525 cm, representing 13–22 ka; and 3)10

Phase III, from 572 to 785 cm, encompassing sediments older than ∼34 ka. In addi-
tion, two small laminated intervals are present in the early Holocene (at 260–267 cm
and 312.5–327.5 cm). The laminated sections are separated by homogenous intervals
of variable length. Moreover, several smaller homogenous layers are found within lam-
inated Phase II (13 and 22 ka) (Fig. 2). In general, laminations are clearly visible in the15

mid-Holocene while they are fainter in Phases II and III (Fig. 2).
Pyrite layers are observed throughout the cores and their occurrence is more fre-

quent in younger sediments. Also, some layers of Ca-rhodochrosite are seen in Lower
Phase II sediments (18–19 ka) (Seeberg-Elverfeldt et al., 2004a).

4.2. Detailed Composition of Shaban Deep sediments20

4.2.1. Biogenic components

Dark and light layers/ pocket structure/matrix

Thin section analysis revealed that the laminated (faint-prominent) sediments of
the Shaban Deep present three basic structures: a) alternating light and dark contin-25

uous layers (Fig. 4); b) a pocket-like structure where dark, discontinuous “layers” are
embedded within the light material (Fig. 5); and c) a matrix of tightly packed diatoms
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(Seeberg-Elverfeldt et al., 2004a). The first two types are found in sediments younger
than 15 ka while the matrix type is characteristic of sediments dated 18–22 ka.

Large foraminifers, pteropods and radiolaria are embedded in late and mid-Holocene
sediments disturbing the lamina fabric. Foraminifers decrease in number and size
downcore and are absent from the matrix type sediments of 18 ka to LGM age.5

(a) Type alternating light and dark continuous layers (Fig. 4)

Light layers are comprised of coccoliths (sometimes coccospheres), terrige-
nous particles and diatom fragments (Fig. 6a). Dark layers on the other hand
are comprised of either Proboscia/Rhizosolenia mats (Fig. 6b), aggregates of10

vegetative cells and setae from different species of Chaetoceros and Bacteri-
astrum, or a mixed Chaetoceros/Nitzschia/Thalassiosira assemblage (Fig. 6c)
(Seeberg-Elverfeldt et al., 2004a).

(b) Type pocket-like structure (Fig. 5)
15

Dark pockets are intermingled within the light material. These pockets contain
either a mixed diatom assemblage or an assemblage that is clearly dominated by
Chaetoceros. The species that define the mixed assemblage are mostly delicate
forms and are often hard to distinguish within the BSEI photomosaic (Fig. 6c).

Some dark pockets, especially within sediments from the late Holocene, are filled20

with material of unknown origin. At least in two cases that could be properly
photographed, structures that resembled copepod remains could be recognized.
Figure 6d shows this kind of material where part of a leg or maybe an antenna is
observed. We therefore define these structures as chitinous copepod remains.

In addition to the diatom-dominated dark pockets or layers mentioned above there25

are others which appear light gray in the BSEI photomosaics; they are filled
with well preserved coccospheres and coccolith plates as well as some diatoms
(Fig. 6e).
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(c) Type matrix

Sediments are characterized by a matrix of tightly packed Rhizosolenia frustules
(18–19 ka) or by a matrix dominated by resting spores of Chaetoceros (LGM)
within which thick non-continuous layers of large centric diatoms (Coscinodiscus,5

Azpeitia, Stellarima, and Thalassiosira) and/or light pockets of coccoliths, terrige-
nous material, and diatom fragments are embedded (Seeberg-Elverfeldt et al.,
2004a).

Fecal pellets
10

Light layers or pockets (coccolith/terrigenous) of all time intervals carry various
amounts of fecal pellets (“fp” in Figs. 4 and 5). They are most abundant within late
Holocene sediments where they sometimes appear in clusters (Fig. 7a); their number
decreases sharply within Lower Phase II and LGM sediments. Two morphological
types of fecal pellets can be distinguished: elliptical and small spheroids (Fig. 7a, b).15

Elliptical pellets are the most common type and they vary from circular/oval to elongate
in cross section. They are mainly composed of coccolith plates, diatom fragments and
small amounts of terrigenous particles (Fig. 7c).

We observed elliptical pellets in different stages of disintegration; while their shape
and outline is clearly defined within younger sediments (Fig. 7d) they become quite20

diffuse in the older sections (Fig. 7e). Finally, when their structure breaks apart, they
seem to blend into the light background (Fig. 7f).

The second type of pellet (spherical) contains more densely packed material. Again
coccoliths and diatom fragments can be found within these pellets but also some ma-
terial of unknown origin (Fig. 7b). Spheroids occur individually in all time intervals but25

most frequently in younger sediments.
Although we are not able to assign an origin to the pellets (they could have been

produced by copepods and Appendicularia (H. Gonzalez, pers. comm.)), the fact that
copepod remains were found within our sediments supports our hypothesis of their
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pelagic origin.

Homogenous intervals

As stated above, several homogenous intervals are present within laminated sections5

(Fig. 2). In general, we distinguish two types of homogenous intervals. One type
contains a mixture of coccoliths, terrigenous material, large centric diatoms and small
foraminifers without sorting. The other type shows a gradation from coarser material
at the bottom to finer grains at the top. One such example from the late Holocene is
given in Fig. 8. Here, we observe that large particles (foraminifers and pteropods)10

concentrate at the bottom of the homogenous interval. This is followed by a mixture
of coccoliths, diatoms, terrigenous material and small foraminifers which occupies the
largest part of the homogenous section. Above the mixed interval many large centric
diatoms (e.g. Coscinodiscus spp.), coccoliths and terrigenous material occur; this has
a darker appearance in the BSEI photomosaics. The homogenous interval ends with15

very fine grained material that consists of almost exclusively coccolith plates. This
represents the distinct bright top boundary of the homogenous interval.

4.2.2. Abiogenic components

Silt accumulations
20

A type of particle accumulation that is also present throughout the analyzed cores
consists of clusters of larger silt grains, without developing the character of a lamina.
Boundaries of these types are seldom sharp but they are easily distinguishable from
the background material (Fig. 6f). These accumulations are composed of either a wide
range of particle sizes (unsorted) or all the particles belong more or less to the same25

size fraction (sorted).
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Pyrite layers

Episodic, up to 1 mm thick pyrite layers are present at all times except in the
LGM. They are most frequent in younger sediments. Thin section analysis confirms
the association of pyrite with BSEI light layers (Seeberg-Elverfeldt et al., 2004a). Pyrite5

grains can be positioned in the middle of a light layer or shifted towards the top of it
(as in Holocene and Upper Phase II (13–15 ka) sediments), or they can be distributed
randomly over the whole light material (as in Lower Phase II (18–19 ka) sediments).
The amount and size of framboidal pyrite grains varies within these layers.

5. Discussion10

In our previous study (Seeberg-Elverfeldt et al., 2004a) we were able to develop an-
nual sedimentation models for Shaban Deep sediments of age 4–15 ka. We pro-
posed that for the past ∼15 000 years, the laminations represent two-season annual
varves with light, coccolith-rich layers representing the summer flux and dark diatoma-
ceous layers corresponding to late fall and winter production. Furthermore, it was15

suggested that Rhizosolenia-dominated layers are related to stratification of the wa-
ter column while Chaetoceros-dominated layers account for mixing events. The fre-
quency with which the pattern coccolith/Rhizosolenia couplets would be replaced by
coccolith/Chaetoceros couplets was further used as indicative of the variability be-
tween stratification and mixing events (Seeberg-Elverfeldt et al., 2004a). The new20

results for the late Holocene included here also suggest that an annual signal is pre-
served, and point to prevailing mixed conditions during this time. The dominant pat-
tern in the late Holocene is that of dark pockets with a mixed diatom assemblage or a
Chaetoceros-dominated assemblage being interrupted by short periods of stratification
(Proboscia/Rhizosolenia layers).25

For older sediments, where the carbonate signal is missing, we were not able to
establish an annual sedimentation model (Seeberg-Elverfeldt et al., 2004a).
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Studies by Erba et al. (1987) and Erba (1991) on laminated sediments from vari-
ous anoxic brine-filled depressions in the Eastern Mediterranean Sea investigated the
mechanisms of sediment formation within this unique environment. Sediments include
discrete levels of gelatinous pellicles with abundant biogenic and inorganic particles
within a matrix of organic matter (Erba et al., 1987) as well as large amounts of bac-5

teria (Erba, 1991). These bacteria live on the seawater-brine interface within “deep
mid-water bacterial mats” and seem to form the organic matrix that entraps biogenic
and inorganic remains (Erba, 1991). After the load of entrapped material increases to
a certain point, these mats sink to the bottom of the basin and are therefore buried by
sediments (see Fig. 13 in Erba, 1991; Erba et al., 1987). A second pathway for the10

mats to reach the basin floor includes the presence of turbidity currents which destroy
the floating bacterial mats and transport fragments of the pellicles downwards (Erba,
1991).

The formation of laminated sediments within the Shaban Deep, northern Red Sea
shows few similarities with these processes and is described in detail below. The sedi-15

ment structure is different from the one described by Erba et al. (1987) and Erba (1991)
and we found no evidence for a bacterial involvement in the formation of laminated sed-
iments within the Shaban Deep.

5.1. Possible mechanisms for the formation of biogenic laminae

We present possible mechanisms involved in the formation of laminae of various types20

and homogenous intervals in Shaban Deep sediments (Figs. 9, 10). Our rationale
behind the suggested scenarios includes several assumptions regarding transport pro-
cesses through the water column and interpretation of the lamina fabric under BSEI:
1) particulate matter sinks relatively fast through the water column as fecal pellets, ag-
gregates and/or diatom mats; 2) particulate matter then concentrates at the SBI due25

to the density gradient – until they are dense enough to break the interface – before
sinking through the brine; 3) all particles that have accumulated at this interface might
be subject to bacterial decomposition; 4) sorting may occur during accumulation at the
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SBI and during transport to the seafloor; 5) BSEI light layers are generated by the dis-
integration of fecal pellets carrying mainly coccoliths (and sometimes coccospheres);
and 6) the paleoflux scenarios presented earlier (Seeberg-Elverfeldt et al., 2004a) are
correct.

Our first type of sediment fabric, dark Rhizosolenia or Proboscia laminae coupled5

with light coccolith-rich ones, are found within the Holocene and the Upper Phase II
sediments. The species in the diatomaceous lamina have been associated with mat
development in a stratified water column and deposition during winter mixing (shade
flora and fall dump of Kemp et al., 2000) while the calcareous type of lamina has
been referred to as representing the summer flux of coccolithophorid blooms (Seeberg-10

Elverfeldt et al., 2004a).
Several steps are involved in the mechanism in reaching the alternating light and

dark continuous lamina structure (Fig. 9a) of the sediments. We suggest that, first
the summer bloom of coccolithophorids is consumed by copepods and/or Appendic-
ularia that produce fecal pellets. These sink through the water column at speeds of15

27–160 m d−1 (Yoon et al., 2001) and accumulate at the SBI until they become heavy
enough to fall through it. Secondly, Proboscia/Rhizosolenia mats that have developed
during the late fall, descend through the water column in winter when stratification
breaks down. Mats sink fast (1–4 m h−1; Tracy Villareal pers. comm.) until they reach
the SBI and accumulate there until they are able to break the interface. When mats20

are deposited on top of the fecal pellets lying on the basin-floor, the annually laminated
sediments within the Shaban Deep are generated.

Our second sediment fabric is the pocket-like structure found mainly within late
Holocene sediments, resulting from the deposition of diatomaceous aggregates and
coccolith-rich fecal pellets. As it was stated before, these pockets contain a mixed di-25

atom assemblage that is mainly associated with species of Chaetoceros. This genus
is known for polysaccharide exudation and aggregation into transparent exopolymer
particles (TEPs) (Alldredge et al., 1993). Flocs of Chaetoceros sink through the water
column with speeds of 50–200 m d−1 (two orders of magnitude faster than unaggre-
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gated Chaetoceros cells) (Alldredge and Gotschalk, 1989).
The basic mechanisms involving sinking and deposition explained above can also

be applied for the formation of the pocket-like structure (Fig. 9b) with Chaetoceros-
aggregates (that also include other diatom species) representing the winter production,
and fecal pellets the consumption of the summer bloom of coccolithophorids. Since5

the deposited material is a mixture of different transporting agents, no clear continuous
laminae can develop. However, we suggest that over time, this pocket-like structure
gets compacted to generate the coccolith/Chaetoceros laminae observed in Upper
Phase II (13–15 ka) sediments.

The third type of structure, a matrix of tightly packed diatom frustules characteristic10

of sediments of age 18 ka – LGM, relies on the same overall mechanisms described
above but due to the lack of the coccolith carbonate component an annual signal could
not be defined (Seeberg-Elverfeldt et al., 2004a). It is known that during this time
frame Red Sea sediments are characterized by a so-called “aplanktic zone” attributed
to high salinities (>50 psu; Arz et al., 2003) not favorable for planktonic foraminifer15

growth (e.g. Hemleben et al., 1996), and severe carbonate dissolution (Arz et al., 2003).
Taking this into account, we would expect that fecal pellets rich in coccolithophorids
were still produced in the water column but due to the severe conditions for carbonate
preservation most of them would have been dissolved.

For the Rhizosolenia matrix (Fig. 10A) characteristic of Lower Phase II (18–19 ka)20

sediments, we suggest that the transportation pathway via mats to the brine-floor is
the same as in the Holocene. For generating the Chaetoceros matrix characteristic
of LGM sediments, long periods of intense mixing and/or higher nutrient availability
was assumed (Seeberg-Elverfeldt et al., 2004a). We suggest that large flocs (possibly
TEPs) of Chaetoceros resting spores were produced in the water column and after ac-25

cumulation on the SBI sank down to the basin floor (Fig. 10B). Both time intervals also
show thick non-continuous layers of large centric diatoms that could have either first
accumulated on the SBI or have descended directly to the bottom as large aggregates
(Fig. 10a, b).
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5.2. Possible depositional sequence of homogenous intervals

Some of the investigated homogenous intervals showed a clear gradation while others
were like an assortment of unsorted material. Especially the two homogenous intervals
during the late Holocene show the clear characteristics of turbidites (e.g. Reineck and
Singh, 1980).5

The Shaban Deep is part of the tectonically active axial depression where the African
and Arabian plate are slowly drifting apart (e.g. Braithwaite, 1987). These movements
cause underwater earthquakes that mobilize the sediment that is deposited on the
slope.

The southern and eastern basins of the Shaban Deep itself have very steep slopes10

along the central ridge. The other slopes are gentler in the eastern basin (Fig. 1). Both
basins are surrounded by a carbonate crust which possibly originates from oxidation
of methane around the SBI (Pätzold et al., 2003). Only a small amount of sediment
can collect on this crust. We suggest that even small tectonic movements can cause
this material to slide down the slope. This turbidity current could either a) slide right15

into the brine pool as a slump; or b) flow separation may occur with coarse material
streaming downslope and finer material moving on top of the SBI (McCave, 1972). This
will disturb the interface and sinking turbiditic material will collect the biogenic particles
that have already accumulated on the SBI. The scenario of flow separation of turbidites
was earlier described for the brine-filled Bannock Basin (Eastern Mediterranean) by20

Corselli and McCoy (1989), and could explain the gradation of homogenous intervals
within late Holocene and LGM Shaban Deep sediments (Fig. 8).

5.3. Possible origin of silt accumulations

The above described accumulations of silt particles (sorted and unsorted) could be as-
sociated with agglutinated foraminifers (J. Pike pers. comm.). Berggren and Boersma25

(1969) found low abundances of some benthic foraminifers (including agglutinated
species) within Red Sea brine cores. However, preserved shells of agglutinated
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foraminifers were not observed within any of our investigated sediments from the Red
Sea.

Pike and Kemp (1996b) identified silt aggregates in anoxic laminated sediments from
the Guaymas (Gulf of California) and Santa Barbara basins as remains of agglutinated
foraminifers. Brodie and Kemp (1995) also mentioned “silt pellets” within the Peruvian5

upwelling sediments that show the same characteristics as our accumulations of silt
grains. These authors describe them as either consisting of “a wide range of grain
sizes, or almost exclusively of small grains (under 20µm in size)” and assigned their
origin to remains of agglutinated foraminifers.

Pike and Kemp (1996b) describe a model for the formation of these accumulations10

that includes the collection of silt grains of different sizes by the individual foraminifer
into a detritic cover, where smaller grains are used to build a new chamber while larger
particles are used for protection. After finishing the new chamber, the foraminifer leaves
a pile of coarser grains behind which are then preserved within the sediment (Pike
and Kemp, 1996b). This model is based upon investigations of Bender (1992) on the15

chamber formation of Textularia candeiana.
It is not likely that agglutinated foraminifers are able to live within the sediments of

the brine basin since the brine is anoxic at all times. However, organisms could get
transported from the slopes of the basin and since they are not able to survive in this
special environment, leave the remains of their chambers behind.20

5.4. Possible origin of pyrite layers

Pyrite layers of all investigated intervals were always associated with coccolith layers
and secondary formed carbonate was not present. Hübner (2002) investigated sedi-
ments from the brine-filled Urania Basin (eastern Mediterranean) and suggested that
pyrite formation started at the SBI. Filter samples from Meteor cruise M 52/3 (2002)25

from the SBI contained amorphous Fe-oxides but no Fe-monosulfides were found (M.
Schmidt, pers. comm.).

347

http://www.ocean-science.net/osd.htm
http://www.ocean-science.net/osd/2/331/osd-2-331_p.pdf
http://www.ocean-science.net/osd/2/331/comments.php
http://www.copernicus.org/EGU/EGU.html


OSD
2, 331–362, 2005

Laminated sediments
in the Shaban Deep,

northern Red Sea

I. A. Seeberg-Elverfeldt
et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Print Version

Interactive Discussion

EGU

Although we are unable to deliver a specific model for the formation of pyrite layers
we suggest that the first step in the formation of pyrite occurs at the SBI under certain
environmental conditions that permit the formation of amorphous monosulfides. These
conditions include a) a high content of organic matter; b) hydrogen sulfide, produced
during sulfate reduction; c) elemental sulfur availability; and d) bacterial oxidation of5

methane at the SBI. The final transformation of monosulfides to framboidal pyrite takes
place either at the brine-sediment interface or within the sediment after deposition.

6. Conclusions

Backscattered electron microscopy of polished thin sections reveals that Shaban Deep
sediments include six different types of sediment fabric:10

– Alternating light and dark continuous layers composed of coccoliths/diatom cou-
plets;

– A pocket-like structure composed of diatom aggregates embedded within light
material (coccoliths and terrigenous material);

– A matrix of tightly packed diatoms;15

– Homogenous intervals due to turbidity events;

– Silt accumulations; and

– Pyrite layers

The former three structures and their composition result from a combination of biogenic
production in the water column and eolian input into the Red Sea, and a sequence of20

events that include: a) fast sinking through the water column in the form of aggregates,
fecal pellets and diatom mats; b) accumulation of particles at the SBI; c) sorting during
settling through the brine; and d) preservation in the sediment.
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Silt accumulations are thought to be the remains of agglutinated foraminifers. The
formation of framboidal pyrite may be initiated at the SBI.
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– Safaga (Egypt) – Dubá (Saudia Arabia) – Suez (Egypt) – Haifa (Israel), Berichte aus dem30

Fachbereich Geowissenschaften der Universität Bremen, 149, 135 p., 2000.
Pätzold, J., Moammar, M. O., Al Farawati, R., Al Hazmi, Y. M. M., Al Otibi, A., Antunes, A., Arz,

H. W., Berger, J., Botz, R., Donner, B., Erhardt, A., Garbe-Schönberg, C.-D., Ghandourah,

351

http://www.ocean-science.net/osd.htm
http://www.ocean-science.net/osd/2/331/osd-2-331_p.pdf
http://www.ocean-science.net/osd/2/331/comments.php
http://www.copernicus.org/EGU/EGU.html


OSD
2, 331–362, 2005

Laminated sediments
in the Shaban Deep,

northern Red Sea

I. A. Seeberg-Elverfeldt
et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Print Version

Interactive Discussion

EGU
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Fig. 1. Location of the Shaban Deep in the northern Red Sea (left panel) and of coring sites
GeoB 7805-1 (asterisk) in the eastern basin and GeoB 5836-2 (filled circle) in the southern
basin (right panel). Dark contour line on the right-hand panel indicates the depth of the modern
brine surface.
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Fig. 2. General lithology of multicore GeoB 7805-1 (core photograph; 48 cm long) and gravity
core GeoB 5836-2 (videologger data; 790 cm long) showing the distribution of laminated and
non-laminated sediments. Phases I (4–6 ka), II (14–22 ka) and III (older than ∼34 ka) are
indicated. Multicore GeoB 7805-1 encompassed the late Holocene.
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F

Fig. 4. BSEI photomosaic of thin section at 23.5 cm in multicore GeoB 7805-1. Alternating
dark/light layers are shown which consist of Proboscia/Rhizosolenia (P/R), coccoliths, terrige-
nous material and diatom fragments (C). Note that P/R layers are continuous while “layers” with
a mixed assemblage (M) are not. Fecal pellets (fp) and foraminifers (F) are present as well.
White arrows indicate cracks.
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Fig. 5. BSEI photomosaic of thin section at 43.5 cm in multicore GeoB 7805-1, demonstrating
pocket-like structure of the sediment. Dark pockets with a mixed assemblage (M), Chaetoceros
vegetative cells (Ch) or setae (S) can be easily distinguished and are embedded within a light
background (C) composed of coccoliths, terrigenous material and diatom fragments. Fecal
pellets (fp), foraminifers (F) and one small cluster of Rhizosolenia (R) are also observed.
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Fig. 6. BSEI photographs of selected laminae of multicore GeoB 7805-1 (A–E) and gravity core
GeoB 5836-2 (F) showing examples of: (A) Coccoliths (arrowheads), terrigenous particles
and diatom fragments within a light layer. (B) Proboscia, dark layer. (C) Example of mixed
assemblage. (D) Chitinous remains of copepods. Small arrowhead points to antennae (or leg).
(E) Coccospheres of Aligosphaera robusta within a “gray” pocket. (F) Silt accumulation.
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Fig. 7. BSEI photographs of fecal pellet types and composition in multicore GeoB 7805-1.
(A) Cluster of elliptical fecal pellets. (B) Densely packed spheroid fecal pellet, composed of
coccoliths, terrigenous particles and diatom fragments, as well as some material of unknown
origin. (C) Detail of composition of elliptical pellet (coccoliths, terrigenous material and diatom
fragments). (D)–(F) Sequence of disintegration of fecal pellets proposed as the mechanism to
generate light layers. (D) Intact elliptical fecal pellet. (E) Disintegrating pellet. (F) Resulting
light layer where the original shape of fecal pellet can still be recognized (arrowheads).
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Fig. 8. BSEI photographs of homogenous interval in the late Holocene (10.9–18.4 cm, multi-
core GeoB 7805-1). Left-hand panel shows the four different sequences discussed in the text
(from bottom to top): coarse material (large foraminifers and pteropods) at the bottom, a mix-
ture of coccoliths, diatoms, terrigenous material and small foraminifers on top of it, followed by
a darker layer enriched in large centric diatoms. A pure coccolith layer bounds the homoge-
nous interval at the top. High magnification photographs revealing detailed composition of the
coccolith, diatom and mixed sequences are given on right-hand panel.
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Fig. 9. Schematic diagrams of the proposed mechanism involved in the formation of light
and dark continuous layers of coccolith/Rhizosolenia (Proboscia) couplets (a), and pocket-like
structure (b) in laminated sediments of the Shaban Deep, northern Red Sea. See text for
details. Specifications on water column depth, brine thickness and seawater-brine interface
(SBI) are given in the first diagram only but also apply to Fig. 10.
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Fig. 10. Schematic diagrams of the proposed mechanism involved in the formation of a Rhi-
zosolenia matrix characteristic of Lower Phase II (18–19 ka) sediments (a) and a Chaetoceros
resting spore matrix found in LGM sediments (b). See text for detail. Specifications on water
column depth, brine thickness and seawater-brine interface (SBI) are given in Fig. 9a.
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