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Abstract

Within the framework of the European MFSTEP project, an advanced multivariate se-
quential data assimilation system has been implemented to assimilate real chloro-
phyll data from the Sea-viewing Wide Field-of-view Sensor (SeaWiFS) into a three-
dimensional biochemical model of the Eastern Mediterranean. The physical ocean5

is described through the Princeton Ocean Model (POM) while the biochemistry of the
ecosystem is tackled with the Biochemical Flux Model (BFM). The assimilation scheme
is based on the Singular Evolutive Extended Kalman (SEEK) filter, in which the error
statistics were parameterized by means of a suitable set of Empirical Orthogonal Func-
tions (EOFs). A radius of influence was further selected around every data point to limit10

the range of the EOFs spatial correlations. The assimilation experiment was performed
for one year over 1999 and forced with ECMWF 6 hour atmospheric fields. The accu-
racy of the ecological state identification by the assimilation system is assessed by the
relevance of the system in fitting the data, and through the impact of the assimilation
on non-observed biochemical processes. Assimilation of SeaWiFS data significantly15

improves the forecasting capability of the BFM model. Results, however, indicate the
necessity of subsurface data to enhance the controllability of the ecosystem model in
the deep layers.

1 Introduction

The Mediterranean Sea is divided by prominent discontinuities into sub-basins decou-20

pling hydrodynamics and ecological conditions. The high evaporation, low rainfall and
river runoff, in conjunction with the outflow of the bottom layer at Gibraltar, result in an
oligotrophic gradient toward the east. The observed oligotrophy is thought to be due to
low phosphorus concentrations (decreasing from west to east) limiting phytoplankton
and bacterial growth (Krom et al., 1992). The state of the art in forecasting the Mediter-25

ranean Sea circulation is an operational system based on physical components. While
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these systems exist for ocean physics, the scientific knowledge and technological ca-
pacity to construct such a system for the ecosystem is currently lacking. The three
dimensional modelling of marine ecosystems is lagging behind the modelling of ma-
rine physics, because it requires robust hydrodynamic models and adequate comput-
ing resources. Furthermore, to achieve accurate predictive capabilities, deterministic5

ecosystem models need to be adjusted with biological, physical and chemical data
at relevant space-time scales. The framework of data assimilation provides the ap-
propriate tools for improving models’ agreement with data and for assessing them in
predictive mode. Although assimilation systems for meteorological and oceanic models
are well established, the use of data assimilation techniques with marine ecosystem10

models is far less developed. An assimilation system is composed of two basic compo-
nents, an observing system and a numerical model complemented with a data assimi-
lation scheme that can efficiently extract the reliable information from the observations
to optimally initialize the forecast. One of the only synoptic data sources on the state
of coastal and pelagic ecosystems comes from “ocean colour” satellite remote sensing15

(Platt et al., 1995). Since the launch of the Coastal Zone Colour Scanner on the Nim-
bus 7 satellite in 1978, satellite borne ocean colour sensors have become the standard
tool for determining distributions of phytoplankton and other biochemical parameters in
the ocean (IOCCG, 1999). Satellite data benefits from a high temporal resolution with
repeat coverage of the same area of the sea surface on a daily basis. The quality of20

the data is, however, limited by the ability of remote sensing of ocean colour, through
the analysis of ocean leaving radiance, to yield information on water-quality parame-
ters such as phytoplankton pigments (more precisely chlorophyll a and phaeophytin a),
suspended sediment, and yellow substance (gelbstoff) in the euphotic layer (Tassan,
1994). Chlorophyll-a is one of the key parameters of the ecosystem model used here25

(Biochemical Flux Model–BFM) and therefore the appropriate use of satellite data may
guide the modeling and forecasting process closer to realistic conditions. However,
the key to the use of these data in predictive/forecasting research using hydrodynamic
and ecosystem modeling relies on two premises. Firstly, the availability of accurate
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chlorophyll-a estimates from the original spectral data over the area of interest using
well calibrated retrieval algorithms, and secondly that the precise implementation of
advanced assimilation techniques capable of handling the satellite data is achievable.
In the domain of marine ecology, early studies used four-dimensional variational data
assimilation techniques for estimating the poorly known parameters in the model. Such5

techniques basically seek for the unknown parameters that minimize the misfit between
model simulations and data, e.g. the adjoint method (Fennel et al., 2001; Friedrichs,
2001; Gunson et al., 1999; Lawson et al., 1996; Spiitz et al., 1998; Vallino, 2000), di-
rect minimization methods (Fasham and Evans, 1995; Prunet et al., 1996), and Monte
Carlo methods (Harmon and Challenor, 1996; Matear, 1995). Recently, focus shifted10

toward the use of Kalman filter based sequential assimilation techniques to directly
compute estimates of the system state, as these methods allow for efficient handling
of the model uncertainties while intermittently adjusting the model trajectory each time
new observations are available (Ghil and Malanotte-Rizzoli, 1991). Taking into account
(even partially) the model error is a key step for building a successful ecosystem assim-15

ilation system because of significant uncertainties in the current ecological models. For
instance, Anderson et al. (2000) used optimal interpolation to assimilate both physical
and biological data into a mesoscale-resolution 3-D ocean model. Allen et al. (2002)
and Natvik and Evensen (2002) demonstrated the effectiveness of the well-known en-
semble Kalman filter for data assimilation with a 1-D, three-component model. The Sin-20

gular Evolutive Extended Kalman (SEEK) filter, which is a suboptimal extended Kalman
(EK) filter developed by Pham et al. (1997), was particularly popular and successfully
implemented in several marine ecosystem data assimilation studies. The SEEK filter
operates with low-rank matrices to avoid the prohibitive computational cost of the EK
filter (Cane et al., 1996; Fukumori and Malanotte-Rizzoli, 1995), while only adjusting25

the model forecast in the directions of error growth. It further supports different degrees
of simplifications in the evolution of its “correction directions” at a minimal loss of per-
formance (Hoteit et al., 2002, 2004). Carmillet et al. (2001) used the SEEK filter with
an invariant set of Empirical Orthogonal Functions (EOFs) correction directions to as-
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similate pseudo-ocean colour data into a 3-D physical–biochemical model of the North
Atlantic Ocean. Hoteit et al. (2003) used the same filter with a 1-D complex ecosys-
tem model of the Cretan Sea assimilating real observations of oxygen and nitrate and
validating the filter with independent chlorophyll data. Triantafyllou et al. (2003) imple-
mented the interpolated version of the SEEK filter in a three dimensional ecosystem5

model of the Cretan Sea. In the same area, (Hoteit et al., 2005) successfully tested
the SEEK filter with semi-evolutive correction directions composed of global and lo-
cal EOFs. The reader is referred to Triantafyllou et al. (2005) for a review on the
implementation of the SEEK filter and its variants in shelf and regional areas of the
Mediterranean Sea. One of the major goals of the Mediterranean ocean Forecasting10

System (MFS) project during the second phase (2003–2006), named Toward Environ-
mental Predictions (MFSTEP), was the development of numerical forecasting systems
at basin scale and for regional areas. Within the framework of this project, our work
consists of implementing the SEEK filter to assimilate Sea viewing Wide Field of view
Sensor (SeaWiFS) data into a coupled physical (Princeton Ocean Model)–biological15

(Biochemical Flux Model) model of the Eastern Mediterranean, developed during the
first phase of the MFSTEP project. This study presents the first attempt to use an
advanced Kalman filtering technique for the assimilation of ocean colour data into a
complex state-of-the-art three-dimensional marine ecosystem model. The controlla-
bility of the ecosystem variability using satellite measurements is a major question in20

marine ecology and will be addressed here. After presenting the physical and ecolog-
ical components of the Eastern Mediterranean ecosystem model in Sect. 2, a general
overview of the SeaWiFS data is provided in Sect. 3. The assimilation scheme is de-
scribed in Sect. 4. Assimilation results of SeaWiFS data into the coupled model are
reported and the behavior of the assimilation system discussed in Sect. 5. A general25

conclusion, including a discussion on the progress we have made thus far and the
problems that still need to be addressed, is offered in Sect. 6.
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2 The Eastern Mediterranean ecosystem model

The Eastern Mediterranean ecosystem model consists of two, on-line coupled sub-
models: the Princeton Ocean Model (POM), which describes the hydrodynamics of
the area, and provides the physical forcing to the second sub-model the Biochemical
Flux Model (BFM).5

2.1 The physical model

The hydrodynamic model is based on the Princeton Ocean Model (POM), a primitive
equation, 3-D circulation model. POM has been extensively described in the literature
(Blumberg and Mellor, 1983, 1987; Horton et al., 1997; Lascaratos and Nittis, 1998)
and is accompanied by a comprehensive User’s guide (Mellor, 1998). It has been pre-10

viously used in the Mediterranean area by Drakopoulos and Lascaratos (1997) and
Zavatarelli and Mellor (1995) and in the eastern Levantine basin by Lascaratos and
Nittis (1998) and Korres and Lascaratos (2003). The model has a bottom – following
vertical sigma coordinate system, a free surface and a split mode time step. Potential
temperature, salinity, velocity and surface elevation, are prognostic variables. Horizon-15

tal diffusion terms are evaluated using the Smagorinsky (1963) diffusion formulation
while the vertical mixing coefficients are computed according to the Mellor-Yamada
2.5 turbulence closure scheme (Mellor and Yamada, 1982). The model has one open
boundary located at 20◦ E as shown in Fig. 1 where open boundary conditions apply.
The computational grid has a horizontal resolution of 1/10◦×1/10◦ and 25 sigma levels20

in the vertical with a logarithmic distribution near the sea surface, which results in a
better representation of the surface mixed layer. Considering the size (10–14 km) of
the internal Rossby radius of deformation for the Eastern Mediterranean basin, such
a model resolution (∼5 km) can marginally resolve the mesoscale eddy activity. The
U.S. Navy Digital Bathymetric Data Base 5 (1/12◦×1/12◦) was used for building up25

the model’s bathymetry using bilinear interpolation to map the data onto the model’s
grid. The model is very similar to the ALERMO model used in Korres and Lascaratos
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(2003) with the only exception being the horizontal resolution (coarser) as the compu-
tational burden in this particular study was very high due to coupling with the BFM, the
incorporation of data assimilation and the execution of several sensitivity tests. The
model includes parameterization of the Dardanelles net outflow into the Aegean Sea,
the runoff of the major rivers of the Thermaikos Gulf (Aliakmonas, Axios and Loudias)5

and the runoff of Nestos and Evros rivers to north-central and north-eastern Greece.
The Dardanelles outflow into the Aegean Sea is a dominant factor for the freshwater
budget of the basin, providing approximately 300 km3 of brackish water on an annual
basis. The main Greek rivers (Axios, Aliakmonas, Gallikos, Pinios, Sperchios, Evros,
Strimonas and Nestos) on the other hand, with a total runoff of ∼19 km3/yr, have a10

much lower contribution. Even lower is the contribution of the Turkish rivers with a total
runoff of ∼5 km3/yr.

2.2 Biochemical Flux Model

BFM is a generic highly complex model based on the European Regional Seas Ecosys-
tem Model (ERSEM) (Baretta et al., 1995; Vichi et al., 2004). Although a detailed15

description of the BFM and its implementation in the Eastern Mediterranean can be
found in a companion paper Petihakis et al. (2006), a brief presentation is considered
necessary for those not familiar with the particular model. As in ERSEM the model
uses a functional group approach separating the organisms according to their trophic
level (producers, consumers and decomposers) and further subdivided on the basis of20

their trophic links and/or size. Although within each trophic level the groups have the
same processes, differentiation is achieved through the different parameter values. All
the important physiological (ingestion, respiration, excretion and egestion), and pop-
ulation (growth, migration and mortality) processes are included, and are described
by fluxes of carbon and nutrients. Carbon is the basic unit cycled in the system, fol-25

lowed by macronutrients, chlorophyll and oxygen, with variable carbon/nutrients and
carbon/chl-a ratios. Following the model’s food web, diatoms are preyed on by mi-
crozooplankton and omnivorous mesozooplankton, nano-phytoplankton to an extent
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by heterotrophic nanoflagellates but mostly by microzooplankton, pico-phytoplankton
mostly by heterotrophic nanofalgellates and to a lesser extent by microzooplankton and
finally large phytoplankton by microzooplankton and omnivorous mesozooplankton.
Bacteria consume Dissolved Organic Carbon (DOC) both labile and semi-labile, act as
decomposers on Particulate Organic Carbon (POC) and compete with phytoplankton5

for inorganic nutrients. Their main predators are the heterotrophic nanoflagellates while
a small part is also channelled to microzooplankton. Heterotrophic nanoflagellates are
preyed on by microzooplankton which in turn is eaten by omnivorous mesozooplankton.
Omnivorous mesozooplankton is preyed on by carnivorous mesozooplankton which is
the top predator of the food chain. For all consumers there is feeding within the same10

functional group (cannibalism), which acts as a stabilizing mechanism.

2.3 Climatological run

The model’s climatological run was initialized with the Mediterranean Ocean Data-Base
(MODB-MED4) (Brasseur et al., 1996) which contains seasonal profiles of temperature
and salinity mapped on a 1/4◦×1/4◦ horizontal grid. These data were mapped onto15

the model’s horizontal grid using bilinear interpolation. Additionally, initial velocities
were set to zero. The temperature and salinity profiles at the Eastern open boundary
were also derived from the same database. The integration starts with spring initial
conditions (15 May), although sensitivity tests have shown that the starting season
of the integration does not play a crucial role in determining the results. The model20

is integrated using a “perpetual year” forcing atmospheric data set. More specifically
the momentum surface budget was specified according to the ECMWF wind stress
monthly climatology (Korres and Lascaratos, 2003). Finally, the heat flux and water
flux boundary conditions at the surface were set as follows:

ρocpKH
∂T
∂z

∣∣∣∣
z=0

=QT −QSOL + c1 (T ∗ − T1) (1)
25
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wσ = 0 = E−P−R +c2
S∗−S1

S1
(2)

where QT is the monthly average total heat flux field, E is the evaporation rate taken
from the Kondo-Bignami monthly climatology, precipitation rate P is taken from Jaeger’s
monthly climatology and T ∗, S∗ fields are taken from MODB-MED4 SST and SSS sea-
sonal climatology. Solar radiation flux QSOL is calculated with the Reed formula using5

the ECMWF monthly cloud cover data. The initial conditions for the nutrients are taken
from Levitus (1982) while the other biochemical state variables from the 3-D ecosys-
tem model for the Cretan Sea (Petihakis et al., 2002). The model was run perpetually
for four years in order to reach a quasi steady state and to obtain inner fields fully co-
herent with the boundary conditions. The ecosystem pelagic state variables along the10

open boundary are described by solving water column 1-D ecosystem models at each
surface grid point on the open boundary.

2.4 Hindcast experiment

In this experiment the model was integrated for a period of one year (January 1999–
December 1999) and initialized from the climatological run. At the same time the model15

was asynchronously coupled with the coarse resolution (0.5◦×0.5◦) ECMWF 6 hour at-
mospheric data (wind velocity, air temperature, relative humidity and cloud cover) for
the same period covering the whole Mediterranean basin. This set of atmospheric
data was used by the air-sea interaction scheme of the model for the estimation of
heat, freshwater and momentum fluxes at the sea surface. In order to adjust the basin20

climatological dynamics to the interannual forcing, the model was integrated twice us-
ing the same atmospheric data set. The free surface elevation distribution for the 1st
Jan 1999 (during the second year of model integration) is shown in Fig. 2 where an
intense and elongated Rhodes gyre with a strong Mersha Matruh anticylconic gyre to
its southern boundary are depicted.25
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3 Ocean color data

Daily data from the SeaWiFS sensor onboard the SeaStar satellite at local area cov-
erage spatial resolution (∼1.1 km by 1.1 km pixels) for one year (1999) were used for
this study. This represented more than 20 GB of data which were acquired from NASA
Goddard through the NASA Ocean Colour Web and ftp service (Feldman and Mc-5

Clain, 2004). The data were processed by the NASA SeaDAS software v4.0 (Baith
et al., 2001) from the original spectral data using default values from the SeaWiFS
level 2 product processing chain which includes atmospheric correction, georeferenc-
ing and chlorophyll-a retrieval OC4v4 (O’Reilly et al., 2000; Patt et al., 2003). The
OC4v4 algorithm implements the following fourth order polynomial equation to calcu-10

late chlorophyll-a estimates

log10 (chl − a)=0.366 − 3.067R4S + 1.930R2
4S + 0.649R3

4S − 1.532R4
4S (3)

where R is reflectance, R4S is the maximum value of R443/R555, R490/R555 or R510/R555
and 443, 490, 510 and 555 represent the wavelengths of the four SeaWiFS bands
used. The OC4v4 algorithm was designed for biological studies of the global oceanic15

environment. This empirical method of estimating chlorophyll-a has been found to give
reasonably accurate estimates for most case-I waters (Bricaud et al., 2002), overes-
timate concentrations under certain oligotrophic conditions for case-I waters and be
inaccurate for case-II waters of the Eastern Mediterranean (Bricaud et al., 2002; San-
cak et al., 2005). However, at the time of processing and data assimilation, for the20

year under investigation, these SeaWiFS data were the best available satellite derived
chlorophyll-a concentration estimates for the area of interest. The daily chlorophyll-
a estimates were remapped to a flat grid using a cylindrical equidistant projection,
again using the NASA SeaDAS software. Finally, weekly (8 day) averages were pro-
duced that took into account a land mask and data masked by clouds, and provided25

girdded chlorophyll estimates suitable for assimilation into the coupled hydrodynamic-
ecosystem models.
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4 The assimilation scheme

The assimilation scheme is sequential and is based on the Singular Evolutive Extended
Kalman (SEEK) filter developed by Pham et al. (1997). The SEEK filter is a simplified
Extended Kalman (EK) filter suitable for applications with high dimensional systems
(the system dimension is denoted by N), as in meteorology and oceanography. The5

filter avoids the prohibitive computational burden associated to the significant size of
the EK filter N×N-error covariance matrices (denoted by P ) by operating with low-rank
error covariance matrices. More precisely, the SEEK filter uses the classical decom-
position P=LULT of a low-rank matrix, where L and U are and r×r matrices, so that
numerical calculations involving P can be likewise achieved by means of L and U .10

This allows drastic computational savings in time and storage without requiring major
changes in the EK filter’s algorithm. Starting from an initial low-rank r error covariance
matrix obtained via an Empirical Orthogonal Functions (EOF) analysis (see below),
Pham et al. (1997) showed that when the model dynamics are perfect (no model er-
ror), the EK filter error covariance matrices always remain of the same rank r . The EK15

filter analysis step is then only applied along the directions of L; hence its columns will
be called the correction directions of the filter. When the model is imperfect, the model
error can be projected onto the subspace spanned by the correction direction to avoid
continuous increase in the rank of the error covariance matrices. In its most general
form, the correction directions of the SEEK filter evolves its correction directions in time20

with the tangent linear model to follow changes in the model dynamics. In this study,
however, these directions were kept invariant for reasons explained below. The filter’s
algorithm is summarized below. A more detailed description can be found in Pham et
al. (1997).

4.1 The filter algorithm25

Consider the system state vector X t
k to be partly observed only at specific times tk ,

between times t1 and tend. The state vector is assumed to advance from time tk to
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time tk+1 according to the forecast model

X t
k+1=Mk,k+1(X t

k)+ηk+1 (4)

where M is the transition operator, representing the model dynamics, and η is a white
noise process, describing the model error, with zero mean and covariance matrix Q. A
vector of observations Yko at time tk , function of the system state Xkt and a measure-5

ment of uncertainty

Y o
k =Hk(X t

k) + εk (5)

is assumed to be available. Hk is the observation operator and εk is the error in the
observations, which will be assumed white with known spatial covariance matrix R.
These observations are entrained serially with the forecast state X f

k to produce the10

analysis state X a
k as

X a
k=X

f
k + Gk [Y o

k − HkX
f
k ] (6)

in which the matrix G is referred to as the gain matrix of the filter. The forecast is
obtained by advancing the previous analyzed state X a

k with the forecast model

X f
k + 1=Mk,k+1(X a

k ). (7)15

The gain matrix G interpolates between the observations and the forecast. The (sub-)
optimal gain G of the EK filter can be obtained by formulating a variational problem
to find the gain that minimizes the expected error between the analysis state and the
true state (Jazwinski, 1970). The optimality of the Kalman gain is predicated on the
knowledge of the forecast error covariance matrix Pf . At time tk , it is given by20

Gk=P
f
k Ht

k [HkP
f
k HT

k+R]−1, (8)

where Hk denotes the linearization of the observation operator Hk about the forecast
state X f

k . The analysis tends to adapt the forecast or the observations according to their
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respective predicted uncertainties HKP
f
k HT

k and R. Alternatively, when the forecast
error covariance matrix is decomposed as P f

k=LkUk−1L
T
k as in the SEEK filter, the

Kalman gain can be computed from

Gk=LkUk(HkLk)T (9)

in which the matrix U is updated according to5

U−1
k =[Uk−1 + P T

Lk
QP Lk

]−1 + (HkLk)TR−1HkLk , (10)

and PLk
=(LT

kLk)−1Lk is the projection operator onto the subspace spanned by the
columns of Lk . This shows that the analyzed state is a linear combination of the cor-
rection directions.

The extent to which the forecast is adopted depends on the analysis error covariance10

matrix P a, which is first obtained as a correction of the forecast error covariance matrix
using the observation statistics

P a
k = P f

k − GkHkP
f
k = LkUkL

T
k (11)

and then advanced in time according to the model dynamics to produce the next fore-
cast error covariance matrix15

P f
k+1=Mk,k+1P

a
k M

T
k,k+1 +Q=Lk+1UkLk+1 +Q, (12)

where the new correction directions Lk+1 evolve in time with the tangent linear model
Mk,k+1 (evaluated about the analyzed state X a

k ) according to

Lk+1=Mk,k+1Lk . (13)

It is important to realize that Eqs. (11) and (12), expressing the analysis and forecast20

error covariance matrices, are not needed for the filters’ algorithms. They have only
been included for completeness. The evolution of the correction directions is generally
beneficial to keep track of changes in the model dynamics (Hoteit et al., 2002; Hoteit
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and Pham, 2003). The numerical integration of Eq. (3) requires, however, r+1 times
forecast model runs, which can be rather significant with a heavily loaded coupled
physical-biochemical model such as the one used in this study. Following Brasseur et
al. (1999), who found that a reliable set of invariant EOFs may provide a good correc-
tion subspace for quasi-linear dynamical models, the correction directions of the SEEK5

filter were kept invariant in the present study. Theoretically, this can be supported by
assuming that the ecosystem state generally undergoes little change between two con-
secutive observations, which allows considering for Mk,k+1 to be equal to the identity
matrix. In practice, several studies (e.g. Carmillet et al., 2001; Hoteit et al., 2003),
suggested that performance losses associated with this approximation were not sig-10

nificant given the achieved drastic reduction in the computational burden of the SEEK
filter. Indeed, only one model integration is now required to compute the forecast state
while the filter error covariance matrices are parameterized by means of a set of EOFs
describing the dominant modes of the system’s variability.

4.2 Localization of the filter analysis15

The low-rank approximation generally results in very few degrees of freedom for the fil-
ter analysis to fit available observations. Another difficulty in the assimilation system is
that the initial EOFs correction directions are not updated with model dynamics. These
functions, especially those associated with the least energetic modes, can be spoiled
with spurious auto/cross correlations, which inevitably introduces noise into the filter20

analysis. As suggested by Houtekamer and Mitchel (2001), a simple strategy to deal
with this problem is to exclude observations greatly distant from the grid point being
analyzed. This allows the retention of the structures of the short-range correlations
in the filter’s error covariance matrices, which are assumed to be more reliable, while
filtering out long-range correlations. This “localization” of the filter analysis can be effi-25

ciently implemented through a Schur product (an element by element multiplication) of
the error covariance matrix and a correlation function with local support (Gaspari and
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Cohn, 1999). In this approach, the filter’s gain in Eq. (8) is reformulated as

Gk = (γ ◦ P T
k )HT

k [Hk(γ ◦ P f
k )HT

k + R]−1, (14)

where γ ◦ P f
k denotes the Schur product of the forecast covariance matrix P f

k with
the localization function γ. Although this formulation entails an approximation in the
filter’s algorithm, it is naturally supported by the fact that only data points located in5

the “neighbourhood” of an analyzed grid point should contribute to the analysis at this
point.

In the current system, the localization function is defined by means of a radius of in-
fluence d (in km) around the analyzed grid point. All data located outside this horizontal
(× 24 vertical levels) area of influence are not retained in the analysis. Assimilation ex-10

periments were performed in order to find an appropriate value for d. Figure 3 shows
the time evolution of the Chl-a Root Mean Square (RMS) estimation error (data/model
misfit) for the forecast (i.e. just before the assimilation of the new observations) and the
analysis as they result from three assimilation runs with different choices of the radius
of influence: 150 km (EXP3), 70 km (EXP4) and 250 km (EXP5), respectively. RMS of15

the model free-run (i.e. model run without assimilation) is also shown. The assimilation
system behaves poorly with d=70 km. Although the choice of 250 km seems to be the
best in terms of the analysis RMS error; the forecast system shows some weakness
with such a large choice of d, as can be noticed from the forecast RMS during the
period of spring bloom between March and April. This significant increase in the fore-20

cast RMS during this period of model regime change is probably due to some spurious
large-range correlations represented in the EOFs correction directions, and therefore
in the filter analyses, which the model was not able to properly assimilate. These re-
sults suggest that a radius of influence should be chosen neither too large to filter out
spurious large-range correlations, nor too small in order to obtain a smooth analysis25

state. Given these conclusions, a radius of influence d=150 km was therefore selected
in the sequel.
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4.3 Model and observational errors

The observational and model error covariance matrices R and Q need to be specified
in the filter’s algorithm. These matrices are generally very poorly known. It is common
to consider a diagonal observation error covariance matrix R, which means that the
observations are assumed to be spatially uncorrelated, but this can be partly accounted5

for by overestimating the diagonal coefficients of R, which were set as a fraction of
the variance of the satellite observations at each grid point. The specification of Q is
considerably more complex because very little information is available about the model
error, and because of the significant number (N×N) of parameters that need to be
estimated. Following Pham et al. (1997), a compensation technique is used to replace10

the term P T
Lk
QkPLk

in Eq. (10) by a forgetting factor ρ which artificially amplifies the
background error covariance matrix. This leads to a new update formula for the matrix
U:

U−1
k =1/ρU−1

k−1 + (HkLk)TR−1
k HkLk (15)

The value of ρ depends on the system under study, as it can be further used to account15

for other sources of errors in the filter, such as the underestimation of the error covari-
ance matrices by low-rank matrices or the linearization errors, by giving more weight to
recent observations. ρ was empirically set to 0.3 after several sensitivity assimilation
experiments with different values of ρ ranging between 0.1 and 0.9. As an example, in
Fig. 4 the RMS error for two experiments with different choices of ρ (EXP2: 0.6; EXP3:20

0.3) is shown. Overall, in terms of both the analysis and the forecast RMS error, the
choice of 0.3 seems to be the most appropriate.

4.4 The correction directions

A common strategy to determine the filter’s correction directions is to use model statis-
tics as an approximation of the true system statistics (Pham et al., 1997). Then by25

appropriate sampling of model state vectors one can obtain an approximation of the fil-
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ter’s covariance matrix through the dominant empirical orthogonal functions (EOFs). In
the twin experiments setup (not presented here), the physical model was first integrated
for a 4-year period in order to achieve a quasi adjustment of the model climatological
dynamics. Next, another integration of 4 years of the coupled system (physical & bio-
chemical model) was carried out to generate a historical sequence of model states,5

sampled every 2 days during the last two years of the integration. Since the state vari-
ables are of different nature, a multivariate EOF analysis was applied to the sampled
set of 360 state vectors. In this analysis, model state variables were normalized by the
inverse of the square-root of their domain-averaged variances. In the real observations
assimilation experiment, the coupled system was initialized with climatology and inte-10

grated for two years forced with the ECMWF 1999 6 hour data (applied twice). During
the last year of integration model, states were sampled and stored every two days in
order to calculate the EOFs. For this experiment 25 EOFs were retained explaining
95% of the ecosystem variability.

5 Assimilation of satellite ocean color data for the period 199915

This section presents and discusses the results of the main assimilation experiments
in which the 1999 SeaWiFS data were assimilated into the Eastern Mediterranean
ecosystem model using the SEEK filter with a radius of influence d=150 km and a
forgetting factor ρ=0.3. Morel (1998) proposed that the depth sensed by SeaWiFS
depends upon the concentration of chlorophyll and the wave band; and for waters20

with chlorophyll ≤0.1 mg/m3, as in the case of the Levantine, this depth is about 30 m.
In this study the observation operator Hk integrates vertically the model calculated
chlorophyll profiles for the four phytoplankton groups over the first 30 m in the relevant
filter equations.

We first analyze the overall behavior of the assimilation system then we study the25

impact of the assimilation of ocean colour data on the other ecological components of
the model. This will allow us to assess (i) the relevance of the assimilation scheme
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to efficiently propagate these surface observations into the deep ocean, and (ii) the
ability of the BFM model to properly assimilate the information from the SeaWiFS data.
Figure 5 plots the time evolution of the RMS misfit between the assimilated chlorophyll
data and the estimated chlorophyll concentrations as it results from the model free-run
(without assimilation), and the filter run before (forecast) and after (analysis) the filter’s5

correction. Overall the filter’s behavior is quite satisfactory and obviously improves the
model/data consistency. The RMS error for both the forecast and the analysis is al-
ways smaller than the RMS error of the free-run except for the period of spring bloom
between the end of March and the end of April, where the filter, particularly the fore-
cast state, was not able to follow the rapid changes in the ecosystem state. The poor10

behavior of the filter during this period is probably due to the misrepresentation of the
bloom event in the EOFs based correction directions. The use of seasonal sets of
EOFs associated with the major ecological events, and the evolution of the correction
directions with the model dynamics can be expected to improve the behavior of the filter
during this period. The filter correction step efficiently improves the forecast after every15

filtering cycle suggesting the importance of the data assimilation into the model. The
resulting analysis state is also shown to respect the dynamic balance in the model, as
the forecast RMS error remains stable over time, allowing the BFM model to properly
assimilate the SeaWiFS data. The spatial distribution for the chlorophyll RMS model-
filter/data differences averaged over the entire assimilation window is shown in Fig. 6.20

As expected, the model free-run/data differences are the largest, with the worst model
performance observed in the northern Aegean Sea between Greece and Turkey and
close to the northern coast of Africa. The filter forecast RMS error is better than that
of the free-run over the whole Eastern Mediterranean except in the northern Aegean
Sea region where the model error is significant. The RMS estimation error is signif-25

icantly reduced over the whole domain after the filter analysis is applied. Figure 7
shows chlorophyll concentrations at the surface from satellite observations (top panel),
model free-run (central panel) and analysis (lower panel) for the period 21 to 28 June.
Following Morel (1998) in order to compare satellite observations with model results,
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surface chlorophyll concentrations produced by the model were integrated over 30 m
depth and averaged over the same period. The model free run significantly overesti-
mates the surface chlorophyll concentrations in the Levantine Sea and particularly in
the Aegean Sea. The filter successfully corrects the forecast particularly over the Lev-
antine Sea. However, the filter’s improvement over the Aegean Sea is not significant;5

and the filter was unable to completely follow the rapid increase in the chlorophyll con-
centrations over this area. Figure 8 shows the same fields as Fig. 7 but for the period
12–19 November. The model free-run overestimates the chlorophyll concentrations in
the Levantine and south the Aegean Sea. As it is shown (lower panel) the filter per-
forms efficiently driving the model closer to the satellite observations. Figure 9 depicts10

an East–West cross section of the chlorophyll concentrations at 35◦ N. A comparison
between the free-run and the analysis fields show remarkable differences as the filter
effectively propagates the observed information of the low chlorophyll concentrations
at surface to the deeper layers. The analysis fields display smaller-scale vertical struc-
tures while the concentrations at the deep chlorophyll maximum (DCM) are significantly15

lower. Specifically, the DCM concentrations have decreased from 0.37 to 0.22 mg/m3 in
the area of the Rhodes gyre. To further assess the ecosystem functioning of the assim-
ilation system in the deep layers, Fig. 10 plots a North–South cross section of different
ecological variables at longitude 28.5◦ E (area of the Rhodes Gyre) during the summer
period as they result from the assimilation system. Knowledge about the biochemical20

processes in this area that has been extensively studied by Krom et al. (2003) can be
used to validate the behavior of the assimilation system. The Rhodes Gyre is a cold
core eddy that tends to change intensity, size and location with time. The main char-
acteristic of the Gyre is the upwelling of nutrients in the center that results in increased
phytoplankton biomass and primary productivity. The top panel shows the vertical dis-25

tribution of the chlorophyll concentrations where the DCM is depicted at 60 m with a
magnitude of ∼0.3 mg/m3 in close agreement with Salihoglu et al. (1990). The middle
panel shows the integrated chlorophyll. The peak has a magnitude of ∼28 mg/m2 which
is a slight underestimation compared to 39 mg/m2as estimated by Ediger and Yilmaz
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(1996). The phosphate concentrations plotted in the lower panel shows a formation
of nutricline at 75 m. Phosphorous has been depleted in the upper layers exhibiting
concentration values less than 0.02µg-at/l, while in cross section phosphate increases
with depth to a maximum of 0.22µg-at/l.

The impact of assimilating ocean colour data into the BFM model dynamics is also5

assessed in Fig. 11 which plots the time evolution of the depth integrated chl-a con-
centrations for the Rhodes gyre as it results from the model free-run and as estimated
by the assimilation system. The model free-run without any assimilation provides quite
good estimates of the integrated chl-a concentrations (35 mg/m2) compared to the ones
produced by the field measurements (39 mg/m2). The assimilation of ocean colour data10

clearly reduces the surface chl-a concentrations pushing the model top layers towards
a more oligothrophic condition according to the information extracted from the obser-
vations. However this drives the system dynamics away from the “truth” in the deep
layers, not-visible by the satellite, subsequently reducing the depth integrated chl-a
concentrations, being in disagreement with the observed values. This demonstrates15

the limitations of assimilating only surface ocean colour data and calls for the need of
constraining the model dynamics with subsurface ecological data as well.

Having stated the above limitation of the current assimilation system in oligotrophic
areas, which is mainly related to complex ecological processes associated with cy-
clonic gyres and upwelling areas, the overall performance of the assimilation is in gen-20

eral very positive as can be, for example, seen in the spatially integrated chl-a con-
centration during August (Fig. 12). The values resulting from the assimilation system
are quite closer to the measured concentrations of Ignatiades et al. (2002); Siokou-
Frangou et al. (2002) than those simulated by the model free-run. Looking at the
decomposers plots shown in Fig. 13, both the model free-run and the assimilation run25

are within the range of measured values in the North, North-East and South Aegean.
The free run exhibits a more uniform spatial pattern, in contrast to the one estimated by
the assimilation system which exhibits significantly more spatial variability. Bacteria in
oligotrophic systems play a very important role as they remineralise and consume nu-
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trients (which are in short supply), sustaining an active microbial loop. As their growth
depends on the available nutrient concentrations, which in turn are strongly coupled to
the hydrodynamic fields, one would expect such strong spatial variability to be in agree-
ment with the characteristics of the complex system of gyres and jets of the Eastern
Mediterranean.5

6 Conclusions

This study describes the implementation of an advanced marine ecosystem assim-
ilation system based on a complex three-dimensional ecological model and a sim-
plified Extended Kalman filter to assimilate SeaWiFS ocean colour data in the East-
ern Mediterranean. The model is composed of two coupled sub-models: the physi-10

cal Princeton Ocean model (POM) and the Biochemical Flux Model (BFM). The filter
is based on the Singular Evolutive Extended Kalman (SEEK) filter, in which the er-
ror statistics were parameterized by means of a suitable set of Empirical Orthogonal
Functions (EOFs). A localization of the filter analysis step was implemented to filter out
any spurious long-range correlations in the EOFs. After several sensitivity experiments15

which were performed in order to find the best values for some of the filter parameters,
a hindcast experiment was conducted for the year 1999 with the aim of demonstrating
the effectiveness of this system and, at the same time, to assess the relevance of its
outputs. The results of this main experiment clearly demonstrate that the assimilation
system operates in a satisfactory way; the system was capable of efficiently fitting the20

assimilated data, and the filter efficiently propagated the surface observations to the
deep layers. Furthermore, the assimilation significantly improves the model behaviour
and the impact of the satellite ocean colour data on all the model’s ecological com-
ponents was mainly positive. This is in agreement with the multivariate character of
the filter’s correction directions which retain the cross correlations existing between the25

different model variables. These positive results do not mean that the system is per-
fect as some weaknesses were observed especially in the complex oligotrophic areas;
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adjustments having been made in order to improve the model/data consistency, the
filter nevertheless did not adjust several ecological components in the deep layers well
enough to cover significant model errors not represented in the assimilation system. In
practice, any model of the real ecosystem will have important deficiencies that cannot
be easily estimated because of the large dimension of the system and a serious dearth5

of observations, especially in the deep layers. Even though the availability of a limited
subsurface data set might not be enough to solve this problem, the assimilation of these
data would constrain the model variability in the deep layers and help to prevent any
deviation from reality. Another important issue related to this problem is the assumption
of “perfect physics” considered in this study. The improvement of the physical solution10

through the assimilation of physical data is expected to significantly improve the be-
havior of the coupled model, resulting in fewer model errors in the ecological solution.
The quality of the data was also an issue in the present study. One solution could be to
assimilate the colour data directly, rather than converting it to chlorophyll, by including a
bio-optical algorithm to predict the colour from the model phytoplankton values, which15

may result in a reduction of the uncertainties in the data. Despite the use of a state-
of-the-art coupled physical-biochemical marine ecosystem model constrained with the
most synoptic ecological data sets using an advanced Kalman filter based assimilation
scheme, the overall results of this study are still at a preliminary stage, though giving
all the improvements that can be reported to the system. This study, however, clearly20

indicates that the development of an assimilation system providing reliable estimates
of the ecosystem state is achievable, and this is true not only for the Eastern Mediter-
ranean, but for any area of the global ocean. This conclusion is of particular interest
for the marine ecosystem community and provides us with encouraging and promising
results for future developments.25
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Figure 1. Bathymetric map of the Eastern Mediterranean model domain 

 
Fig. 1. Bathymetric map of the Eastern Mediterranean model domain.
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Figure 2. The free surface elevation distribution for the 1st January 1999 

 

Fig. 2. The free surface elevation distribution for the 1 January 1999.
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Figure 3. Chlorophyll-a RMS error for the analysis and the forecast for three different 

choices of the radius of influence (EXP3: 150 km, EXP4: 70 km, and EXP5: 

250 Km) along with the free run. 

 

Fig. 3. Chlorophyll-a RMS error for the analysis and the forecast for three different choices of
the radius of influence (EXP3: 150 km, EXP4: 70 km, and EXP5: 250 km) along with the free
run.
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Figure 4. RMS error for two experiments with different choices of the forgetting factor  

(EXP2: 0.6; EXP3: 0.3). 

 

Fig. 4. RMS error for two experiments with different choices of the forgetting factor (EXP2: 0.6;
EXP3: 0.3).
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Figure 5. Chlorophyll Root Mean Square difference (RMS) of the free run model data, 

the forecast and the analysis over the entire computation field 

 

Fig. 5. Chlorophyll Root Mean Square difference (RMS) of the free run model data, the forecast
and the analysis over the entire computation field.
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Figure 6. Spatial distribution of the chlorophyll RMS differences over the entire 

assimilation period (Free run, Forecast, Analysis) 

 

Fig. 6. Spatial distribution of the chlorophyll RMS differences over the entire assimilation period
(Free run, Forecast, Analysis).
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Figure 7. Satellite surface chlorophyll observations (top panel), model free run (central 

panel) and analysis (lower panel) for the period 21-28 of Jun 

 

Fig. 7. Satellite surface chlorophyll observations (top panel), model free run (central panel) and
analysis (lower panel) for the period 21–28 June.
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Figure 8. Satellite surface chlorophyll observations (top panel), model free run (central 

panel) and analysis (lower panel) for the period 12-19 of November 

 

Fig. 8. Satellite surface chlorophyll observations (top panel), model free run (central panel) and
analysis (lower panel) for the period 12–19 November.
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Figure 9. Cross section at latitude 35°N depicting the vertical distribution of chlorophyll 

concentrations 

 

Fig. 9. Cross section at latitude 35◦ N depicting the vertical distribution of chlorophyll concen-
trations.
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Figure 10. Cross section at longitude 28.5°E. (Top) Summer distribution of chlorophyll 

concentrations (mg/m3).  (Middle) Integrated chlorophyll concentrations over 

0-120 m averaged over the summer period (mg/m2/d) (Lower) Summer vertical 

distribution of phosphorous concentrations (mmols/ m3) 

 

Fig. 10. Cross section at longitude 28.5◦ E. (Top) Summer distribution of chlorophyll concentra-
tions (mg/m3). (Middle) Integrated chlorophyll concentrations over 0–120 m averaged over the
summer period (mg/m2/d) (Lower) Summer vertical distribution of phosphorous concentrations
(mmols/m3).
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Figure 11. Integrated chlorophyll (mg/m2/d) from the model free-run (black line) and the 

assimilation run (green line) 

 

Fig. 11. Integrated chlorophyll (mg/m2/d) from the model free-run (black line) and the assimila-
tion run (green line).
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Figure 12. Integrated chlorophyll (mg/m2/d) over (0-150m) from the model free-run and 

the assimilation run during August 

 

Fig. 12. Integrated chlorophyll (mg/m2/d) over (0–150 m) from the model free-run and the
assimilation run during August.
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Figure 13. Integrated bacteria biomass (mgC/m2/d) over (0-150m) from the model free-

run and the assimilation run during August 

 

Fig. 13. Integrated bacteria biomass (mgC/m2/d) over (0–150 m) from the model free-run and
the assimilation run during August.

1608

http://www.ocean-sci-discuss.net
http://www.ocean-sci-discuss.net/3/1569/2006/osd-3-1569-2006-print.pdf
http://www.ocean-sci-discuss.net/3/1569/2006/osd-3-1569-2006-discussion.html
http://www.copernicus.org/EGU/EGU.html

