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Abstract

As a part of the project Mediterranean Network to Assess and Upgrade Monitoring and
Forecasting Activity in the Region (MAMA) we implemented a high resolution nested
hydrodynamic model (1/40◦ horizontal grid, 16 sigma levels) for the coastal, shelf and
open sea areas off the Lebanese coast, East Levantine Basin of the Eastern Mediter-5

ranean Sea. The Lebanese Shelf Model (LSM) is a version of the Princeton Ocean
Model (POM). It is nested in a coarse resolution model the Aegean Levantine Eddy
Resolving Model (1/20◦ horizontal grid, 25 sigma levels), ALERMO, that covers the
Eastern Mediterranean. The nesting is one way so that velocity, temperature, and
salinity along the open boundaries are interpolated from the relevant coarse model10

variables. Numerical simulations have been carried out under climatological surface
and lateral forcing. Due to the relatively small domain, the results closely follow the
simulation of the intermediate model with more details especially over the narrow shelf
region. Simulations reproduce main circulation features and coastal circulation charac-
teristics over the eastern Levantine shelf. This paper describes the modeling system15

setup, compares the simulations with the corresponding results of the coarse model
ALERMO, and with the observed climatological circulation characteristics in the Lev-
antine Basin off the Lebanese coast.

1 Introduction

The continental shelf at the eastern part of the Mediterranean Sea off Lebanon is rel-20

atively narrow (3–18 km) as compared to other Mediterranean regions because of the
limited sediment drift in this area. The shelf is interrupted by a series of deep sub-
marine canyons in its upper part which can be linked to a prominent fault pattern ob-
served in the Lebanon Mountains (Emery and George, 1963; Geodicke, 1972). Direct
current measurements conducted along the Lebanese coast reveal a predominantly25

bathymetry-following, north-northeastward flow and anticyclonic eddy features that fol-
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low the coast (Kibar and Sokolov, 1988). Data obtained in the 1960s, 1970s and 1980s
(Oren, 1970; Ovchinnikov et al., 1976, Hecht et al., 1988) indicated an anticyclonic
circulation in the southern part of the Eastern Mediterranean. Hydrographic obser-
vations made by the Physical Oceanography of the Eastern Mediterranean (POEM)
cruises (Ozsoy et al., 1991, 1993; The POEM Group, 1992; Brenner, 1993) and the5

EDDY cruises (Brenner et al., 1991; Brenner, 1993) indicate that the circulation in the
offshore waters (deeper than 1000 m) in the central latitudes of the Levantine Basin is
predominantly anticyclonic due to the presence of a recurrent gyre system. In addi-
tion to the extensive data collection programs that have been conducted through the
Eastern Mediterranean over the past 15–20 years, various efforts have focused on10

modeling the circulation of the Mediterranean Sea and its sub-basins (e.g. Tziperman
and Malanotte-Rizzoli, 1991; Roussenov et al., 1995; Zavatarelli and Mellor, 1995; Wu
and Haines, 1998; Lascaratos and Nittis, 1998) but the essential step was done within
the framework of the Mediterranean Forecasting System (MFS) promoted by The Eu-
ropean Global Ocean Observing System (EuroGOOS, 1997) for the implementation of15

operational oceanography in the Mediterranean Sea. The Mediterranean Forecasting
System Pilot Project (Pinardi et al., 2003), MFSPP, represented the first phase in the
realization of this goal and aimed for the development of an operational forecasting
system for the Mediterranean Sea based upon three components: a near real time ob-
serving system, numerical forecasting systems at basin scale and for regional areas,20

and a forecast products dissemination/exploitation system. The MFSPP project has
continued as the Mediterranean Forecasting System – Toward Environmental Predic-
tion (MFSTEP). The modeling system of MFSTEP consists of: the full Mediterranean
general circulation model (Pinardi et al., 2003), at approximately 7 km resolution, re-
gional models for different regions of the Mediterranean Sea such as the Aegean Lev-25

antine Eddy Resolving Model (Korres and Lascaratos, 2003), ALERMO, for the East-
ern part of the Mediterranean Sea, at approximately 3 km resolution, and a collection
of shelf/coastal models for different areas of the Mediterranean Sea. The hierarchy of
models are linked using a one-way nesting technique.
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Within this activity and in cooperation with the International Marine Centre – Sar-
dinia, we have developed a high resolution model for the shelf and open sea areas of
Lebanon. The aim of this paper is to describe the modeling system setup; illustrate
climatological simulations; compare the results with the corresponding results of the
coarse model ALERMO and with the observed climatological circulation characteris-5

tics in the shelf and open sea area of Lebanon.

2 Model set-up

The model that has been used in this work is the Princeton Ocean Model (POM). POM
has been extensively described in literature (e.g. Blumberg and Mellor, 1983, 1987;
Oey et al., 1985a, b; Galperin and Mellor, 1990a, b; Mellor and Ezer, 1991a) and used10

to simulate the circulation in various regions of the world, including the Mediterranean
Sea (e.g. Zavatarelli and Mellor, 1995; Lascaratos and Nittis, 1998). POM is a primi-
tive equation, three-dimensional, time-dependent hydrodynamic model. It consists of
prognostic equations for the two components of the horizontal momentum, potential
temperature, salinity, and the free surface and three diagnostic equations consisting of15

the hydrostatic equation, an equation of state, and the vertical velocity, which is derived
from the mass continuity equation. The model uses the Mellor-Yamada turbulence clo-
sure sub-model in order to provide the vertical turbulent mixing coefficients (Mellor and
Yamada, 1982). The horizontal diffusion for momentum is described by Smagorinsky
horizontal diffusion formula (Smagorinsky, 1993). The model comprises a bottom fol-20

lowing sigma coordinates, and a split mode time step. The model horizontal grid uses
curvilinear orthogonal coordinates and an “Arakawa C” differencing scheme.

2.1 Equations of the model

The equations of motion are Eqs. (1), (2) and (3); continuity is Eq. (4); conservation of
temperature is Eq. (5); conservation of salinity is Eq. (6). Hydrostatic and Boussinesq25
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approximations are invoked. The equation of state, Eq. (7), is an adaptation of the
UNESCO equation of state revised by Mellor (1991).
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ρ = ρ(T, S, p) (7)10

The vertical mixing coefficients KM , KH are calculated using the Mellor and Yamada
(1982) turbulence closure scheme. The horizontal diffusion coefficients AM are calcu-
lated using the Smagorinsky formula (Smagorinsky, 1993),

AM = C∆x∆y

√√√√√(
∂u
∂x

)2

+

(
∂v
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∂y

)2

2
+
(
∂v
∂y

)2

(8)

The model domain and bathymetry are shown in Fig. 1. It covers the region from 34.46–15

35.985◦ E and 32.96–34.735◦ N. The horizontal grid resolution is 1/40◦ in longitude and
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latitude (62×72 grid points). In the vertical direction we used 16 layers. The sigma
levels are more closely spaced in the topmost layer. For the bathymetry, the source
is DBDB1 database (whole Mediterranean, 1/60◦), adapted to our model through a
bilinear horizontal interpolation. The minimum depth is 5 m. The coarse or intermediate
model ALERMO covers the region 28–36◦ E and 30.7–37.0◦ N, and has a resolution of5

1/20◦ in both latitude and longitude.

2.2 Lateral open boundary conditions

The Lebanese shelf model (LSM) has three open boundaries: north, south, and west.
In order to find the boundary conditions for LSM at these three open boundaries, LSM
was nested in ALERMO. The time-varying ALERMO data (u, v , ubar, vbar, T , S) were10

interpolated bilinearly to the open boundaries of LSM. In order to avoid inaccuracies in
the interpolation which can generate errors leading to distortions of the model solution
at the open boundaries or to violation of mass conservation (Pullen, 2000), an integral
constraint was imposed on the interpolated normal velocity across the open boundaries
so that the cross sectional area flux across the entire boundary is preserved. This15

constraint for the interpolated normal velocity takes the form

l2∫
l1

ηc∫
Hc

Ucdzdl =

l2∫
l1

ηh∫
Hh

Ucorr
f dzdl (9)

where l is the horizontal coordinate along the open boundary with end points l1 and
l2, the superscript corr refers to the adjusted or corrected interpolated normal velocity.
Superscripts c and h refer to the coarse (ALERMO) and high (LSM) resolution models20

respectively.
The LSM was nested to ALERMO as follows:

1. Free surface elevation is not nested: zero-gradient condition.
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2. For the normal barotropic velocities (depth averaged) the following equation was
applied (Pinardi et al., 2003):

Vh =
H + ηc

H + ηh
Vc + ε

√
g
H

(ηh − ηc) (10)

Where ε=1 for a northern boundary and ε=−1 for a western or southern bound-
ary.5

3. Tangential total and barotropic velocities were set to zero.

4. Total normal velocities are specified by the interpolation of the coarse resolution
model field to the finer model grid

Vc = Vh (11)

5. For inflow conditions, T and S at the boundary of the fine grid are specified by the10

coarse model solution:

Tc = Th;Sc = Sh (12)

whereas for outflow conditions, an upstream advection scheme has been used:

∂(T, S)

∂t
+ U

∂(T, S)

∂x
= 0 (13)

2.3 Surface and bottom boundary conditions15

Monthly means of wind stress, heat and water fluxes on the sea surface were calculated
from the ECMWF 6-hourly Re-Analysis (ERA) data set covering the period 1979–1993.
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See Korres and Lascaratos (2003) or Sorgente et al. (2003) where the same forcing is
used. The surface boundary conditions are:

KV
∂u
∂z

|z=η =
τ

ρ0
(14)

Kh
∂T
∂z

|z=η =
Qsol −Qup

ρCp
+

C1

ρCp
(T ∗ − Tz=η) (15)

Kh
∂S
∂z

|z=η = S(E − P ) + C2(S∗ − Sz=η) (16)5

The wind stress is the monthly mean τ from the climatology; ρ0 is the air density.
Figure 2 presents the monthly average climatological wind stress from ECMWF inter-
polated in the LSM grid for February (a) and August (b), representative of winter and
summer. In both cases, the winds are primarily westerly, and are weaker in the north-
ern part of the domain in winter. The mean wind stress over the study area is nearly10

0.010 N m−2 in February and 0.013 N m−2 in August. The climatological annual cycle
of mean wind stress (Fig. 3a) peaks in June and reaches a low in November. The solar
radiation is Qsol (from ERA), and Qup is the upward heat flux which includes sensible,
latent, and longwave heat fluxes. Flux Qup was calculated according to Bignami et
al. (1995) using ALERMO and ECMWF fields. The monthly climatological heat fluxes15

comprise the perpetual year cycle in Fig. 3. The heat gain is highest in June, while the
heat loss is highest in December (Fig. 3b).

Precipitation E and evaporation P fluxes were calculated using Legates and Wilmott
(1990). The seasonal cycle of the freshwater budget (evaporation – precipitation) has
low values during winter and spring and high values during summer and autumn. Evap-20

oration and precipitation reach maximum values in winter (Fig. 3c).
The additional two terms C1 (T ∗−Tz=η) and C2 (S∗−Sz=η) are used for further adjust-

ment of ALERMO fluxes for the LSM modeling area. In this study we used the values:
C1=5 W m−2◦C and C2=0.7 m day−1. The monthly mean sea surface temperature T ∗
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and salinity S∗ were calculated from the Mediterranean climatological dataset Med6
(Brankart and Pinardi, 2001). These terms relax the temperature and salinity of the
upper layer of the model (z=η) to the climatology. At the ocean bottom the boundary
condition is based on a quadratic drag formulation.

All data (τ, T ∗, S∗, Qsol, Qup, E , and P ) have been interpolated into the high-resolution5

grid through bilinear horizontal interpolation. Smoothing with a 5-point Laplacian filter
has been used. Also a linear time interpolation is needed, from the time step of these
data to the time step of the model (4 s).

3 Results and discussion

The model started from 1 January with integrations running for three successive years,10

using the perpetual year surface and lateral boundary conditions as described in the
previous section. The simulated circulation in the Lebanese shelf and open sea area
presented in this work refers to the third year of the perpetual run of the model.

Figure 4 shows the evolution of the domain mean kinetic energy, temperature, and
salinity during the three years of integration. The evolution of the three integral quanti-15

ties shows that the model quickly reached an equilibrium state in the form of a repeating
annual cycle. The kinetic energy annual cycle has minimum values in May, and a peak
in July, gradually decreasing through December to the following May (Fig. 4a). The
pattern follows that of mean wind stress, but with about one month of lag and more
variability. The large role of surface kinetic energy in total kinetic energy is evident.20

The initial adjustment period during the first year allowed the mean kinetic energy to
increase from low values. The domain mean temperature reflects the seasonal cycle of
the upper layers and has a maximum in late July to early August and a minimum in late
February to early March (Fig. 4b). There is a small relative maximum of temperature
in early January of each year. This is probably an artifact due to a discontinuity in the25

repeating cycle of heat flux at the start of each perpetual year (Brenner, 2003). The
domain mean salinity annual cycle has a maximum in late January when the relatively
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saline Levantine Intermediate Water (LIW) dominates the upper 200 m (Fig. 4c). The
low integrated salinity in late summer is associated with the inflow of Atlantic Water
(AW). It should be noted that LIW is not formed locally. (Indeed, in the period of the
high salinity double peak from December though May, precipitation dominates or bal-
ances evaporation in Fig. 3c.) The annual cycle of salinity seems to be more related to5

the lateral boundary conditions than the surface forcing.
Simulated temperature and salinity profiles are compared with ALERMO climatology

at two points A and B (Fig. 1) in the model domain off Jounieh Bay. Point A is located
at (34◦ N, 34.8◦ E) and point B is located at (34◦ N, 35.4◦ E). The modeled profiles are
taken from 10-day averaged fields for 10–20 of the month for February and October10

(Fig. 5). The modeled temperature and salinity profiles compare well with ALERMO,
confirming the ability of the model to reproduce the seasonal cycle of temperature and
salinity. At points A and B, temperature profiles are nearly coincident with the exception
that in February, the thermocline is shallower in LSM, although of reasonable depth
for the winter period. Differences are generally less than 0.3◦C. Salinity profiles are15

generally smoother in LSM, and the biggest differences usually occur just below the
halocline, where ALERMO shows lower salinity than LSM. Differences are generally
less than 0.04 ppt.

Simulated total velocity and scalar fields and the corresponding ALERMO results are
shown in Figs. 6–9. In panel (a) of each figure are the 10-day means of LSM, while20

the corresponding ALERMO fields interpolated to LSM grid are in panel (b). The over-
all results of the high-resolution model and the intermediate model are similar in all
cases although the high resolution model often presents more developed mesoscale
structure. Along the shelf break, the near-surface current in general is directed along
the coast towards the north-northeast and attains appreciable 10-day average values25

of about 30–40 cm s−1. The relatively small domain is tightly constrained by the in-
termediate model’s boundary conditions and the coast, yet some mesoscale structure
appears in the interior of the fine resolution model. In particular, the instability of the
coastal current evident in LSM generates an anticyclonic eddy which can be observed
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in the middle of the domain (33.7◦ N, 34.8◦ E) during summer and autumn (Figs. 8 and
9). At that time, the eddy is seen to pinch off from the coastal current only in the LSM
and completely within the LSM domain. It is not forced directly by ALERMO boundary
conditions, such as the anticyclonic circulation visible at 33.5◦ N in Figs. 6–7. Coastal
instabilities such as this have been observed from satellite in this region (see Fig. 4 of5

Zodiatis et al., 2005b).
Another anticyclonic eddy appears in the northern part of the domain during March

and August (Figs. 7 and 8) with velocities as high as 35 cm s−1. Again, this eddy is
more fully developed in LSM and in both models appears to be the result of a pinched
off meander in the coastal current. Investigations of the SE Levantine Basin within10

the CYBO-Cyprus Basin Oceanography cruises (Zodiatis et al., 2004, 2005a, b) reveal
that an anticyclonic eddy was established between southeast of Cyprus and offshore
Lebanon in March 2002. A similar structure has been observed from satellite in May
2002 (Zodiatis et al., 2005a). Climatological runs of the coastal area Cyprus (Zodiatis
et al., 2003) also indicate the development of secondary anticyclonic eddies near the15

area of 34.5◦ N and 35◦ E, particularly in spring and summer. Later, in September, a
cyclonic eddy is found in the northern part of the domain (Fig. 9). This is consistent with
the climatological simulations of Zodiatis et al. (2003) for October where the secondary
anti-cyclonic eddy is replaced by a large cyclonic eddy. In Ozsoy et al. (1991), it is
shown that the POEM-V cruise of 1987 and another cruise in 1988 encountered a20

large cyclonic eddy almost directly east of Cyprus during summer and late summer.

4 Conclusion

In this work we presented the implementation of a high resolution nested model for
the coastal/shelf area of Lebanon (the Lebanese shelf model, LSM). The results of cli-
matological simulations were compared with the coarse model ALERMO. Reasonable25

seasonal cycles in mean temperature and salinity were reproduced, as well as sea-
sonal evolution of upper-layer stratification. The main known climatological circulation

383

http://www.ocean-sci-discuss.net
http://www.ocean-sci-discuss.net/3/373/2006/osd-3-373-2006-print.pdf
http://www.ocean-sci-discuss.net/3/373/2006/osd-3-373-2006-discussion.html
http://www.copernicus.org/EGU/EGU.html


OSD
3, 373–396, 2006

Nested model for
Lebanese coastal

area: climatological
runs

N. Kabbara et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

EGU

features in the shelf area of Lebanon are produced by LSM. The dominant flow features
of the LSM domain are: northeastward-flowing coastal current, two anticyclonic eddies
from pinched off meanders of the coastal current, and a large cyclonic eddy driven by
the boundary conditions in the northern part of the domain in September.
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Fig. 1. Model domain and bathymetry of the study area. Model profiles will be plotted for point
A (34◦ N, 34.8◦ E) and point B (34◦ N, 35.4◦ E).
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Figure 2. Monthly average climatological wind stress. (a): February, (b): August. 
Units are N m-2.
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Fig. 2. Monthly average climatological wind stress. (a): February, (b): August. Units are N m−2.
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Fig. 3. Annual climatological cycle of (a): the mean wind stress magnitude (b): the total surface
heat flux (solid line), solar radiation (dashed line), and the upward heat flux (dotted line), and
(c): the total fresh water flux (E-P) (solid line), precipitation (dashed line), and evaporation
(dotted line). 390
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Fig. 4. Evolution of the domain means of (a) kinetic energy, (b) potential temperature, and (c)
salinity during the three years of integration.
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Figure 5. Comparison between modeled (solid line) and ALERMO (dotted line) 10-
day average temperature and salinity profiles at two locations of the modeled domain: 
A (34° N, 34.8° E) and B (34° N, 35.4° E), and at two different periods: 10-20 
February and 10-20 October. 
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Fig. 5. Comparison between modeled (solid line) and ALERMO (dotted line) 10-day average
temperature and salinity profiles at two locations of the modeled domain: B (34◦ N, 35.4◦ E)
and A (34◦ N, 34.8◦ E), respectively, and at two different periods: 10–20 February and 10–20
October.
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Figure 6. Simulated potential temperature and velocity at 5 m: (a) 10-day average for 
10-20 February, and (b) 10-day average for 10-20 February from the intermediate 
model.
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Fig. 6. Simulated potential temperature and velocity at 5 m: (a) 10-day average for 10–20
February, and (b) 10-day average for 10–20 February from the intermediate model.
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Figure 7. Simulated potential temperature and velocity at 5 m: (a) 10-day average for 
10-20 March, and (b) 10-day average for 10-20 March from the intermediate model. 
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Fig. 7. Simulated potential temperature and velocity at 5 m: (a) 10-day average for 10–20
March, and (b) 10-day average for 10–20 March from the intermediate model.
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Figure 8. Simulated salinity and velocity at 30 m: (a) 10-day average for 10-20 
August, and (b) 10-day average for 10-20 August from the intermediate model.
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Fig. 8. Simulated salinity and velocity at 30 m: (a) 10-day average for 10–20 August, and (b)
10-day average for 10–20 August from the intermediate model.
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Figure 9. Simulated potential temperature and velocity at 30 m: (a) 10-day average for 
10-20 September, and (b) 10-day average for 10-20 September from the intermediate 
model. 
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