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Abstract

The 2003 Gibbs thermodynamic potential function represents a very accurate, com-
pact, consistent and comprehensive formulation of equilibrium properties of seawater.
It is expressed in the International Temperature Scale ITS-90 and is fully consistent
with the current scientific pure water standard, IAPWS-95. Source code examples in5

FORTRAN, C++ and Visual Basic are presented for the numerical implementation of
the potential function and its partial derivatives, as well as for potential temperature. A
collection of thermodynamic formulas and relations is given for possible applications in
oceanography, from density and chemical potential over entropy and potential density
to mixing heat and entropy production. For colligative properties like vapour pressure,10

freezing points, and for a Gibbs potential of sea ice, the equations relating the Gibbs
function of seawater to those of vapour and ice are presented.

1. Introduction

Thermodynamic potential functions (also called fundamental equations of state) offer a
very compact and consistent way of representing equilibrium properties of a given sub-15

stance, both theoretically and numerically (Alberty, 2001). This was very successfully
demonstrated by subsequent standard formulations for water and steam (Wagner and
Pruß, 2002). For seawater, this method was first studied by Fofonoff (1962) and later
applied numerically in three subsequently improved versions by Feistel (1993), Feis-
tel and Hagen (1995), and Feistel (2003), expressing free enthalpy (also called Gibbs20

energy) as function of pressure, temperature and practical salinity. Their mathematical
structures are polynomial-like and have remained identical throughout these versions
with only slight modifications of their sets of coefficients. The structure was chosen
for its simplicity in analytical partial derivatives and its numerical implementation, as
discussed in Feistel (1993).25

This paper provides code examples for the numerical computation in FORTRAN,
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C++ and Visual Basic 6, and describes their algorithms for the latter case. This code
is neither very compact, nor very fast, nor definitely error-free; it is just intended as
functioning example and guide for the development of individual implementations into
custom program environments. Users are free to use, modify and distribute the code
at their own responsibility.5

The recent Gibbs potential formulation of seawater thermodynamics has a number of
advantages compared to the classical “EOS80”, the 1980 Equation of State (Fofonoff
and Millard, 1983), as explained in detail by Feistel (2003). One important reason is
that it is fully consistent with the current international scientific standard formulation of
liquid and gaseous pure water, IAPWS-95 (Wagner and Pruß, 2002), and with a new10

comprehensive description of ice (Feistel and Wagner, 2005). It is valid for pressures
from the triple point to 100 MPa (10 000 dbar), temperatures from −2◦C to 40◦C, for
practical salinities up to 42 psu and up to 50 psu at normal pressure.

For faster computation, as e.g. required in circulation models, modified equations
of state derived from the 1995 and 2003 Gibbs potential functions have recently been15

constructed by McDougall et al. (2003) and Jackett et al. (2004)1.
A significant advantage compared to the usual EOS80 formulation of seawater prop-

erties is the new availability of quantities like energy, enthalpy, entropy, or chemical po-
tential. We present in section 3 a collection of important thermodynamic and oceano-
graphic relations with brief explanations, for which the new potential function can be20

applied. Such formulas are often only found scattered over various articles and text-
books. In chapter 4, the Gibbs function of seawater is used in conjunction with numer-
ically available thermodynamic formulations for water vapour and water ice, consistent
with the current one (Tillner-Roth, 1998; Wagner and Pruß, 2002; Feistel, 2003; Feistel
and Wagner, 2005). This way colligative properties like vapour pressure or freezing25

points can be computed, as well as various properties of sea ice.

1Jackett, D. R., McDougall, T. J., Feistel, R., Wright, D. G., and Griffies, S. M.: Updated al-
gorithms for density, potential temperature, conservative temperature and freezing temperature
of seawater, J. Atm. Ocean Technol., submitted, 2004.
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2. Gibbs potential and its derivatives

Specific free enthalpy (also called Gibbs function, Gibbs energy, Gibbs free energy, or
free energy in the literature) of seawater, g(S, t, p), is assumed to be a polynomial-
like function of the independent variables practical salinity, S = x2 · SU , temperature,
t = y · tU , and applied pressure, p = z · pU , as,5

g(S, t, p)
gU

= (g100 + g110y) x2 lnx +
∑
j,k

(
g0jk +

∑
i>1

gi jkx
i

)
y jzk . (1)

The unit specific free enthalpy is gU = 1 J kg−1. The reference values are defined
arbitrarily as SU = 40 psu for salinity (PSS-78) (Lewis and Perkin, 1981; Unesco, 1981),
tU = 40◦C for temperature (ITS-90) (Blanke, 1989; Preston-Thomas, 1990), and pU =
100 MPa = 10 000 dbar for pressure. The dimensionless variables x, y , z for salinity,10

temperature and pressure are not to be confused with spatial coordinates. We follow
Fofonoff’s (1992) proposal here and write for clarity “psu” as unit expressing practical
salinity, even though this notion is formally not recommended (Siedler, 1998). We
shall use capital symbols T = T0 + t for absolute temperatures, with Celsius zero point
T0 = 273.15 K, and P = P0 + p for absolute pressures, with normal pressure P0 =15

0.101325 MPa, in the following. The polynomial coefficients gi jk are listed in Table 1.
The specific dependence on salinity results from Planck’s theory of ideal solutions and
the Debye-Hückel theory of electrolytes (Landau and Lifschitz, 1966; Falkenhagen et
al., 1971), providing a thermodynamically correct low-salinity limit of the equation.

There are three first derivatives of g with respect to its independent variables p, t,20

and S.
Density, ρ, and specific volume, v :

1
ρ

= v =
(
∂g
∂p

)
S,t

(2)

4
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with
(
∂g
∂p

)
S,t

= gU
pU

∑
j,k>0

(
g0jk +

∑
i>1

gi jkx
i
)
· k · y jzk−1.

Specific entropy, σ:

σ = −
(
∂g
∂t

)
S,p

, (3)

with
(
∂g
∂t

)
S,p

= gU
tU

[
g110 x

2 lnx +
∑

j>0,k

(
g0jk +

∑
i>1

gi jkx
i
)
· j · y j−1zk

]
.

Relative chemical potential, µ:5

µ =
(
∂g
∂S

)
t,p

(4)

with
(
∂g
∂S

)
t,p

= gU
2SU

[
(g100 + g110y) (2 lnx + 1) +

∑
i>1,j,k

gi jk · i · xi−2y jzk
]

.

Several thermodynamic coefficients require second derivatives of g.
Isothermal compressibility, K :

K = −1
v

(
∂v
∂p

)
S,t

= −

(
∂2g/∂p2

)
S,t(

∂g/∂p
)
S,t

(5)
10

with
(

∂2g
∂p2

)
S,t

= gU

p2
U

∑
j,k>1

(
g0jk +

∑
i>1

gi jkx
i
)
· k (k − 1) · y jzk−2.

Isobaric thermal expansion coefficient, α:

α =
1
v

(
∂v
∂t

)
S,p

=

(
∂2g/∂t∂p

)
S(

∂g/∂p
)
S,t

(6)

5
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with
(

∂2g
∂p∂t

)
S
= gU

pU tU

∑
j>0,k>0

(
g0jk +

∑
i>1

gi jkx
i
)
· j · k · y j−1zk−1

Isobaric specific heat capacity, cP :

cP = T
(
∂σ
∂t

)
S,p

=
(
∂h
∂t

)
S,p

= −T
(

∂2g

∂t2

)
S,p

(7)

with
(

∂2g
∂t2

)
S,p

= gU

t2
U

∑
j>1,k

(
g0jk +

∑
i>1

gi jkx
i
)
· j (j − 1) · y j−2zk .

h is specific enthalpy, as defined below in Eq. (10).5

Isothermal haline contraction coefficient, β:

β = −1
v

(
∂v
∂S

)
t,p

= −

(
∂2g/∂p∂S

)
t(

∂g/∂p
)
S,t

(8)

with
(

∂2g
∂p∂S

)
t
= gU

2pUSU

∑
i>1,j,k>0

gi jk · i · k · xi−2y jzk−1.

The Gibbs potential and its partial derivatives as given by Eqs. (1)–(8) are available
in the sample code by a function call of GSTP03(nS, nT, nP, S, Tabs, Pabs). Input10

parameters nS, nP and nT are the orders of partial derivatives to be carried out with
respect to S, T and P . Input parameters S, Tabs, Pabs are the arguments for salinity
S in psu, for absolute temperature T in K, and for absolute pressure P in Pa. Only
lowest salinity derivatives are supported by the code, nS≤2 for S>0 and nS≤1 for
S≥0. Higher S-derivatives are hardly required in practical applications. A prior call of15

the procedure COEFFS03 is mandatory to initialise the array of coefficients gi jk before
calling GSTP03 the first time.

The function GSTP03 is a wrapper for the function Gxyz(nx, ny, nz, x, y, z) which
represents the right-hand side of Eq. (1) without the leading logarithm term. Input pa-
rameters nx, ny and nz are the orders of derivatives with respect to the dimensionless20

6
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variables x, y and z. A call of the procedure COEFFS03 is required to initialise the
array of coefficients gi jk before calling Gxyz the first time.

When the code is compiled and started, a procedure F03demo(psu, degC, dbar)
is executed automatically. It creates a sample output with the input values psu=35,
degC=20, dbar=2000. The corresponding piece of code in VB looks like,5

Sub F03demo(ByVal S psu As Double,
ByVal t degC As Double,
ByVal p dbar As Double)

10

Dim S As Double, T As Double, P As Double

Call COEFFS03

S = S psu ′psu −> psu15

T = t degC + 273.15 ′degC −> K
P = p dbar * 10000# + 101325# ′dBar −> Pa

Debug.Print “S=”, S psu; “psu”
Debug.Print “T=”, t degC; “◦C”20

Debug.Print “P=”, p dbar; “dbar”
Debug.Print “”
Debug.Print “free enthalpy”, GSTP03(0, 0, 0, S, T, P); “J/kg”
Debug.Print “chem. pot.”, GSTP03(1, 0, 0, S, T, P); “J/kg psu”
Debug.Print “entropy”, -GSTP03(0, 1, 0, S, T, P); “J/kgK”25

Debug.Print “density”, 1#/GSTP03(0, 0, 1, S, T, P); “‘kg/mˆ3”
Debug.Print “heat capacity”, -T * GSTP03(0, 2, 0, S, T, P); “J/kgK”
Debug.Print “Ch. pot. H2O”, GSTP03(0, 0, 0, S, T, P)-S*GSTP03(1, 0, 0, S, T, P);

“J/kg”

7
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Debug.Print “therm. exp.”, GSTP03(0, 1, 1, S, T, P)/GSTP03(0, 0, 1, S, T, P); “1/K”
Debug.Print “compressib.”, -GSTP03(0, 0, 2, S, T, P)/GSTP03(0, 0, 1, S, T, P); “1/Pa”
Debug.Print “lapse rate”, -GSTP03(0, 1, 1, S, T, P)/GSTP03(0, 2, 0, S, T, P); “K/Pa”
Debug.Print “pot. temp.”, PotTemp(S psu, t degC, p dbar); “◦C”

5

End Sub

Only 8-byte floating points should be used (“Double”), indicated here by “#” in VB.
The produced data should look like the following check value printout:

10

S=35 psu
T=20◦C
P=2000 dbar

free enthalpy 16583.1806714797 J/kg15

chem. pot. 60.0099366692805 J/kg psu
entropy 276.780886190056 J/kgK
density 1033.32930433584 kg/m3

heat capacity 3951.77837149032 J/kgK
Ch. pot. H2O 14482.8328880549 J/kg20

therm. exp. 2.78522499678412E-04 1/K
compressib. 4.06129773355324E-10 1/Pa
lapse rate 1.99948825300137E-08 K/Pa
pot. temp. 19.617987328589 ◦C

25

The reader may modify the input values as desired in the startup routine. In the case
of Visual Basic, this procedure is Form Load, and the output goes to the immediate
(Debug) window of the VB developer environment.

8
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3. Related oceanographic quantities

Many additional properties of seawater can be computed by combinations of the deriva-
tives given in the former section. A first group is that of thermodynamic functions avail-
able from g by mathematical so-called Legendre transforms (Alberty, 2001).

Specific free energy (also called Helmholtz energy or Helmholtz free energy), f :5

f = g − P v = g − P ·
(
∂g
∂p

)
S,t

. (9)

Specific enthalpy, h:

h = g + Tσ = g − T ·
(
∂g
∂t

)
S,p

. (10)

Specific internal energy, e:

e = g + Tσ − P v = g − T ·
(
∂g
∂t

)
S,p

− P ·
(
∂g
∂p

)
S,t

. (11)
10

Chemical potential of water in seawater, µW :

µW = g − Sµ = g − S ·
(
∂g
∂S

)
t,p

. (12)

A second group is that of adiabatic quantities, describing isentropic processes, i.e.
without heat exchange.

Adiabatic lapse rate, Γ:15

Γ =
(
∂t
∂p

)
S,σ

= −

(
∂2g/∂t∂p

)
S(

∂2g/∂t2
)
S,p

=
αTv
cP

. (13)

9
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Adiabatic compressibility, κ, and sound speed, U :

κ = −1
v

(
∂v
∂p

)
S,σ

=

(
∂2g/∂t∂p

)2

S
−
(
∂2g/∂t2

)
S,p

(
∂2g/∂p2

)
S,t(

∂g/∂p
)
S,t

(
∂2g/∂t2

)
S,p

. (14)

κ =
v
U2

= K − α2T v
cP

= K − αΓ

Adiabatic haline contraction coefficient, βσ :

βσ = −1
v

(
∂v
∂S

)
σ,p

=

(
∂2g/∂S∂t

)
p

(
∂2g/∂t∂p

)
S
−
(
∂2g/∂t2

)
S,p

(
∂2g/∂S∂p

)
t(

∂g/∂p
)
S,t

(
∂2g/∂t2

)
S,p

. (15)
5

Closely related to the adiabatic quantities are the so-called ‘potential’ ones, which can
be directly computed from entropy (Bradshaw, 1978; Feistel, 1993; Feistel and Hagen,
1994; McDougall et al., 2003; McDougall and Feistel, 2003). They are obtained by
formally replacing in-situ temperature t and in-situ pressure p by potential temperature
θ and reference pressure pr . They describe the property a water parcel would take10

if moved from in-situ pressure p to reference pressure pr without exchange of matter
and heat. By definition of θ, specific entropy is equal to “potential” specific entropy.

Potential temperature, θ (S, t, p, pr ), is implicitly given by

σ (S, t, p) = σ (S, θ, pr ) . (16)

This equation can be solved numerically by Newton iteration and avoids Runge-Kutta15

integration (Fofonoff, 1985). An example for the algorithm is provided in the accompa-
nying code by the function PotTemp(Spsu, tdegC, pdBar, prefdBar), which uses the
input parameters S, t, p, pr and returns potential temperature θ in ◦C as solution of
Eq. (16). Once potential temperature θ (S, t, p, pr ) is known, other related “potential”
quantities can be computed straight forward.20

10
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Potential density, ρθ, is defined as

ρθ (S, t, p, pr ) = ρ (S, θ, pr ) . (17)

For a given profile at geographic position (x, y), the vertical derivative of potential
density provides Brunt-Väisälä frequency, N, describing vertical stability of the water
column (z pointing in direction of gravity acceleration, G)5

N2 =
G
ρ

(
∂ρθ

∂z

)
x,y

=
G
ρ

(
∂ρ
∂z

)
x,y

− G2

U2
. (18)

Potential enthalpy, hθ,

hθ (S, t, p, pr ) = h (S, θ, pr ) (19)

is supposed to benefit from the combination of conservative behaviour of potential
temperature during adiabatic excursions, Eq. (16), and conservation of enthalpy during10

isobaric mixing, Eq. (28). For a more detailed discussion of potential enthalpy, see
McDougall (2003), McDougall and Feistel (2003).

The hydrostatic equilibrium pressure stratification in an external gravity field with
acceleration G in z-direction is given by the solution of the differential equation

1
ρ
∂p
∂z

= G. (20)
15

If G is a constant, and the vertical profiles S(p) of salinity and t(p) of temperature are
known e.g. from a CTD cast, the solution of Eq. (20) is usually obtained by separation
of variables and numerical integration over p, as,

p∫
p0

v {S (p) , t (p) , p} dp = G · (z − z0) . (21)

11
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For important special cases, however, Eq. (20) can be solved analytically in compact
form. If both temperature t and salinity S are constant over the water column, we can
use Eq. (2) and obtain upon integration

g {S, t, p (z)} − g {S, t, p0} = G · (z − z0) , (22)

i.e. free enthalpy g is a linear function of depth.5

If, however, salinity S and entropy σ (or potential temperature) are constant over the
water column, as e.g. in the cases of winter convection or wind mixing, we can use the
relation v =

(
∂h/∂p

)
S,σ to find

h {S, σ, p (z)} − h {S, σ, p0} = G · (z − z0) . (23)

In this case, enthalpy h grows linear with depth, Eq. (10). These equations implicitly10

define pressure as function of depth, p(z), and can be solved numerically by Newton
iteration at any given z without integrating over the entire column as in case of Eq. (21).

The total energy per mass of a water parcel moving with advection speed u is specific
internal energy e, Eq. (11), plus kinetic plus potential energy in the gravity field:

etot = e + u2/2 − Gz. (24)15

If dissipative processes are neglected, energy conservation in the ocean is expressed
locally by the continuity equation (τ is used for time here)

∂
∂τ

(ρetot) + div
{
ρu
(
h + u2/2 − Gz

)}
= 0. (25)

In a stationary ocean, this equation reduces to

u∇b = 0, (26)20

i.e. the Bernoulli function b ≡ h + u2/2 − Gz = etot + pv is always conserved along
the advection trajectories in time-independent flows (Landau and Lifschitz, 1974; Gill,
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1982; Feistel, 1993; Saunders, 1995). In the practically interesting approximation of
geostrophic currents, this equation is expressed as

∂p
∂x

· ∂b
∂y

− ∂p
∂y

· ∂b
∂x

=
∂ (p, b)

∂ (x, y)
= 0. (27)

This vanishing Jacobian implies that the Bernoullli function b is a function of pres-
sure alone on any given depth horizon z, i.e. b(x, y, z)=b(p, z). In other words, in the5

geostrophic special case b is conserved along the horizontal isobars, which of course
are identical with the trajectories.

If a given parcel of seawater is initially inhomogeneous in salinity and/or temperature,
and during the progressing mixing process it remains at constant pressure p and with-
out exchange of heat or salt with its surrounding, then its total enthalpy is conserved10

(Fofonoff, 1962, 1992). Denoting by brackets 〈...〉 the average over the parcel’s mass
elements, we thus find, comparing the inhomogeneous intial with the final homoge-
neous state,

h
(
〈S〉 , 〈t〉 + ∆t, p

)
= 〈h (S, t, p)〉 . (28)

This equation permits the numerical calculation of excess temperature ∆t upon isobaric15

mixing, e.g. by Newton iteration. The corresponding excess of specific volume, ∆v , is
then given by

v
(
〈S〉 , 〈t〉 + ∆t, p

)
+ ∆v = 〈v (S, t, p)〉 . (29)

If heat is assumed to be exchanged as necessary to keep the parcel’s average tem-
perature constant, we can get released mixing heat ∆h from20

h
(
〈S〉 , 〈t〉 , p

)
+ ∆h = 〈h (S, t, p)〉 . (30)

This formula is commonly applied to mixing processes with isothermal initial state,
t= 〈t〉. The values of ∆t and ∆h do not have definite signs for seawater mixing, i.e.
either cooling or warming can occur depending on the values of S, t, p.

13
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Internal energy is conserved due to the First Law if the mixing process is conducted
isochorically (isopycnically), and without exchange of heat and salt. The corresponding
balance

e
(
〈S〉 , 〈t〉 + ∆t, p + ∆p

)
= 〈e (S, t, p)〉 . (31)

together with supposed constant specific volume5

v
(
〈S〉 , 〈t〉 + ∆t, p + ∆p

)
= 〈v (S, t, p)〉 (32)

represent the two equations required to determine the changes caused in both pres-
sure and temperature, ∆p and ∆t. From these, nonnegative entropy production ∆σ of
the mixing process can be computed, obeying the Second Law,

∆σ = σ
(
〈S〉 , 〈t〉 + ∆t, p + ∆p

)
− 〈σ (S, t, p)〉 ≥ 0. (33)10

4. Phase equilibria

Equilibria between seawater and other aqueous phases are controlled by equal chem-
ical potentials of water in both. It is important to use for these computations only
formulae with mutually consistent reference points, which for the IAPWS-95 pure wa-
ter standard is zero entropy and zero internal energy of liquid water at the triple point15

(Wagner and Pruß, 2002). The same reference point is valid for the 2003 seawater
formulation, but not for the earlier ones.

Osmotic pressure of seawater, π (S, t, p) is the excess pressure of seawater in equi-
librium with pure water behind a membrane impenetrable for salt. It is implicitly given
by20

µW (S, t, p + π) = µW (0, t, p) . (34)

Vapour pressure, pV (S, t, p), above seawater under pressure p, is implicitly given by

µW (S, t, p) = gVapour (t, pV ) . (35)

14
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Additionally to the chemical potential of water in seawater, µW , Eq. (12), the chemical
potential of water vapour, gVapour, is required here. It is available from the IAPWS-95
formulation for the fluid water phases (Wagner and Pruß, 2002).

Freezing point temperature of seawater, tf (S, p), is implicitly given by

µW (S, tf , p) = gIce (tf , p) . (36)5

The chemical potential of ice, gIce, is required here additionally. A low-pressure Gibbs
potential of ice is given by Feistel (2003), and a high-pressure formulation by Tillner-
Roth (1998). However, the new and significantly improved high-pressure version by
Feistel and Wagner (2005) is recommended for use here instead.

Sea ice is considered a mixture of ice and seawater, which is usually called brine10

then, at thermodynamic equilibrium. Its Gibbs potential function, gSI , is given as func-
tion of temperature t, pressure p, and bulk salinity s by,

gSI (s, t, p) = w · g (S, t, p) + (1 − w) · gIce (T, P ) (37)

(Feistel and Hagen, 1998). The salt of sea ice is entirely contained in the liquid brine
phase, so bulk salinity s is related to brine salinity S by the mass fraction w of brine,15

s = w · S. Brine salinity, and therefore the mass ratio of the liquid and solid fractions,
follows from the equilibrium condition that the chemical potentials of water in brine, µW ,
and of ice, µIce, must be equal,

µIce (T, P ) ≡ gIce (T, P ) = µW (S, t, p) = g (S, t, p) − S ·
(
∂g
∂S

)
t,p

. (38)

Depending on the pair of independent variables chosen, this equation implicitly defines20

either brine salinity SB (t, p) of sea ice, or its melting pressure Pm (S, t), or freezing
temperature of seawater tf (S, p). Assuming brine salinity to be known this way, we
can express Eq. (37) in the form

gSI (s, t, p) = gIce (T, P ) + s · µB (t, p) , (39)

15
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where the relative chemical potential of brine, µB =
(
∂g
∂S

)
t,p

has to be taken at brine

salinity S = SB (t, p). Thus, the Gibbs function of sea ice is linear in bulk salinity with
coefficients being functions of pressure and temperature, describing both its separate
components, ice and brine.

Thermodynamic properties of sea ice can be obtained from Eq. (39) by partial deriva-5

tives in the usual way, e.g. specific entropy σSI = −
(

∂gSI

∂t

)
s,p

, specific enthalpy

hSI = gSI + TσSI , or specific volume vSI =
(

∂gSI

∂p

)
s,t

. While density, enthalpy or

entropy are stictly additive in the contributions of ice and brine, coefficients like heat
capacity or compressibility include significant additional parts due to phase equilibrium
shifts, like latent heat, dilution heat, or haline contraction, which make the properties10

of sea ice so distinct from those of either ice or seawater alone. Vapour pressure over
sea ice equals the one over pure ice at same temperature and pressure, as follows
from Eq. (39). Thermodynamic functions for sea ice obtained by the Gibbs function
formalism are discussed in more detail by Feistel and Hagen (1998).

Acknowledgements. The author is grateful to S. Feistel, A. Feistel and D. Webb for writing,15
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Table 1. Coefficients gi jk of specific free enthalpy g(S, t, p), Eq. (1).

i j k gijk i j k gijk i j k gijk 
0 0 0 101.342743139672 0 5 4 6.48190668077221 2 4 2 74.726141138756 
0 0 1 100015.695367145 0 6 0 -18.9843846514172 2 4 3 -36.4872919001588 
0 0 2 -2544.5765420363 0 6 1 63.5113936641785 2 5 0 -17.43743842213 
0 0 3 284.517778446287 0 6 2 -22.2897317140459 3 0 0 -2432.0947227047 
0 0 4 -33.3146754253611 0 6 3 8.17060541818112 3 0 1 199.459603073901 
0 0 5 4.20263108803084 0 7 0 3.05081646487967 3 0 2 -52.2940909281335 
0 0 6 -0.546428511471039 0 7 1 -9.63108119393062 3 0 3 68.0444942726459 
0 1 0 5.90578348518236 1 0 0 5813.28667992895 3 0 4 -3.41251932441282 
0 1 1 -270.983805184062 1 1 0 851.295871122672 3 1 0 -493.512590658728 
0 1 2 776.153611613101 2 0 0 1376.28030233939 3 1 1 -175.292041186547 
0 1 3 -196.51255088122 2 0 1 -3310.49154044839 3 1 2 83.1923927801819 
0 1 4 28.9796526294175 2 0 2 384.794152978599 3 1 3 -29.483064349429 
0 1 5 -2.13290083518327 2 0 3 -96.5324320107458 3 2 0 -158.720177628421 
0 2 0 -12357.785933039 2 0 4 15.8408172766824 3 2 1 383.058066002476 
0 2 1 1455.0364540468 2 0 5 -2.62480156590992 3 2 2 -54.1917262517112 
0 2 2 -756.558385769359 2 1 0 140.576997717291 3 2 3 25.6398487389914 
0 2 3 273.479662323528 2 1 1 729.116529735046 3 3 0 67.5232147262047 
0 2 4 -55.5604063817218 2 1 2 -343.956902961561 3 3 1 -460.319931801257 
0 2 5 4.34420671917197 2 1 3 124.687671116248 3 4 0 -16.8901274896506 
0 3 0 736.741204151612 2 1 4 -31.656964386073 3 4 1 234.565187611355 
0 3 1 -672.50778314507 2 1 5 7.04658803315449 4 0 0 2630.93863474177 
0 3 2 499.360390819152 2 2 0 929.460016974089 4 0 1 -54.7919133532887 
0 3 3 -239.545330654412 2 2 1 -860.764303783977 4 0 2 -4.08193978912261 
0 3 4 48.8012518593872 2 2 2 337.409530269367 4 0 3 -30.1755111971161 
0 3 5 -1.66307106208905 2 2 3 -178.314556207638 4 1 0 845.15825213234 
0 4 0 -148.185936433658 2 2 4 44.2040358308 4 1 1 -22.6683558512829 
0 4 1 397.968445406972 2 2 5 -7.92001547211682 5 0 0 -2559.89065469719 
0 4 2 -301.815380621876 2 3 0 -260.427286048143 5 0 1 36.0284195611086 
0 4 3 152.196371733841 2 3 1 694.244814133268 5 1 0 -810.552561548477 
0 4 4 -26.3748377232802 2 3 2 -204.889641964903 6 0 0 1695.91780114244 
0 5 0 58.0259125842571 2 3 3 113.561697840594 6 1 0 506.103588839417 
0 5 1 -194.618310617595 2 3 4 -11.1282734326413 7 0 0 -466.680815621115 
0 5 2 120.520654902025 2 4 0 97.1562727658403 7 1 0 -129.049444012372 
0 5 3 -55.2723052340152 2 4 1 -297.728741987187     
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