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Abstract

Ocean forecasts over the Central Mediterranean, produced by a near real time regional
scale system, have been evaluated in order to assess their predictability. The ocean
circulation model has been forced at the surface by a medium, high or very high reso-
lution atmospheric forcing. The simulated ocean parameters have been compared with5

satellite data and they were found to be generally in good agreement. High and very
high resolution atmospheric forcings have been able to form noticeable, although short-
lived, surface current structures, due to their ability to detect transient atmospheric dis-
turbances. The existence of the current structures has not been directly assessed due
to lack of measurements. The ocean model in the slave mode was not able to de-10

velop dynamics different from the driving coarse resolution model which provides the
boundary conditions.

1 Introduction

During the past ten years, monitoring and forecasting of the ocean and its coastal ar-
eas have been established by research projects. It is now being done pre-operationally,15

mainly being connected to physical environmental variables. Within the Mediterranean
Forecasting System, Towards the Environmental Prediction (MFSTEP) project, funded
within the V Framework Program of EC, one basin scale, four regional, and ten shelf
models have been implemented on the basis of experience already accumulated in the
previous Mediterranean Forecasting System Pilot Project (Pinardi et al., 2003). The20

aim was to develop an overall science and strategy plan for the expansion of opera-
tional oceanography towards environmental prediction and sustainable development of
marine and water resources.

In this paper we resort to a Near Real Time (NRT) operational forecasting system
at a regional scale implemented in the Central Mediterranean sub-basin in order to25

predict the physical environmental variables. This system, named the Sicily Channel
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Regional Model (SCRM), is an integral part of the forecasting system of the MFSTEP
project (Pinardi et al., 2003).

In recent years great efforts have made ocean forecasts more reliable, pushing them
toward higher resolutions in both time and space. The increased resolution must be
supported by a higher resolution of the two driving models from which a regional ocean5

forecast system depends, that is, a coarser global ocean model that provides initial
and lateral boundary conditions, and an atmospheric model which provides boundary
conditions at the sea surface. The increased temporal and/or spatial resolution of the
atmospheric forcings (AF) represents an important step forward for long-range hindcast
experiments. For example, Castellari et al. (2000) compared ocean simulations forced10

with a monthly AF, against a simulation driven by a 12 h AF and found evidence for an
improved capability to describe the water mass formation processes. Similarly Herbaut
et al. (1997) in their 18-year experiment on the Mediterranean forced by a daily AF,
found clarifications about the impact of wind versus thermohaline forcings on water
dynamics.15

In this paper we have analyzed the impact of various AF applied on the SCRM fore-
cast system. We evaluated the forecast skill by using observations and performed the
comparison using satellite data as a reference. The focus was on ocean surface vari-
ables, which are most sensitive to atmospheric conditions. For this reason, the chosen
period was from 29 December 2004 to 30 January 2005 when the atmospheric forcing20

was very dynamic.
The Central Mediterranean is morphologically divided into two sub-areas, the Sar-

dinia Channel at west and the Sicily Channel at east. They are separated by the Sicily
Strait, a very shallow barrier for intermediate and deep waters due to an extension of
the shelves from Cape Bon in Tunisia and Cape Lilibeo in Italy (Fig. 1). The two chan-25

nels are crossed by the waters exchanging from the East and West Mediterranean
basins and organized in a three-layer system from the surface to the bottom. Here the
circulation is characterized, particularly at the surface, by strong mesoscale signals in
the form of eddies, meanders and small-scale gyres whose path and lifetime are mainly
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influenced by the bathymetric contours, the temperature and salinity gradients, and the
meteorological conditions.

The upper ocean dynamics are dominated by the eastward flow of Modified Atlantic
Water (MAW) which moves under the influence of the density gradient between the
eastern and the western basin, and are modified by the influence of the wind forcing5

and the bottom geometry. The MAW moves eastward from the Strait of Gibraltar along
the north African coast forming unstable meanders that often originate from cyclonic
and anticyclonic eddies with spatial scales of ∼200 Km (Puillat et al., 2002). From
the Sardinia Channel two branches of MAW cross the Sicily Strait eastward. The first
branch, the Atlantic Ionian Stream (AIS), moves along the south Sicilian coast as an10

energetic and meandering flow (e.g. Robinson et al., 1999). Particularly evident in the
summer, the AIS moves eastward in a complicated meandering path that, in the Sicily
Channel, makes its flow around three surface thermal features: the Adventure Bank
Vortex, the Maltese Channel Crest and the Ionian Shelf Break Vortex. The second
branch, the African MAW current, moves along the Tunisian coast (Sorgente et al.,15

2003) and is characterized by high seasonal variability and a maximum volume trans-
port in autumn (Manzella et al., 1988).

This paper is organized as follows: The first chapter gives a short description of
the regional forecasting system, followed by a chapter with a presentation of the at-
mospheric forcings used. After that, we show results of wind stress and sea surface20

temperature assessment, followed by conclusions.

2 Methods

Here is an introduction to the SCRM forecast system, followed by a discussion about
how the various atmospheric forcings are used in the present work. A description of
the satellite data used for analysis is then presented.25
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2.1 Model setup

The SCRM forecasting system has been implemented over the Central Mediterranean
sub-basin with a horizontal resolution of 1/32◦ and 24 sigma layers in the vertical for a
fine representation of the dynamical and physical processes. It is nested at the lateral
open boundaries with the Ocean General Circulation Model (MFS1671) covering the5

whole Mediterranean Sea. At the surface the SCRM is coupled with the mesoscale
weather forecast system LAM2 for operational runs. Nesting is a useful technique that
permits the simulation of small scale dynamics in a limited area using a high-resolution
domain embedded in a lower resolution domain. This allows the large-scale structures
generated on the coarse grid to influence the nested grid.10

MFS1671 is the basin scale ocean model implemented on the whole Mediterranean
basin with a horizontal resolution of 1/16◦ and 72 fixed horizontal levels. The forecast
system is based on the Ocean Parallelise Model (OPA) version 8.1, developed by the
Laboratoire d’Oceanographie Dynamique et de Climatologie, Institute Pierre Simon
Laplace, Paris. OPA is a primitive equation model. Navier-Stokes equations are used15

with the approximation of thin-shell, Boussinesq, hydrostatic and incompressible fluid.
A detailed description of the code can be found in Madec et al. (1998). MFS1671
provides analyses and forecasts in daily means centered at midnight. Its fields provide
both the initial and lateral boundary condition for SCRM during the simulation period.

SCRM is based on the Princeton Ocean Model (POM), a three-dimensional, free sur-20

face ocean model that solves the equations of continuity, motion, conservation of tem-
perature, salinity and assumes hydrostaticy and the Boussinesq approximation (Blum-
berg and Mellor, 1987). The vertical mixing coefficients are calculated using the Mellor
and Yamada (1982) turbulence closure scheme, while the horizontal diffusion terms
are calculated using the Smagorinsky formula (Smagorinsky, 1993). For the advec-25

tion of tracers, Smolarkiewicz (1984) scheme coded by Sannino et al. (2002) has been
used. The model uses a time splitting scheme for an efficient integration of internal
(baroclinic) and external (barotropic) modes.
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The model grid extends from 9◦ E to 17◦ E and from 31◦ N to 39.5◦ N with a horizontal
resolution of 1/32◦ (∼3.5 km). There are 257×273 mesh points with 24 sigma levels;
the barotropic time step is 4 s, while the baroclinic time step is 120 s.

The model bathymetry comes from the U.S. Navy Digital Bathymetric Data Base
(DBDB1) at 1/60◦ by bilinear interpolation into the model grid. Additional light smooth-5

ing is applied to reduce the sigma coordinate pressure gradient error (Mellor and Blum-
berg, 1986). The resulting model bathymetry is shown in Fig. 1. The maximum depth
is ∼4000 m, while the minimum depth is set equal to 5 m.

The initial condition has been obtained using the forecasted daily mean fields of
temperature, salinity and total velocity from MFS1671. In order to reduce the spin-up10

time, which affects the forecast due to high frequency oscillations, data have been pro-
cessed through variational initialization, named VIFOP. VIFOP ensures physical con-
sistency of the fields and imposes the conservation of global divergence and the strong
constraint on the sea surface elevation tendency (Auclair et al., 2000). For a more de-
tailed description of VIFOP implementation on SCRM including sensitivity studies, see15

Gaberšek et al. (2006).
SCRM is coupled at the lateral open boundaries with MFS1671, using a one-way

asynchronous nesting of the forecasted daily mean fields of temperature, salinity and
total velocity, imposing the interpolation constraint on the total velocity. This allows
the total volume transport to be preserved after the interpolation procedures from the20

coarse to the fine resolution model. The grid-nesting ratio between the coarse model
and the regional ocean model is 2.0.

The regional model has three open boundaries located in the southern Tyrrhenian
Sea (39.55◦ N), in the Sardinia Channel (9◦ E) and in the open Ionian Sea (17.1◦ E). At
these open boundaries, the normal and tangential barotropic velocity components at25

each internal time step are fully specified by a bilinear interpolation of the daily mean
forecasted fields from MFS1671 into the SCRM:

UHR = U int
LR (1)
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VHR = V int
LR , (2)

where the subscripts HR and LR stand for high and low spatial resolution, respectively,
while the superscript “int” marks the interpolated value. The normal barotropic veloc-
ities are specified through the following equation, initially proposed by Flather (1976)
and subsequently modified by Marchesiello et al. (2001) and Pinardi et al. (2003):5

ŪHR = Ū int
LR

H + ηint
LR

H + ηHR

+ ε

√
g

H + ηHR

(ηHR − ηint
LR), (3)

with

Ū int
LR=

1
H + ηLR

∫ η

−H
ULR dz. (4)

Here H is the bathymetry in the fine resolution, while η is the coarse free surface ele-
vation interpolated with the fine model resolution. The term ε is equal to ±1 depending10

of position of the open boundary; ε=+1 for the eastern and northern open boundary,
ε=−1 for the western and southern open boundary. The tangential barotropic compo-
nent velocities at the boundaries are simply equalized:

V̄HR=V̄
int
LR . (5)

To update the potential temperature Θ and the salinity S at the open boundaries of15

SCRM, an upstream advection scheme is used when the velocity is directed outward
from the modeling area:

∂(Θ, S)high

∂t
+ Uhigh

∂(Θ, S)high

∂n
=0, (6)

where n indicates the normal to the section. In cases of inflow through the open
boundaries, the three-dimensional daily mean fields of temperature and salinity are20
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prescribed from the values of the coarse model solution interpolated on the nested
open boundary:

Θhigh = Θint
coarse (7)

Shigh = S int
coarse. (8)

2.2 The atmospheric forcings5

The model forecast skill depends on the quality and the way that surface boundary
conditions are specified. At the surface, SCRM is driven by air/sea exchanges of heat,
water and momentum, using the boundary conditions:

ρ0CpKH
∂Θ
∂z

∣∣∣∣
z=η

= Qtot (9)

KH
∂S
∂z

∣∣∣∣
z=η

= (E − P )S (10)
10

ρ0KM
∂U
∂z

∣∣∣∣
z=η

= τ, (11)

where ρ0=1025 kg m−3 is a reference density for marine water, Cp=4186 J kg−1K−1 is
the specific heat of pure water at constant pressure, KH and KM are the heat diffusivity
the kinematic viscosity coefficient for water, respectively. On the left-hand side, the
variation with depth z of potential temperature Θ, salinity S and velocity U is always15

evaluated at the surface (z=η). The right-hand side shows the source of variation for
temperature, salt concentration and momentum, which are respectively the total heat
flux Qtot, the total salt flux (E−P )S and the wind stress τ, where E−P is evaporation
minus precipitation. These three sources of air/sea interaction can be provided directly
by the atmospheric model or can be calculated from primitive parameters such as air20

and sea temperature, humidity, pressure, precipitation, cloud coverage and wind. The
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latter method had always been chosen when a flux relied on sea surface temperature,
for which we use SST simulated by the ocean model itself. In this sense, air/sea cou-
pling is interactive. The parameters used are based on Castellari et al. (1998). In this
paper we have summarized the essential points regarding parametrizations referring
the reader to the previous reference for an extensive discussion and for the calculation5

of the following physical quantities.
The total heat flux is divided into four parts:

Qtot = Qs −Qb −Qe −Qh, (12)

where Qs is the solar (shortwave) radiation flux, Qb is the long wave radiation flux, Qe
is the latent heat flux, mainly due to the evaporative processes, and Qh is the sensible10

heat flux driven by a difference between air and sea surface temperature. We consider
the fluxes Qb, Qe and Qh positive for energy gained by the atmosphere. It is important
to note that the shortwave flux has also an upward component (depending on albedo
of the surface) while the longwave flux has also a downward component (depending
on the radiation of the atmosphere).15

The total salt flux depends on the surface salinity S simulated by the model and the
water balance of air/sea exchanges. The evaporative flux E is related to the latent heat
flux Qe by

Qe = LeE, (13)

where Le is the latent heat of evaporation for water.20

Finally, the wind stress is parameterized as

τ = ρACDW , (14)

where ρA is the density of moist air, CD is the drag coefficient and W is the wind vector.
The AF used in this work to furnish the physical variables related to surface boundary

conditions are:25
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– MR (medium resolution: 0.5◦, 6-hourly) model from European Centre for Medium-
Range Weather Forecasts - ECMWF;

– HR (high resolution: 0.1◦, 1-hourly) Limited Area Model 2 – LAM2;

– VHR (very high resolution: 0.05◦, 1-hourly) Non-Hydrostatic model 1 – NH1.

ECMWF runs a spectral, hybrid coordinate model, which produces 10-day fore-5

casts widely used by the scientific community together with hindcasts and historical
re-analysis of atmospheric conditions. It is further described in Simmons et al. (1989)
and Caplan et al. (1997). Forecasts are produced once a week, and for each day four
atmospheric forecast snapshots at 00:00, 06:00, 12:00 and 18:00 UTC are given.

NH1 and LAM2 are both applications of the Skiron/Eta finite difference modeling10

system described by Kallos et al. (1997, 2005), differing only in horizontal resolution.
This limited-area, non-hydrostatic model produces forecasts over the entire Mediter-
ranean Sea once a week, using the ARPEGE fields as initial and lateral boundary
conditions. For each day, 24 atmospheric forecast snapshots at 00:00, 01:00, 02:00,
. . ., 23:00 UTC are produced. Total precipitation is accumulated in hourly increments15

(e.g., the file marked 05 contains the total precipitation accumulated from 04:00 to
05:00 UTC).

The characteristics and products of the various atmospheric models are summarized
in Table 1. In particular, note that ECMWF does not provide precipitation data, so for
ECMWF-driven ocean simulations, the variable P in Eq. (10) is always set equal to20

zero.
Weekly forecasts were produced in a so called slave mode, i.e. for each run SCRM

is re-initialized using the initial boundary conditions provided by the basin scale model
(MFS1671). Starting from the initial time SCRM produces a 5-day forecast run. For
each atmospheric forcing, five separate runs were performed:25

– RUN1 from 29 December 2004 to 2 January 2005;

– RUN2 from 5 January 2005 to 9 January 2005;
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– RUN3 from 12 January 2005 to 16 January 2005;

– RUN4 from 19 January 2005 to 23 January 2005;

– RUN5 from 26 January 2005 to 30 January 2005.

2.3 Data analysis

Ocean variables from the above runs have been validated against various remote-5

sensed datasets:

– Wind stress: daily mean data from SeaWinds scatterometer onboard QuikSCAT
satellite, quality checked and interpolated on a 1/2◦ grid by IFREMER-
LOS/CERSAT (France);

– SST: sea surface temperature daily mean data from the 5-channel Advanced Very10

High Resolution Radiometer AVHRR/3 sensor onboard NOAA-16 satellite; data
have been quality checked and interpolated on a 1/16◦ grid by the ISAC-CNR –
Istituto Studi Atmosfera e Clima (Italy).

Assessments of daily-mean model output have been performed and surface maps have
been directly compared. Furthermore, we analyzed daily surface-averaged wind stress15

magnitude, wind stress direction and sea surface temperature, which were then com-
pared to averaged observed variables. Satellite data have then been interpolated on
SCRM grid through bilinear interpolation, allowing the calculation of a root mean square
error between forecasted and observed fields.

3 Results20

3.1 Wind stress analysis and sea surface currents

Wind stress, calculated through bulk formulae from the wind field, is an additional input
for the ocean model which was also analyzed. The availability of satellite scatterometer
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data made it possible to perform a preliminary validation of the wind stress field sug-
gesting it could possibly be the main reason for a different ocean response. The wind
stress is a dominant atmospheric forcing for the 5-day ocean forecast experiments in
a slave mode. It heavily influences both surface circulation and heat/water exchanges
across the sea surface.5

A global assessment of wind stress for the entire SCRM basin is shown in Figs. 2
and 3. The results show that, in general, both wind stress mean intensity and direction
are forecasted well by all the atmospheric models in their variation in time. The root
mean square error, which provides information about the fitting of fields, shows the
forecast error of wind stress intensity is usually within 30% of the observed value, while10

the wind stress direction is forecasted within 20◦.
In more detail, the top panel of Fig. 2 appears that the first three runs (RUN1-3)

are characterized by slow and varying wind stress intensity. Additionally, the three
AF are all similar and in good agreement with the satellite data. Differences between
AF arise when a rapid change in time of wind stress field occurs. In the last two15

forecast runs (RUN4-5) there were strong daily variations of wind magnitude. In this
period, results show that mean magnitude is better forecasted by NH1 and LAM2. The
same behavior appears by looking at wind stress direction (Fig. 3, top panel). The
agreement with the satellite data is very good for all the AF for RUN1-3. It is noticeable
that in this period there are still rapid changes in wind direction, from eastward to20

south-westward in RUN1, between 29–30 December 2004. In contrast, in RUN4-5, the
relative agreement is not as good since NH1 and LAM2 show bigger variations, both
positive and negative, with respect to ECMWF forecasts. Therefore, it makes sense
to analyze the period RUN1-3 separately from the period RUN4-5, to look for specific
events that characterize these regimes. The analysis of wind stress will permit us to25

assess the ocean currents at the surface which are mainly wind-driven. The existence
of the two distinct periods depicted above is confirmed by the sea surface dynamics
and appears clearly in the time series of surface kinetic energy (Fig. 4). During the
RUN1-3 period, all three AF drove similar dynamics and produced almost constant
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kinetic energy of the surface layer. In the RUN4-5 period, the energy content suddenly
rose by 100% and oscillations became more intense, returning to values comparable
with the RUN1-3 period only at the end of RUN5. A comparison with the time series
of wind stress intensity, (Fig. 2, top panel) shows the prompt response of the ocean
model to the AF, which force a more energetic circulation if stronger wind intensity is5

forecasted.
Regarding the RUN1-3 period the time series of the spatially averaged values of

wind stress magnitude and direction show that NH1 and LAM2 have a similar behavior
as confirmed by rmse time series. For wind stress magnitude, the most noticeable
differences are in the last two days of RUN3, when the ECMWF forecast gives a lower10

mean intensity with respect LAM2, making a better fit with satellite data. Regarding
wind direction, HR and VHR AF practically have an identical behavior for the whole
RUN1-3 period.

To gain further insight of the difference between AF we analyzed surface maps. For
example, Fig. 5 shows the daily mean wind stress field over the Central Mediterranean15

for the RUN1-3 period, forecasted and observed by a satellite for 5 January 2005 (start
of RUN2). The results suggest the main features are forecasted well by every AF: (i)
the prevailing north-westerly direction, (ii) the general magnitude, and (iii) the strongest
winds over the open sea from Sardinia towards the south-east, reaching the maximum
in front of Malta.20

A lower wind stress intensity was also noticed, which was forecasted by ECMWF with
respect to higher-resolution models, as already visible from means of Fig. 2 (top panel,
start of RUN2). Regarding NH1 and LAM2, wind stress shows a very similar, general
pattern for both AF. However, for wind blowing across an obstacle (land) the VHR
model NH1 shows generally higher values of wind stress in the downwind region and a25

longer extension of plumes. This is particularly visible in the south-east of the Messina
Strait, where NH1 best fits with satellite data forecasting of a plume underestimated by
LAM2 and totally omitted by ECMWF. Other regions in which this phenomenon is often
remarkable with north-westerly wind (the most common in this region) are Malta Island
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and Cape Bon in Tunisia.
Analyzing the RUN4-5 period, differences in wind stress intensity and direction

among the various forecasts are quite relevant, especially for the second half of the
simulations, as appears in Figs. 2 and 3. The biggest gap in wind stress intensity and
direction pertain to 23 January 2005. During that day, the average satellite magnitude5

of about 0.1 Nm−2 was well forecasted by NH1 and LAM2, whereas ECMWF provided
a much larger value of 0.25 Nm−2. Also, for the same day, ECMWF gave a better fore-
cast of the wind direction (south-eastward) while NH1 and LAM2 gave north-eastward
winds. Another difference in wind stress intensity was visible for 30 January 2005, when
the higher-resolution AF predicted values closer to satellite measurements. Moreover,10

a clear difference between NH1 and LAM2 was visible with NH1 giving a mean inten-
sity greater by 30% with respect to LAM2 and was more consistent with satellite data.
Regarding wind direction, NH1 and LAM2 had practically identical behavior for all the
forecast runs, except during RUN5, on 28 January 3rd forecast day). In the first hours
of that day the dominant eastward wind rapidly changed its direction, becoming south-15

ward for NH1 or northward for LAM2 at 05:00 UTC and then approximately returning
to its previous direction. In contrast, ECMWF forecasts produced a steady eastward
wind during the same period. Rmse in that day was quite high (∼70◦) for all AF, but
consider that there was the same problem of resolution with satellite data, which are
daily means not useful to show similar fast events. In any case, Fig. 2 suggests that20

the differences appeared in a period of very low winds.
The differences in forecasted wind field influenced the sea surface current (SSC).

For example, the SSC for 23 January 2005, indicates a maximum discrepancy between
ECMWF and NH1-LAM2, as discussed above (Fig. 6). Before analyzing SSC differ-
ences, the general behavior of the eastward MAW flux was observed. It was clearly25

detectable as a strong velocity stream emerging from Sardinia Channel and dividing
in two main branches at the Sicily Strait. The northern branch propagated eastward
in a meandering way, passing between Sicily and Malta and the southern branch went
south-eastward, approximately following the 50 m bathymetry (Fig. 1), producing vari-
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ous vortices during its passage.
Figure 6 compares SCRM current forecasts obtained with by using various AF and

with MFS1671 forecast. MFS1671, as explained in Sect. 2, is the coarser resolution
ocean model from which SCRM takes the initial and boundary conditions. The atmo-
spheric fields are provided by the same medium resolution AF (ECMWF) as used for5

SCRM. Therefore, it is not surprising that SSC, forced by ECMWF, are quite similar
for both ocean models SCRM and MFS1671 (bottom panels of Fig. 6). On one hand
there are differences like the small vortex to the north of Messina Strait, which are
ascribed to the higher resolution of the ocean model itself (1/32◦ for SCRM against
1/16◦ for MFS1671). On the other hand, SSC forecasts produced by higher-resolution10

AF show remarkable differences from the ECMWF-driven forecast. As expected from
wind stress intensities, which were closer to observations for higher-resolution AF, sea
surface circulation is less intense for NH1 and LAM2. It presents more vortices, espe-
cially in the shallow Gulf of Gabes and in the triangle of Sardinia-Sicily-Tunisia, probably
due to the different direction of winds from the various AF.15

As already noted, another characteristic event was the difference in forecasted wind
stress direction for 28 January 2005. The relative maps of wind stress are shown in
Fig. 7, representing snapshots at 06:00 UTC for NH1, LAM2 and ECMWF, and daily
mean for satellite observation. It turns out that the differences in mean wind stress di-
rection between AF were due to the passage of a fast cyclonic disturbance located near20

the northern boundary. A vortex formed south-east of Sardinia and crossed eastward
of the SCRM domain in about 12 h. The structure was fully developed in NH1 while
LAM2 showed only a very weak trace of this phenomenon and it was not visibile using
ECMWF. Differences between NH1 and LAM2 are probably caused by the enhanced
description of orographyc features in NH1 due to its greater spatial resolution, while the25

ECMWF resolution was lower than LAM2 and does not reproduce the phenomenon at
all. Unfortunately, satellite observations cannot aid to assess the reality of that event
due to their daily resolution. It is interesting to note, by observing closely the surface
kinetic energy for 28 January 2005 (Fig. 4, RUN5), that NH1 presented a peak with
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respect to LAM2 which is centered on 17:00 UTC. This was produced by the afore-
mentioned 05:00 UTC perturbation showing that the delay of SSC in response to wind
changes is about 12 h. In any case, the event was so fast and weak that daily mean
SSC for this day did not present any difference between the various AF (not shown).

3.2 Sea surface temperature analysis5

SST is the most important parameter to validate an ocean forecast over an extended
domain, provided the existence of sufficiently high resolution satellite observations.
The assessment of SST on SCRM domain is shown in Fig. 8, showing mean SST,
its rmse with respect to satellite data, and the net ocean heat flux which drives the
changes of temperature. The temporal variations of mean values (top panel), were well10

followed by ocean model whatever AF is used, but they generally underestimated the
observed SST for about 0.5◦C. The gap between forecasts and observations remained
approximately the same for the whole analyzed period, in which the sea cools at the
surface from 17◦C to 15◦C, approaching its lowest annual value (usually about 14◦C,
reached at the end of February).15

The diurnal cycle is also visible (Fig. 8), occasionally reaching large oscillations, as
in the first day of RUN3 and in the fifth day of RUN4 (23 January 2005), when there was
a difference of about 0.3◦C between the minimum and maximum value of the spatially
averaged SST. In those dates there was also the most noticeable difference between
AF, with NH1 and LAM2 giving warmer temperatures (+0.2◦C) with respect to ECMWF20

and approaching the remote-sensed values.
The intense oscillations of SST are related to the maximum day/night differences in

the net heat flux exchange between air and sea (Fig. 8, bottom panel). The heat loss
occurs most of the time, with the occasional heat gain only during the daytime. Dif-
ferences in heat flux between ECMWF and higher-resolution AF are often quite large25

during the daytime, probably due to the parameterization for solar radiation when using
ECMWF, which relies basically on geometric considerations (see Table 1). Alterna-
tively, solar radiation fluxes were directly provided by NH1 and LAM2 with a presum-
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ably better parameterization. Other sources of divergence for heat fluxes were the
wind intensity (biggest heat losses are closely related to strong wind periods, compare
with Fig. 2) and the air temperature (not shown), affecting the latent and sensible heat
fluxes. The variation was more clearly visible during the night time, when the solar en-
ergy flux is zero. Nonetheless, the different net heat fluxes cannot produce a marked5

variation in SST, provided the slow variation of temperature with time, and recalling
that forecasts are run in slave mode. The weekly re-initialization based on the coarse
model forces SCRM to stay close to the prescribed initial boundary conditions. This is
ever more apparent for NH1 and LAM2, which differ only in horizontal resolution and
which produce identical SST time series.10

The rmse analysis (Fig. 8, center panel) shows quite large variations in the skill of
the model predicting the SST, ranging from 0.5◦C to 1◦C. Minimum values are reached
during RUN5, when also the spatially averaged SST are more similar. The slightly
lower ECMWF rmse (generally 0.03◦C lower than NH1 and LAM2) is compensated by
the error on satellite SST (usually around 4% of the estimated value).15

The SST pattern is mainly influenced by geographical position (through the modu-
lation of solar radiation with latitude) and by the presence of circulation patterns like
eddies and coastal upwellings. As an example, both forecasted and observed SST
distribution, for 23 January 2005 are shown in Fig. 9. During that day there was the
maximum discrepancy in the mean SST between the various AF, as noted above. The20

general pattern shows an increasing temperature toward the south-eastern portion of
the domain, modulated by local features. Among these, it is worthy to note the southern
branch of MAW characterized by low temperatures along the African shelf. In partic-
ular, the lowest SST were reached in the Gulf of Gabes (southern Tunisia); this is a
large area in which the temperature variations reach the extremes, due to its shallow-25

ness (depth <50 m). The ocean model had a very good response in this area when
compared to satellite SST data, independently from the AF used. Another feature well
resolved by all the AF is the cold region next to the southern Italian coast of Sicily
and Calabria, due to extended coastal upwellings induced by the northern branch of
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MAW and the large region of warm water standing off the northern African coast below
35◦ N. Conversely, the main differences between model forecasts and observations
are the SST underestimation of the large system of warmer water of the Ionian Ther-
mal Front which, starting from 36◦ N, extends northward reaching the eastern offshore
of Sicily. Another different pattern is the warmer region north-west of Malta, which is5

clearly seen by satellite but missing in forecasts.
The temperature patterns produced by different AF result in a very similar SST distri-

bution on a daily basis. In Fig. 9 only minor differences are visible among the forecasted
and observed SST. As already noted above, it is a limit of the slave-mode forecasts,
in which sometimes large differences in heat fluxes provided by the various AF do not10

have sufficient time to affect SST.

4 Conclusions

In this paper we have analyzed the response of a regional ocean forecasting sys-
tem, operating in near real time on the Central Mediterranean, driven by three different
atmospheric models. The atmospheric forcings used had an increasing resolution,15

temporal (from 6-h to 1-h) and spatial (from 0.5◦ to 0.05◦). The two higher-resolution
forcings were both applications of the same atmospheric model (differing only in hori-
zontal resolution), while the medium-resolution forcing has been provided by a different
model. For each of the five chosen time periods, ocean forecasts have been obtained
from three different simulations, differing in atmospheric forcing. Each run started in20

slave mode, i.e. initializing the regional model according to the initial and boundary
ocean conditions provided by a coarser ocean model. Forecasts have been assessed
by satellite data, using as a reference a set of remote-sensed measurements of wind
stress and sea surface temperature.

The analysis suggests that all the atmospheric forecasts give in general a good es-25

timation of wind field, both in intensity and direction. When marked differences in
wind forecasts arise, the ocean model responds promptly resulting in different sea
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surface dynamics. In general, all the produced sea surface current patterns seem
to be in agreement with the present knowledge of the circulation in the area. The
higher-resolution forcings often drive current patterns with more vortices. The very
high-resolution forcing, in particular, has been the only model able to predict the fast
passage of a small cyclonic perturbation in the Sardinia Channel, which affected the5

surface circulation in the area during the following hours. Unfortunately, no direct com-
parison with measured surface current were possible, due to the lack of measurements.
The wind stress assessment, which indirectly gives information on the sea current fore-
cast skill, was not conclusive to clearly distinguish between the various atmospheric
forcings, due to the low resolution (both spatial and temporal) of the satellite data used10

as reference.
Sea surface temperature is in a good agreement with the satellite data, though ocean

model in general underestimates it for about 0.5◦C. Regardless, the surface patterns
of temperature are essentially in agreement with measured ones, showing the thermal
track of well-known structures. At the same time, no remarkable differences in the15

surface temperature forecast skill arise using the various atmospheric forcings.
Within the scope of this work, higher-resolution atmospheric forcings have shown

the ability to form interesting dynamics structures on surface, though no direct assess-
ment of currents was possible. The sea surface temperature remains substantially
unaffected by the change of atmospheric model. In this regard, an important point to20

note is that the ocean model was run in slave mode. In fact, this kind of system gives
essentially no time for the regional model to develop its own dynamics on larger scales,
forcing it to stay closer to the results of the coarse model. In this way, the various sur-
face dynamics features that have been noticed emerging when forecasted wind fields
were different, are constrained to have a short life. It is also known how important are25

the precise hour-by-hour surface current forecasts in an application such as the oil-spill
modeling, especially when operatively used for emergencies, or in general for the dis-
persion of pollutants in the sea. Besides this, possibly different air/sea fluxes, arising
for example from different wind intensity or air temperature forecasts, have no time to
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produce effects on slowly-changing variables like sea surface temperature.
These problems could in principle be avoided running ocean forecasts in active

mode, i.e. restarting regional model without re-initialization by the coarse model. This
implies the temporal continuity of atmospheric forcings. The comparison of the effect of
different atmospheric forcings under such an active forecast system will be the future5

development of this work, together with the extensive use of experimental data from
current meter gauges to directly test the reliability of sea surface current forecasts.
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Table 1. Atmospheric forcings used in this work and their variables. A provided field is marked
with

√
; otherwise, the field is calculated following the indicated reference. Bulk formulae used

for fluxes are described by Castellari et al. (1998). NH1 and LAM2 provide the same fields with
different horizontal resolution.

Parameter NH1-LAM2 ECMWF

Horizontal resolution NH1: 0.05◦; LAM2: 0.1◦ 0.5◦

Temporal resolution 1 h 6 h
Temporal coverage 5 days 10 days
Mean sea level pressure

√ √

Cloud coverage
√ √

Zonal wind at 10 m a.s.l.
√ √

Meridional wind at 10 m a.s.l.
√ √

Relative humidity at 2 m a.s.l.
√

Martellucci et al. (2002)
Specific humidity at 2 m a.s.l. not calculated

√

Precipitation
√

not provided
Drag coefficient Hellerman and Rosenstein (1983) Hellerman and Rosenstein (1983)
Zonal wind stress Castellari et al. (1998) Castellari et al. (1998)
Meridional wind stress Castellari et al. (1998) Castellari et al. (1998)
Downward shortwave flux

√
Rosati and Miyakoda (1988), Castellari et al. (1998)

Upward shortwave flux
√

Reed (1977), Payne (1972)
Downward longwave flux

√
Bignami et al. (1995)

Upward longwave flux Bignami et al. (1995) Bignami et al. (1995)
Latent heat of vaporization Gill (1982) Gill (1982)
Latent heat flux Gill (1982), Kondo (1975) Gill (1982), Kondo (1975)
Sensible heat flux Kondo (1975) Kondo (1975)
Water flux Castellari et al. (1998) Castellari et al. (1998)
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Fig. 1. SCRM domain and bathymetry.
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Fig. 2. Top: mean wind stress magnitude, forecasted and observed. Bottom: rmse of wind
stress magnitude with respect to satellite data. The solid thick light grey line represents NH1,
solid thin black line LAM2, dashed dark grey line ECMWF and diamonds satellite data.
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Fig. 3. Top: mean wind stress direction, forecasted and observed. Bottom: rmse of wind stress
direction with respect to satellite data. Symbols are the same as in Fig. 2. Convention on
directions is: wind blowing southward =−90◦; eastward =0◦; northward =90◦; westward =180◦.
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Fig. 4. Forecasted mean surface kinetic energy. Symbols are the same as in Fig. 2.
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Fig. 5. Forecasted and observed wind stress for 5 January 2005. For clarity, not all grid points
have been plotted.
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Fig. 6. Streamlines of forecasted sea surface currents for 23 January 2005.
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Fig. 7. Forecasted and observed wind stress for 28 January 2005. Top, and bottom left:
forecasts for 06:00 UTC. For clarity, not all grid points have been plotted. Bottom right: mean
of satellite observations 00:00–24:00 UTC.
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Fig. 8. Top: Mean SST, forecasted and observed. Center: rmse of SST with respect satellite
data. Bottom: net ocean heat flux. Symbols are the same as in Fig. 2.
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Fig. 9. Forecasted and observed SST for 23 January 2005.
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