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ANNALISA BALDI
BRUNO FRANCHI
NICOLETTA TCHOU
MARIA CARLA TESI

ABSTRACT. In this paper we prove a compensated compactness theo-
rem for differential forms of the intrinsic complex of a Carnot group.
The proof relies on a L°*~Hodge decomposition for these forms. Be-
cause of the lack of homogeneity of the intrinsic exterior differential,
Hodge decomposition is proved using the parametrix of a suitable 0-
order Laplacian on forms.
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1. INTRODUCTION

In the last few years, so-called subriemannian structures have been largely
studied in several respects, such as differential geometry, geometric measure
theory, subelliptic differential equations, complex variables, optimal control
theory, mathematical models in neurosciences, non-holonomic mechanics,
robotics. Roughly speaking, a subriemannian structure on a manifold M
is defined by a subbundle H of the tangent bundle T'M, that defines the
“admissible” directions at any point of M (typically, think of a mechanical
system with non-holonomic constraints). Usually, H is called the horizontal
bundle. If we endow each fiber H, of H with a scalar product (,),, there is
a naturally associated distance d on M, defined as the Riemannian length
of the horizontal curves on M, i.e. of the curves v such that 7/(t) € H, ).
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currents, pseudodifferential operators on homogeneous groups.
A.B., B.F. and M.C.T. supported by MURST, Italy, and by University of Bologna,
ITtaly, funds for selected research topics and by EC project GALA..
1



Nowadays, the distance d is called Carnot-Carathéodory distance associated
with H, or control distance, since it can be viewed as the minimal cost of a
control problem, with constraints given by H.

Among all subriemannian structures, a prominent position is taken by
the so-called Carnot groups (simply connected Lie groups G with stratified
nilpotent algebra g: see e.g. [3], [26], [28]), which play versus subriemannian
spaces the role played by Euclidean spaces (considered as tangent spaces)
versus Riemannian manifolds. In this case, the first layer of the stratification
of the algebra — that can be identified with a linear subspace of the tangent
space to the group at the origin — generates by left translation our horizontal
subbundle. Through the exponential map, Carnot groups can be identified
with the Euclidean space R™ endowed with a (non-commutative) group law,
where n = dim g.

In this picture, horizontal vector fields (i.e. sections of H) are the natural
counterpart of the vector fields in Euclidean spaces. In the Euclidean setting,
several questions in pde’s and calculus of variations (like, e.g., non-periodic
homogenization for second order elliptic equations or semicontinuity of vari-
ational functional in elasticity) can be reduced to the following problem:
given two sequences (Ey)r and (Dy,), of vector fields weakly convergent in
L?(R™), what can we say about the convergence of their scalar product? The
compensated compactness (or div—curl) theorem of Murat and Tartar ([18],
[19]) provides an answer: it states basically that the scalar product (Ej, Dy)
still converges in the sense of distributions, provided {div Dy, : k € N} and
{curl B : k € N} are compact in H;!(R") and (H,;!(R"))"("=Y/2, respec-
tively.

When attacking for instance the study of the non-periodic homogenization
of differential operators in a Carnot group G, it is natural to look for a similar
statement for horizontal vector fields in G. In fact, a preliminary difficulty
consists in finding the appropriate notion of divergence and curl operators
for horizontal vector fields in Carnot groups. To this end, it is convenient
to write our problem in terms of differential forms, and to attack the more
general problem of compensated compactness for sequences of differential
forms. Indeed, we can identify each vector field Ej with a 1-form 7, and
each vector field Dy with the 1-form ;. Then, the compactness of curl Ej, is
equivalent to the compactness of dn,. Analogously, denoting by * the Hodge
duality operator, the compactness of div Dy, is equivalent to the compactness
of xd(*v), and hence to the compactness of d(xv;). With these notations,
if ¢ is a smooth function with compact support and dV denotes the volume
element in R", then (Ey, Di)p dV = oni A xyg.

Thus, a natural formulation of the compensated compactness theorem in
the De Rham complex (€2, d) reads as follows (see, e.g., [14] and [21]):

Ifl<s <00, 0<h; <nfori=1,2, and 0 < € < 1, assume that
as € Lt (R™, QM) for i = 1,2, where i + é =1 and hy + hg = n. Assume

loc
that
(1) af — a; weakly in L (R", Q") ase— 0,
and that
(2) {daZ} is pre-compact in W, 1% (R", QF1)
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fori=1,2.
Then

(3) / pai A\as — paiNay ase—0
n R

for any ¢ € D(R").
Thus, when dealing with Carnot groups, we are reduced preliminarily to
look for a somehow “intrinsic” notion of differential forms such that

e Intrinsic 1-forms should be horizontal 1-forms, i.e. forms that are
dual of horizontal vector fields, where by duality we mean that, if v
is a vector field in R™, then its dual form v% acts as v%(w) = (v, w),
for all w € R™.

e A somehow “intrinsic” notion of exterior differential acting between
intrinsic forms. Again, the intrinsic differential of a smooth function,
should be its horizontal differential (that is dual operator of the
gradient along a basis of the horizontal bundle).

e “Intrinsic forms” and the “intrinsic differential” should define a com-
plex that is exact and self-dual under Hodge *-duality.

It turns out that such a complex (in fact a sub-complex of the De Rham
complex) has been defined and studied by M. Rumin in [25] and [24] ([23]
for contact structures), so that we are provided with a good setting for our
theory. For sake of self-consistency of the paper, we present in Section 2 the
main features of this complex, that will be denoted by (Ef,d.), where d :
E(})Z — E(]}H is a suitable exterior differential. We stress now that a crucial
property of d. relies on the fact that it is in general a non homogeneous
higher order differential operator. To better understand how this feature
affects the compensated compactness theorem, we begin by sketching the
basic steps of the proof in the Euclidean setting. The crucial point consists
in proving the following Hodge type decomposition: if 0 < € < 1, let a® be
compactly supported differential h-forms such that

(4) o —~a ase— 0 weakly in L¥(R")
and

. . -1,
(5) {da®} is compact in W__*(R"™).

Then there exist h—forms w® and (h — 1)—forms ¢° such that

e w® — w strongly in Lj (R") ;

e 1) — ) strongly in Lj (R") ;

o of = Wt + dyF.
Roughly speaking (for instance, modulo suitable cut-off functions), the proof
of the decomposition can be carried out as follows (see e.g. [21]).

e let A := dd + dé be the Laplace operator on k—forms, where § = d*
is the L? formal adjoint of d;
e we write

af = AA71af = §dA7 1o + dSA™af
® we set

W = d0dA el = A Ndas
3



that is strongly compact in Lj (R"), since do® is strongly compact
in W *(R™);
o we set

Yf = 6A"1af

that converges weakly in I/Vlics (R™) and hence strongly in L{ (R™).

loc

If we want to repeat a similar argument, we face several difficulties. First of
all, the “naif Laplacian” associated with d., i.e.

dcde + dcbe

where J. = d, in general is not homogeneous. Even if d. is homogeneous,
as in the Heisenberg group H", such a “Laplacian” is not homogeneous. For
instance, on 1-forms in H', 6.d, is a 4th order operator, while d.é. is a 2nd
order one. This is due to the fact that the order of d. depends on the order
of the forms on which it acts on. In fact, d. on 1-forms in H' is a 2nd
order operator, as well as its adjoint J. (which acts on 2—form), while J. on
1-forms is a first order operator, since it is the adjoint of d. on O—forms,
which is a first order operator.

Though in the particular case of 1-forms in H' this difficulty can be
overcame as in [2], by using the suitable homogeneous 4th order opera-
tor d.d. + (d.6.)? defined by Rumin ([23]) that satisfies also sharp a priori
estimates, the general situation requires different arguments.

In general, the lack of homogeneity of d. can be described through the
notion of weight of vector fields and, by duality, of differential forms (see
[25]). Elements of the j-th layer of g are said to have (pure) weight w = j;
by duality, a 1-form that is dual of a vector field of (pure) weight w = j
will be said to have (pure) weight w = j. Vector fields in the direct sum of
the first j — 1 layers of g are said to have weight w < j. Thus, a 1-form is
said to have weight w > j if it vanishes on all vectors of weight w < j. This
procedure can be extended to A-forms. Clearly, there are forms that have
no pure weight, but we can decompose E{f in the direct sum of orthogonal
spaces of forms of pure weight, and therefore we can find a basis of Eg given
by orthonormal forms of increasing pure weights. We refer to such a basis
as to a basis adapted to the filtration of Eg induced by the weight.

Then, once suitable adapted bases of h-forms and (h+1)-forms are chosen,
d. can be viewed as a matrix-valued operator such that, if o has weight p,
then the component of weight ¢ of d.« is given by a differential operator in
the horizontal derivatives of order g —p > 1, acting on the components of «.

The following two simple examples can enlight the phenomenon. We
restrict ourselves to 1-forms, and therefore we need to describe only Eé and
Eg. For more examples and proofs of the statements, see Appendix B.

Let G := H! = R3 be the first Heisenberg group, with variables (z,y,1).
Set X := 0, +2y0, Y := 0y —2x0;, T := 0;. The dual forms are respectively
dz, dy and 0, where @ is the contact form of H'. The stratification of the
algebra g is given by g = Vi @ Vi, where V; = span {X,Y} and Vo =
span {T'}. In this case, E} = span {dz,dy} and E3 = span {dx A 0,dy A 6}.
These forms have respectively weight 1 (1-forms) and 3 (2-forms). As for
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1-forms, the exterior differential d. acts as follows:
1
de(axdx + aydy) = _Z(X%W —2XYax +YXax)dz N6

1
— Z(QYXW —Y?ax — XYay)dy A6
= Pi(ax,ay)dz N0+ Py(ax,ay)dy A 6.

Notice that P;, P, are homogeneous operators of order 2 (=3-1) in the hor-
izontal derivatives.

Consider now a slightly different setting. Let G := H! x R, and denote by
(x,7,t) the variables in H' and by s the variable in R. Set X,Y,T as above,
and S := Js. The dual form of S is ds. The stratification of the algebra g is
given by g = V1 @ Vs, where Vi = span {X,Y, S} and V, = span {T'}. In this
case E} = span {dz,dy,ds} and E3 = span {dx Ads,dy Ads,dz AO,dy N6}
Thus, all 1-forms have weight 1, whereas 2-forms have weight 2 (dx A ds and
dy N ds) and 3 (dx A 6 and dy A 0). The exterior differential d. on 1-forms
acts as follows:

de(axdr + aydy + agds) = Pi(ax,ay)dx A0
+ Py(ax,ay)dy N0+ (Xag — Sax)dx Nds + (Yag — Say)dy A ds,

where P;, P, have been defined above. Thus, the components of d. are
homogeneous differential operators of order 2 or 1.

To overcome the difficulties arising from the lack of homogeneity of d., we
rely on an argument introduced in [25] (when dealing with the notion of CC-
elliptic complex). Let us give a non rigorous sketch of the argument. Denote
by Ag the positive scalar sublaplacian associated with a basis of the first
layer of g (Ag is a Hérmander’s sum-of-squares operator). Remember that,
once adapted bases of E(’} and E(}}H are chosen, d. can be viewed as a matrix-
valued differential operator, whose entries are homogeneous operators in the
horizontal derivatives. Then we can multiply d. from the left and from the
right by suitable diagonal matrices whose entries are positive or negative
fractional powers of Ag, in such a way that all entries of the resulting
matrix-valued operator are 0-order operators. By the way, this notion of
order of an operator, as well as all combination rules that are applied, have
a precise meaning only in the setting of a pseudodifferential calculus. We rely
on the CGGP-calculus (see [5] and Appendix A). In such a way, we obtain
a “0-order exterior differential” d., and eventually a “O-order Laplacian”
de(d.)* + (d.)*d., that, thanks to [25] and [5], has both a right and a left
parametrix. Thus, we can mimic the proof we have sketched above for the
De Rham complex (again, to work in a precise pseudodifferential calculus
allows the composition of different operators).

It is worth noticing that the lack of homogeneity of the exterior differ-
ential d. affects also the natural hypotheses we assume in order to prove
Hodge decomposition and compensated compactness theorem for forms in
Ep. Indeed, in the Euclidean setting, assumptions (4) and (5) are natu-
rally correlated by the fact that the exterior differential d is a homogeneous
operator of order 1, which maps continuously L (R™) into I/Vlgc1 *(R™). In-
stead, when we are dealing with the complex (Ef,d.), given a sequence of
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h-forms o that converges weakly Lj (R", Eg), then the different compo-
nents of d. o converge weakly in Sobolev spaces of different negative orders,
according to the weight of the different components. For instance, if we de-
note by W&ﬁ;i(R”) the Sobolev space of negative order —k associated with

horizontal derivatives (see Section 3), then in our model examples H! and
H! xR, with an obvious meaning of the notations, assumption (5) for 1-forms
becomes

{P;(a%,a5 )} compact in W@i’;(R”), i=1,2,
when G = H!, and
{Pi(a5,a5)}  compact in Wgs(R™), i=1,2,
as well as
{Xa§ - Sa5}, {Yag — Say}  compact in Wg 2% (R")

C
when G = H! x R.

Our compensated compactness result for horizontal vector fields is con-
tained in its simplest form in Theorem 5.1, that can be derived by standard
arguments from a general statement (Theorem 4.13) for intrinsic differential
h-forms, that holds whenever all intrinsic h-forms have the same pure weight
(this is always true if h=1).

In Section 2 we establish most of the notations, and we collect more or
less known results about Carnot groups and the basic ingredients of Rumin’s
theory. In Section 3 we introduce from the functional point of view all the
function spaces we need in the sequel, with a special attention for negative
order spaces (which turn out to be spaces of currents). Moreover we empha-
size the connections between our function spaces and the pseudodifferential
operators of the CGGP-calculus. In Section 4 we establish and we prove
our main results: Hodge decomposition and compensated compactness for
forms (Theorems 4.1 and 4.13). In Section 5 we apply our main results to
prove a div—curl theorem for horizontal vector fields (Theorem 5.1). We
illustrate several different explicit examples, and we apply the theory to the
study of the H-convergence of divergence form second order differential op-
erators in Carnot groups. In Appendix A we summarize the basic facts of
the theory of pseudodifferential operators in homogeneous groups as given in
[5]. Moreover, we prove representation theorems and continuity properties
for pseudodifferential operators in our scale of Sobolev spaces. Finally, in
Appendix B we write explicitly the structure of the intrinsic differential d,
and we analyze a list of detailed examples.

2. PRELIMINARY RESULTS AND NOTATIONS

A Carnot group G of step k is a simply connected Lie group whose Lie
algebra g has dimension n, and admits a step  stratification, i.e. there exist
linear subspaces V1, ..., V, such that

6) g=Vie..aV, [W,V]=Vi, V.#{0}, V,={0}ifi>x,

where [V, V;] is the subspace of g generated by the commutators [X, Y] with
X eViandY €V,. Let m; = dim(V;),fori =1,...,kand h; = mi+---+m;
6



with hg = 0 and, clearly, h,, = n. Choose a basis eq, ..., e, of g adapted to
the stratification, i.e. such that

€h;_1+1s- - €p; is a basis of Vj for each j =1,..., k.

Let X = {Xj,..., X} be the family of left invariant vector fields such that
Xi(0) = e;. Given (6), the subset Xi,...,X,,, generates by commutations
all the other vector fields; we will refer to X1,...,X,,, as generating vector
fields of the group. The exponential map is a one to one map from g onto
G, i.e. any p € G can be written in a unique way as p = exp(p1 X1 +
-+« + ppXy). Using these exponential coordinates, we identify p with the
n-tuple (p1,...,pn) € R™ and we identify G with (R™,-), where the explicit
expression of the group operation - is determined by the Campbell-Hausdorff
formula. If p€ G and i = 1,...,k, we put p* = (pp,_,41,---,Pn;) € R™, so
that we can also identify p with (p',...,p") € R™ x ... x R™* = R",

Two important families of automorphism of G are the group translations
and the group dilations of G. For any x € G, the (left) translation 7, : G —
G is defined as

2o TpZ =X 2.
For any A > 0, the dilation ) : G — G, is defined as
(7) ON(E1, ey ) = ANy, o Ay,

where d; € N is called homogeneity of the variable x; in G (see [10] Chapter
1) and is defined as

(8) dj =i whenever h;_1 +1<j <h;,
hence l =dy = ... =dm, <dm+1=2<...<d, =K.

The Lie algebra g can be endowed with a scalar product (-,-), making
{X1,...,X,} an orthonormal basis

As customary, we fix a smooth homogeneous norm |- | in G such that the
gauge distance d(x,y) := |y x| is a left-invariant true distance, equivalent

to the Carnot-Carathéodory distance in G (see [26], p.638). We set B(p,r) =
{¢€G; d(p,q) <r}.

The Haar measure of G = (R",-) is the Lebesgue measure £" in R™. If
A C G is L-measurable, we write also |[A| := L(A).

We denote by @ the homogeneous dimension of G, i.e. we set

K
Q=) idim(V;).
i=1
Since for any z € G |B(xz,7)| = |B(e,r)| = r®|B(e, 1), Q is the Hausdorff
dimension of the metric space (G, d).
Proposition 2.1. The group product has the form

9) v-y=r+y+Qx,y),  foralzycR"

where @ = (Q1,...,9n) : R x R" — R" and each Q; is a homogeneous
polynomial of degree d; with respect to the intrinsic dilations of G defined in

(7), that is

Qi(6xz,0\y) = A" Q;(z,y), for allz,y € G.
7



Moreover, again for all x,y € G

Ql(x7y) = .. = le(i"y) = 03
(10)
Qi(z,0) =Q;(0,y) =0 and Qj(z,z) = Qj(z,—x)=0, form; <j<n,
(11

Qi(z,y) = Qj(x1,-. ., &h, 1, Y1s-- s Yni 1), o 1<i<k and j<h.

Note that from Proposition 2.1 it follows that

O\T - Oy = Ox(z - )

and that the inverse 7! of an element z = (x1,...,2,) € (R, -) has the
form

7 = (—xy, ..., —2p).
Proposition 2.2 (see, e.g.[11], Proposition 2.2). The vector fields X; have
polynomial coefficients and have the form

(12) Xj(x) =0;+ Z ¢,j(x)0;, forj=1,...,nandj < hy,
i>hg

where ¢; j(z) = %Q? (x,y)|y=0 so that if j < hy then q; j(x) = ¢; j(z1,...,2pH,_,)
Y

and g; j(0) = 0.

The subbundle of the tangent bundle T'G that is spanned by the vector
fields X,..., X, plays a particularly important role in the theory, and it
is called the horizontal bundle HG; the fibers of HG are

HG, = span {X1(z),..., Xm, ()}, z eG.

From now on, for sake of simplicity, sometimes we set m := m;.

A subriemannian structure is defined on G, endowing each fiber of HG

with a scalar product (-,-), and with a norm |- |, making the basis X;(z),
..y Xm(x) an orthonormal basis.

The sections of HG are called horizontal sections, and a vector of HG,
is an horizontal vector.

If f is a real function defined in G, we denote by v f the function defined
by Vf(p) := f(p~1), and, if T € D'(G), then VT is the distribution defined
by ("T|p) := (T|"¢) for any test function .

Following [10], we also adopt the following multi-index notation for higher-
order derivatives. If I = (iy, ... ,4,) is a multi-index, we set X! = X1 ... Xin,
By the Poincaré-Birkhoff-Witt theorem (see, e.g. [4], 1.2.7), the differential
operators X! form a basis for the algebra of left invariant differential opera-
tors in G. Furthermore, we set || := 41 +- - -+, the order of the differential
operator X!, and d(I) := dyiy + - - - + dpi, its degree of homogeneity with
respect to group dilations. From the Poincaré—Birkhoff-Witt theorem, it
follows, in particular, that any homogeneous linear differential operator in
the horizontal derivatives can be expressed as a linear combination of the

operators X' of the special form above.
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Again following e.g. [10], we can define a group convolution in G: if, for
instance, f € D(G) and g € L] .(G), we set

(13) /f g(¢g”'p)dq forpcG.

We remind that, if (say) g is a smooth function and L is a left invariant
differential operator, then L(f % g) = f * Lg. We remind also that the con-
volution is again well defined when f,g € D'(G), provided at least one of
them has compact support (as customary, we denote by £'(G) the class of
compactly supported distributions in G identified with R™). In this case the
following identities hold

(14) (fxgle)={(g]"fxp) and (fx*glp)=(flp*"g)

for any test function . Suppose now f € £'(G) and g € D'(G). Then, if
¥ € D(G), we have

(WTf)* gl) = (Wl *Yg) = (=)l « (W g))
= (=)= WV gly).

The dual space of g is denoted by A'g. The basis of A'g, dual of the
basis X1, -+ , Xy, is the family of covectors {61, - - - ,0,}. We indicate as (-, )
also the inner product in /\1 g that makes 64,--- , 0, an orthonormal basis.
We point out that, except for the trivial case of the commutative group R",
the forms 6y, --- ,6, may have polynomial (hence variable) coefficients, by
Propositions 2.1 and 2.2.

Following Federer (see [8] 1.3), the exterlor algebras of g and of /\ g are

the graded algebras indicated as /\ g = @/\ g and /\ g = @/\ g

where Ayg = A"g =R and, forlgkgn,

(15)

/\kg::span{XZ-l/\---/\X@-k:1§i1<-~-<ik§n},
k
/\ g :=span{f;, A---AN0; 1 <i3 <---<ip <n}

The elements of A, g and /\k g are called k-vectors and k-covectors.
We denote by ©F the basis {0iy NNy 01 <4y < -+ < <n}of
A" g. We remind that

dim/\hg:dim/\hg: <Z>

The dual space \'(A, g) of A, g can be naturally identified with A g.
The action of a k-covector ¢ on a k-vector v is denoted as (p|v).

The inner product (-,-) extends canonically to A\, g and to /\k g making
the bases X;, A--- A X;, and 6;; A---A0;, orthonormal.

Definition 2.3. We define linear isomorphisms (Hodge duality: see [§]

1.7.8)
s Ag— A s md = Ne— AT

9



for 1 <k < n, putting, for v => ;v X7 and ¢ =) _; @10y,
*U 1= ZI vr(*X7) and x = ZI @r(*0r)

where
#Xr = (-1)°DXp and  *60;:= (—-1)°Dop.
Or =0, N N0, I ={i] <--- <, }={1,---,n}\ I and o([) is the
number of couples (i, ;) with i, > i}.
The following properties of the x operator follow readily from the defini-

tion: Vv, w € A\, g and Vo, € N

sav = (—1)Fy =9, wwp = ()RR = o,
(16) v A Fxw = (v, w) X{1 . s o N*p = (0, )011,... s

{xplv) = (plv).
Notice that, if v = v1 A+ - - Avg is a simple k-vector, then v is a simple (n—k)-
vector. If v € A\, g we define vf € A" g by the identity (v¥|w) := (v, w), and
analogously we define ¢ € A\, g for € A a.

Definition 2.4. For any ¢,¢' € G and for any linear map L : TG, — TG,
AL : /\k TGy — /\k TGy
is the linear map defined by
(ApL)(vy A+ Avg) = L(vy) A+ A L(vg).

Analogously, we can define

H/\'; (Akdr, H/\

for any p € G, where for any linear map f : TGy, — TGy

NN TG, - N TG,
is the linear map defined by
(A*F)(@)|vr A== Avg) = (al (Apf) (o1 A== Avg))
for any « € /\k TGy and any simple k-vector vy A --- Ay € N\, TGy.

Definition 2.5. If a € /\1 g, a # 0, we say that o has pure weight k, and
we write w(a) = k, if of € Vj. Obviously,
h
w(a) =k if and only if «o = Z a;b;,
Jj=hr_1+1

with ap, ,41,...,an, € R. More generally, if a € /\hg7 we say that o has
pure weight £ if o is a linear combination of covectors 0;, A --- A 8;, with
w(@il) + 4 w(@ih) = k.

Remark 2.6. If o, 8 € A\"g and w(e) # w(3), then (a,3) = 0. Indeed,
it is enough to notice that, if w(@;, A--- A 6;,) # w(f;, A--- ABj,), with
i1 <idg < --- <ipand j; < jo <--- < jp, then for at least one of the indices
¢=1,...,h, iy # jo, and hence (0;; A---Nb;,,0;, N---Nb;,)=0.

10



We have
Nmax

(17) Ni= P A7

p:N;Lnln

where /\h’p g is the linear span of the h—covectors of weight p.

Since the elements of the basis ©" have pure weights, a basis of /\h’p g is
given by ©"P .= @" N /\h’p g (in the Introduction, we called such a basis an
adapted basis).

As pointed out in Remark 2.6, the decomposition in (17) is orthogonal.
We denote by IT"P the orthogonal projection of /\hg on /\h’pg.

Starting from A, g and /\h g, we can define by left translation fiber bun-
dles over G that we can still denote by A, g and /\h g, respectively. To do
this, for instance we identify /\h g with the fiber /\g g over the origin, and
we define the fiber over x € G pulling back /\Z g by the left translation
Ty—1, i.e. defining the fiber over x as /\Zg = Ak(del)/\Zg. Sections of
/\;, g are called h-vector fields, and sections of /\h g are called h-forms. We
denote by €, (") the vector space of all smooth sections of A, g (of A'g,
respectively).

The identification of /\h g and /\Z g yields a corresponding identification
of the basis ©" of \" g and ©" of Alg. Then ©) := A*(dr,-1)O! is a basis
of /\}xZ g. Notice that the Lie algebra g can be identified with the Lie algebra
of the left invariant vector fields on G = R"™. Hence, the elements of ©” can
be identified with the elements of ©" evaluated at the point 2. Through all
this paper, we make systematic use of these identifications, interchanging
the roles of left invariant vector fields and elements of A, g.

Keeping in mind the decomposition (17), we can define in the same way
several fiber bundles over G (that we still denote with the same symbol

A" ), by setting A7 g := AP g and \"? g := A¥(dr,-1)\"Pg. Clearly,
all previous arguments related to the basis ©" can be repeated for the basis

ehr,

Lemma 2.7. The fiber /\Zg (and hence the fiber /\Z’p g) can be endowed
with a natural scalar product (-,-); by the identity

(a,B) = (N'dry(a), AT (B))e.
If x,y € G, then
h h
Athyq : /\xg — /\yxg
18 an 1sometry onto.

As customary, if f : G — G is an isomorphism, then the pull-back f#w
of a form w € QF is defined by

o) == (A (dfa))w(f(z)).

It is easy to see that (f~1)#(f7w) = w.
11



We denote by Q"P the vector space of all smooth h—forms in G of pure
weight p, i.e. the space of all smooth sections of /\h Pg. We have
N}rlnax

(18) o= @ o

p:N;Lnin

Lemma 2.8. We have d(A\"Pg) = N""'Pg, ic., if o € N"Pg is a left
invariant h-form of weight p, then w(da) = w(a).

Proof. See [25], Section 2.1. O
Let now a € Q™P be a (say) smooth form of pure weight p. We can write

a= Z o; 0, with a; € £(G).

oheohr
Then
do= Y D (Xja)0; Ao+ > ondo).
oheohr j oheohp

Hence we can write
d=dy+di+---+dg,

doOz: Z O@d@lh

oheohp

where

does not increase the weight,

dia = Z i(X]ozZ)GJ N th

ohconp j=1
increases the weight of 1, and, more generally,
dpa = Z Z (X;a:)0; ANOF k=1,... k.
Gfbe@hvp w(ej):k‘

In particular, dy is an algebraic operator, in the sense that its action can
be identified at any point with the action of an operator on /\h g (that we
denote again by dpy) through the formula

(doa)(x) = Z oi(z)dot = Z i () dob?,
oheohr oheohp
by Lemma 2.8. Using the canonical orthonormal system ©”, we have a
canonical isomorphism i% from /\h g onto R 4im A"8. The map M), : R4m N's
RAmA" 8 1akes the following diagram commutative

RdimA"gs _Mr  pdimA"tg

] Lasm-
h h+1
AN'eg —— AT
do
Because of our choice of the order of the elements of ©", the matrix associ-
ated with M}, (that we still denote by M},) is a block matrix, as well as its
12



transposed. More precisely, the entries of M} are all 0 except at most for
those that belong to groups of rows and columns “of the same weight”.
We stress that all the construction of My, is left invariant, and hence My,
has constant entries.
Analogously, &g, the L?-adjoint of dg in Q* defined by

[t 5y av = [ (a,508) av

for all compactly supported smooth forms a € Q" and 3 € Q"*!, is again
an algebraic operator preserving the weight. Indeed, it can be written as

(19) (608) () = (ign) " (‘Mp)ign+1 B().
Again, its matrix M}, is a block matrix.
Definition 2.9. If 0 < h < n we set
E! :=kerdy Nker 6y = ker do N (Im do)*+ C Q"
or, in coordinates,
El={acQ; igna(r) € ker Mp, N ker! Mj,_; for all z € G}.

Since the construction of El is left invariant, this space of forms can be
viewed as the space of sections of a fiber bundle, generated by left translation
and still denoted by EJ.

We denote by N, ,‘Lni“ and N the minimum and the maximum, respec-
tively, of the weights of forms in E(})L.
If we set EiP := El N Q"P, then

Indeed, if o € EZ, by (18), we can write

max
Nh

a = E O,

p:N}anin
with o, € QMP for all p. By definition,

max
N, h

0= doOé = Z doap.

p:N;Lnln

But w(dooy) # w(doay) for p # ¢, and hence the dpay’s are linear indepen-
dent and therefore they are all 0. Analogously, docy, = 0 for all p, and the
assertion follows.

We denote by H%’f the orthogonal projection of Q" on Eg P,

We notice that also the space of forms Eg P can be viewed as the space
of smooth sections of a suitable fiber bundle generated by left translations,

that we still denote by Eg P
13



As customary, if  C G is an open set, we denote by £(2, E(’}) the space
of smooth sections of E}. The spaces D(Q, E}) and S(G, E}) are defined
analogously.

Since both Eg P and Bl are left invariant as /\h g, they are subbundles of
/\h g and inherit the scalar product on the fibers.

In particular, we can obtain a left invariant orthonormal basis = = {¢;}
of E[’} such that

M}Ilnax
=h _ =h.p
(20) == U ="
p:M}rlnin
where Eg’p =20 /\h’p g is a left invariant orthonormal basis of Eg P All the

elements of Eg’p have pure weight p. Without loss of generality, the indices
jof 2l = {53"} are ordered once for all in increasing way with respect to the
weight of the corresponding element of the basis.

Correspondingly, the set of indices {1,2,...,dim Eg} can be written as
the union of finite sets (possibly empty) of indices

max
Nh

{1,2,....dmE}} = | J I,

p:N}x:nin
where
je I&p if and only if 5;-1 € Eg’p.

Without loss of generality, we can take

(1]

1_’:‘171 Py 1,1
V=gt =0l

Once the basis @g is chosen, the spaces S(Q,E(}}), D(Q,E(’}), S(G,E(’})
can be identified with £(Q)4mES | D(Q)dimE | §(G)dmEq | respectively.
Proposition 2.10. [[25]/If 0 < h < n and * denote the Hodge duality (see
Definition 2.3), then

«El = Eph,

By a simple linear algebra argument we can prove the following lemma.

Lemma 2.11. If 8 € Q"1 then there exists a unique o € Q" N (ker dg)*
such that

dodoax = 6p3. We set «a := dglﬁ.
In particular
a= dalﬂ if and only if doa — B € ker dg.

Since dy'dy = Id on R(dy*'), we can write dy'd = Id + D, where D
is a differential operator that increases the weight. Clearly, D : R(d, =
R(dy 1). As a consequence of the nilpotency of G, D* = 0 for k large enough,
and the following result holds.

14



Lemma 2.12 ([25]). The map dy*d induces an isomorphism from R(dy*')
to itself. In addition, there exist a differential operator

N
P = Z(—l)ka, N € N suitable,
k=1

such that

Pdy'd = dy'dP = dp -1y

We set QQ := Pdal.

Remark 2.13. If o has pure weight k, then Pa is a sum of forms of pure
weight greater or equal to k.

We state now the following key results. Some examples will be discussed
in detail in Appendix B.

Theorem 2.14 ([25]). There exists a differential operator d. : Bl — EMt
such that
i) d* =0;
ii) the complex Ey := (E§,d.) is exact;
iii) the differential d. acting on h-forms can be identified, with respect
to the bases Eg and Eg“, with a matriz-valued differential operator
L = (L;‘j) If j € I&p and 1 € I&;l, then the L%h,j ’s are homoge-
neous left invariant differential operator of order ¢ —p > 1 in the
horizontal derivatives, and Lﬁfj =0ifj € I&p and i € I&qul, with
qg—p<1l.

In particular, if h = 0 and f € EJ = £(G), then d.f = Y1t (Xif)0} is

the horizontal differential of f.
The proof of Theorem 2.14 relies on the following result.

Theorem 2.15 ([25]). The de Rham complex (2*,d) splits in the direct sum
of two sub-complexes (E*,d) and (F*,d), with
E :=kerdy' Nker(dy'd) and F :=R(dy")+R(ddy"),
such that
i) The projection Iy on E along F is given by g = Id — Qd — dQ.
ii) If Ilg, is the orthogonal projection from Q* on Ej, then Il I gIlg,
HEO and HEHEOHE = HE.

iii) d, = I, d1lp.

iv) *xE = F*.
Remark 2.16. By Theorem 2.15, i), we have
(21) dIlg = Il gd.

Moreover, by Theorem 2.15, iv), if & € Q" and 8 € Q" with 0 < h < n,
we have

(22) a N (HE,B) = (HEa) A (HE,B) = (HEa) A B.
Finally, if o € Q" and 3 € E{)‘_h with 0 < h < n, we have
(23) ap=Iga) ApS.

15



Proposition 2.17 ([25], formula (7)). For any « € Eg’p, if we denote by
(Ilga); the component of Ilga of weight j (that is necessarily greater or
equal than p, by Remark 2.13), then

(Hea), = a

(24) (Mpa)pini1 = —dg (D de(lpa)piiiie)-
1<0<k+1

Remark 2.18. In fact, we can notice that, if a € Eg’p, then d.a has no
components of weight j = p. Indeed,

IIgpa = o + terms of weight greater than p.

Thus
dllpa = dpa + terms of weight greater than p.

But dya = 0 by the very definition of Eg P and the assertion follows.

Definition 2.19. If Q C G is an open set, we say that T is a h-current on
Qif T is a continuous linear functional on D(12, EY) endowed with the usual
topology. We write T' € D'(Q, EL).

The definition of £'(2, EX) is given analogously.

Proposition 2.20. If Q C G is an open set, and T € D'(Q) is a (usual)
distribution, then T can be identified canonically with a n-current T €
D'(Q, Ef) through the formula

(25) <T|oz> = (T |xa)

for any a € D(Q, Ef). Reciprocally, by (25), any n-current T can be iden-
tified with an usual distribution T € D'(2).

Proof. See [7], Section 17.5, and [1], Proposition 4. O
Following [8], 4.1.7, we give the following definition.

Definition 2.21. If T € D'(, E}), and ¢ € £(Q, EF), with 0 < k < n, we
define T € D'(, E7~F) by the identity

(TLgla) = (Tla )
for any o € D(Q, Ey ).

The following result is taken from [1], Propositions 5 and 6, and Definition
10, but we refer also to [7], Sections 17.3 17.4 and 17.5.

Proposition 2.22. Let Q C G be an open set. If 1 < h < n, Zb =
{eh, .. .§gim Eg} is a left invariant basis of EI' and T € D'(Q, El), then
)

i) there exist (uniquely determined) Th, ..., Ty, Bh € D'(Q2) such that
we can write

T =) TjL(«});
j
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ii) if o € E(Q, E}), then a can be identified canonically with a h-current
T, through the formula

(TalB) = / oy
Q
for any B € D(Q, E}). Moreover, if a = Zj ajfj’-‘ then

Ty = Z Q L(*fy)’
J

iii) we say that T is smooth in U when Ti,..., Ty, gy ore (identified

with) smooth functions. This is clearly equivalent to say that there
exists 3 € E(Q, E}) such that

(T|a) = /u (8.0 dv

for any o € D(Q, EY) (in fact, we choose (3 = > ijjh)
The notion of convolution can be extended by duality to currents.

Definition 2.23. Let ¢ € D(G) and T € &'(G, El) be given, and denote
by V¢ the function defined by Vio(p) := ¢(p~!). Then we set

(pxTle) = (T|"p )
for any o € D(G, E}).

We need a few definitions. For all our notations related to Rumin’s com-
plex, we refer to Appendix B. We set

(26) i ={p; I}, #0} and |I}| = card Z.
Let

m = (mN;Lnin, e ,mN;LnaX)

be a |Z}|-dimensional vector where the components are indexed by the el-
ements of I(’} (i.e. by the possible weights) taken in increasing order. We
stress that, since weights p such that I(}i = () can exist, then some con-
secutive indices in m can be missed. In the sequel we shall say that m
is a h-vector weight. We say that m > 0 if m, > 0 for p € 1'6‘, and
that m > n if m, > n, for all p € Ig. We say also that m > n if
m, > n, for all p € Ig. Finally, if mg is a real number, we identify
mo with the h—vector weight mg = (mg,...,mg). In particular, we set
m—mg = (mN;Lnin — Mo, ..., Mmax — mo).

Definition 2.24. A special h—vector weight that we shall use in the sequel
is the h-vector weight N, = (m Npmins - , mymax) with

my, =p for allpEI(]f.

If all h-forms have pure weight Np, i.e. if N,‘lmn = N := Nj, then a
h-vector weight has only one component, i.e. m = (my;, ).
17



3. FUNCTION SPACES

Through the next sections, we use notations and results contained in
Appendix A and basically relying on the pseudodifferential operators and
their calculus of Christ, Geller, Glowacki & Polin ([5]). Briefly, we refer
to their operators as to CGGP-operators, and we call CGGP-calculus the
associated calculus.

Let {X1,...,Xm} be the fixed basis of the horizontal layer g; of g chosen
in Section 2. We denote by Ag the nonnegative horizontal sublaplacian

m
Ag = —ZXJZ.
j=1

If 1 <s<ooandac C, we define Af in L*(G) following [9]. If in addition
m > 0, again as in [9], we denote by W{"*(G) the domain of the realization

of Ag/ in L* (G) endowed with the graph norm. In fact, since s € (1, 00)
is fixed through all the paper, to avoid cumbersome notations, we do not

/2

stress the explicit dependence on s of the fractional powers Ag and of its

domain.

Proposition 3.1. The operators Ag/Q are left invariant on W (G).

Proof. The proof is straightforward, keeping in mind the form of Ag/ 2 ([9],
p.181), and the representation of the heat semigroup associated with Ag
([9], Theorem 3.1 (i)), O

We remind that

Proposition 3.2 ([9], Corollary 4.13). If 1 < s < 0o and m € N, then the
space W"*(G) coincides with the space of all u € L*(G) such that

X'u e L*(G)  for all multi-index I with d(I) = m,
endowed with the natural norm.

Proposition 3.3 (][9], Corollary 4.14). If 1 < s < oo and m > 0, then the
space W{"*(G) is independent of the choice of X1,..., Xpm.

Proposition 3.4. If1 < s < co and m > 0, then S(G) and D(G) are dense
subspaces of Wi (G).

Proof. The density of D(G) is proved in [9], Theorem 4.5. If m € NU{0}, by
Proposition 3.2, S(G) € W¢"*(G), since the vector fields X, ..., X, have
polynomial coefficients (see Proposition 2.2). Thus, by [9], Proposition 4.2,
S(G) c W{"*(G) for m > 0. Morevoer, since D(G) is a dense subspace of
Wg&*(G), the assertion follows. O

Definition 3.5. Let m > 0, 1 < s < oo be fixed indices. Let @ C G
be a given open set with £"(0Q) = 0 (from now on, even if not explicitly
stated, we shall assume this regularity property whenever an open set is

(¢}
meant to localize a statement). We denote by W ¢&'*(€2) the completion
in WE"*(G) of D(Q). More precisely, denote by v — rqu the restriction

o
operator to €; we say that u belongs to Wg’s(Q) if there exists a sequence
of test functions (uy)reny in D(Q) and U € W"*(G), such that uj, — U in
18



WE*(G) and u = rU. On the other hand, since in particular u; — U in
L*(G), necessarily U = 0 outside of Q. Therefore, if u = rqU; = rqUs with
U1, Uy both belonging to the completion in WZ"*(G) of D(12), then Uy = Us,
so that, without loss of generality, we can set

||u||Vc[>/gL,s(Q) = ||p0(u)||wg’S(G),
where po(u) denotes the continuation of u by zero outside of .

It is well known that Wé’fo .(G) is continuously imbedded in T/Vll/ (“H)(G)

ocC
(see [22]); thus, by classical Rellich theorem and interpolation arguments

([9], Theorem 4.7 and [27], 1.16.4, Theorem 1), we have:

Lemma 3.6. Let Q@ C G be a bounded open set. If s > 1, and m > 0, then
I/(Ij/g’s(Q) is compactly embedded in L°(Q).

Proposition 3.7. Ifm >0, 1 < s < oo and Q C G is a bounded open set,

then P
|’UHV<[>,g,s(Q) ~ [|Ag" “po(u)| s ()

when u € W {*(Q) and po(u) denotes its continuation by zero outside of €.
Proof. By Definition 3.5,

2
[l - = lIpo(w) lwm.s(g) = 188 *po(w) | =),

Wg"*(Q)
so that we have only to prove the reverse estimate.

We want to show preliminarily that the map u — Ag/ ®po(u) from W & (Q)

to L*(G) is injective. Let u € Vc[)/'gs(Q) be such that Ag/2pg(u) = 0.
If (pz)e>o are group mollifiers, by the left invariance of Ag/ 2, we have
pe x po(u) € D(G) and Ag/Q(ps * po(u)) = 0 for e > 0. By [9], Theo-
rem 3.15 (iii), keeping in mind that D(G) C Dom (Ag) for all « > 0,
if N is an integer number such that N > m/2, then AY(pe * po(u)) =
Agim/QAgﬂ(pa x po(u)) = 0, so that p. * pp(u) = 0, e.g. by Bony’s maxi-
mum principle. Then, taking the limit as ¢ — 0, pp(u) = 0, and eventually
u = 0.

We can achieve now the proof by using a simple form of the following
Peetre-Tartar lemma (see, e.g., [6], p. 126):

Lemma 3.8 (Peetre-Tartar). Let V, Vi, Vo, W be Banach spaces, and let
A; € L(V,V;) be continuous linear maps for i = 1,2, the map Ay being
compact. Suppose there exists co > 0 such that

(27) lvllv < co(llArollv, + [[A20]lv,)

for any v € V. In addition, let L € L(V,W) be a continuous linear map
such that

(28) L. 4, =0
Then there exists C > 0 such that
(29) [Lv|[w < CllA2v|lv;

for anyv e V.
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For our purposes, we choose V = I/?/E’S(Q), Vi =V, = L5G), W =
Wms(G), Ay = pg, A2 = Agﬂ opyg, L = pg. Indeed, A; := pg is

a compact map from I/IO/gS(Q) to L*(G), by Lemma 3.6. On the other
hand, we have already pointed out in Deﬁnition 3.5 that po(u) € W™*(G),

s0 that Ag/ po(u) € L*(G), and [|AZpo(u)ll ey < lIpo(w) lwm.s(g) =
[|lu H (agaln by Definition 3.5). Thus Ag := A /2 opo : Wms(Q) —

LS(G) contmuously. The same argument shows that (27) holds. On the
other hand, we have shown that ker Ay = {0}, so that (28) holds.
Then (29) reads as

[l o = lIpo(w) lwm.s(@) < CIAE*po(w) | +(),

W E(9)
achieving the proof of the proposition. O
Lemma 3.9. If m > 0 let P,, € K™™ 9 be the kernel defined in Theorem
6.16 and Remark 6.17. If Q CC G is an open set, R > Ry(s,G,m,Q) is
sufficiently large, and u € D(Q), then
2
[ullyms ) = 1O((Pm)r)ullLs(6) = 1A ull (o),
with equivalence constants depending on s, G, m, Q.

Proof. By Proposition 3.7, there exists cqg > 0 such that (keeping in mind
that we can think po(u) = u)

2 2
1A ull ooy < lullwms @) < ea A8 %ull L),
By Remark 6.17, we have
AL = O((Py)r)u + Su,
where Su = u x (1 — ¢g)P,,. Hence
m/2
1A 2ull o) < 10((Pm) R)ull o) + (1= $R) Pl o)

On the other hand, by [9], Proposition 1.10, and a standard argument (see
e.g. [15], [16])

|ux(1 = ¥R)Pmllps@) < Csllullps@) - 1(1 = ¥r) PrllL1c)
<C(s,G,m)R mHUHLs(G) < C(«S’,Gam)RfmCQHAg/QUHLS(G)
1 m/2

< SIAG *ull o)

provided R > Ry(s, G, m,2). Therefore
m/2
IAZ ] 1) < 210((P) R)ull (@)

and hence

[ullwms ) < 2¢a |O((Pn)r)ullL: @)
Conversely,

1O((Pm)Rr)ulls (@)
< ||Am/2uuLs(G> + [lus (1= ¥r) Pl Leo)

m/2 3
f||A Pull ey < Sllullwmse)-
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This achieves the proof of the lemma.
U
Definition 3.10. Let 2 C G be an open set. If m > 0 and 1 < s < o0,
Wg™*(2) is the dual space of W@SI(Q), where 1/s +1/s' = 1. Tt is well
known that, if m € N and € is bounded, then
W™ (Q) ={ Y X'fr, fr € L*(Q) for any I such that d(I) = k},
d(I)=k
and
lllyymo gy =t frlleys dD) =k, D X' fr = u).
I d(I)=k
Proposition 3.11. If 1 < s < co and m,m’ >0, m' < m, then
WIS (G) — W (G) and Wg™*(G) — Wg™*(G)

algebraically and topologically.
In addition, if Q is a bounded open set, 1 < s < oo and m,m’ > 0,
m' < m, then

o

We*(Q) is compactly embedded in Wg/’S(Q)
and )

Wg™°(Q) is compactly embedded in Wg ™ (Q).
Proof. The first assertion is nothing but [9], Proposition 4.2. As for the
second assertion, take first R > 0, and let )y be a sufficiently large bounded
open neighborhood of Q. If u € I/f/g’s(ﬁ), by Lemma 6.18, we can write

u= A(EJZ/Q o Agll/fu + pSu,

where ¢ € D(Qp) and S € OC™*°. By Lemma 6.11, the map u — @Su
is compact from I/C[)/gS(Q) to WEI’S(QO). As for the first term, the same

property follows from Proposition 6.19, Lemma 6.7, and Lemma 3.6.
Finally, the third assertion of the proposition follows by duality. O

Remark 3.12. In fact, the compactness result of Proposition 3.11 can be
improved as in the Euclidean space (see e.g. [17], Section 1.4.6). For sake of
simplicity, let us restrict ourselves to the case m € N and m’ = 0. We have

I/f/g’s(Q) is compactly embedded in L7 ()
and ) )
L7 () is compactly embedded in W;"" (),
if s, 8" and o, ¢’ are Holder conjugate exponents, provided o(m—Q/s)+Q >
0.

Definition 3.13. If m > 0 is a h-vector weight, 0 < h < n, and s > 1,
we say that a measurable section « of E}, a := Zp Zjelgp ozjé’jh belongs to
WIS (G, Eb) if, for all p € I8, ie. for all p, NI < p < NM3% such that
b, #0,
a; € Wg"*(G)
for all j € I&p, endowed with the natural norm.
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The spaces WGm’S(Q, E}), where (2 is an open set in G, as well as the local
spaces Wz (Q, E}}) are defined in the obvious way.
Since

h
WGm’s(Q,Eg) is isometric to H (ng’S(G))CardIO,p,
pEIg
then

o W5 (2, El) is a reflexive Banach space (remember s > 1);
o C®(Q, E}) N WE*(, EL) is dense in WE"*(Q, E}).

[¢]
The spaces W &°°(Q, E!) are defined in the obvious way.
We can define and characterize the dual spaces of Sobolev spaces of forms.

Proposition 3.14. If 1 < s < o0, 1/s+1/s' =1,0< h < n, m is a
h—vector weight, and Q C G is a bounded open set, then the dual space

(VC[)/%‘S/(Q, E{)’))* coincides with the set of all currents T € D'(Q, E}) of the
form (with the notations of Proposition 2.20)

(30) T=> Y TiL(x)

P jell,
with T; € Wg ""*(Q2) for all j € I&p and for p € Il'. The action of T on
the form a = Zp Zjeléﬁp ajfg-b € W%’SI(Q, El) is given by the identity
(31) T(a) =) > (Tjlay).
P jelf,
In particular, it is natural to set
—m,s h 2rm,s By *

W(G (Q7EO) = (WG (QvEO)) .

Moreover, if T' is as in (30)

HTHWé%S(Q,ESL) ~ Z Z HTjHW(;mva(Q)'

v et

Proof. Suppose (30) holds. If a =} Zielg ;&M is smooth and compactly

supported in , then (keeping in mind that the basis {fjh} is orthonormal,
so that & A *fjh = 0;;dV)

Q> TikgDlay =3 > > Y ATL(x&)ae))

p jEIé"p p je[&p q iEI&q
=S5 S @l Aty =373 (Tiay).
pojely, 4 i€l}, q el

Thus, clearly, if T; € Wémq’s(ﬂ) for all i € I&q and for ¢ € I{f, then the

map o — Zp Zjelg,p (Tjloyj) belongs to (W%’S (Q, E{}))*
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Suppose now T' € (I/?/%’SI(Q,ESL))*. Since D(, B}) — I/?/g’s/(Q,Eg),
then T can be identified with a current that we still denote by T'. Thus, by
Proposition 2.22, we can write

T = Z Z le_(*gjh)

v e,
Ifi e I&p for some p € I{)’ and f € D(Q2), we can consider the map

F= A TIENY =D 0 Y (Tl fel A (+€) = (Tl ).

P jelk Op
Because of the boundedness of T', we get

(Tl < Clfed I

QEh - CHfHWO/ng,S’(Qy
that yields T; € Wz "*(). This achieve the proof. O

4. HODGE DECOMPOSITION AND COMPENSATED COMPACTNESS

In this section we state and we prove our main results, i.e. a Hodge decom-
position theorem for forms in £ and — as a consequence — our compensated
compactness theorem in FEj. Through this section, we assume that h, the
degree of the forms we are dealing with, is fixed once and for all, 1 < h < n,
even if it is not mentioned explicitly in the statements.

From now on, we always assume that an ortonormal left invariant basis
{ff} of Eg has been fixed for all £ = 1,...,n, and therefore pseudodif-
ferential operators acting on intrinsic forms or current and matrix-valued
pseudodifferential operators can be identified. We use this identification
without referring explicitly to it.

Theorem 4.1. Let s > 1 and h = 1,...,n be fized, and suppose h-forms
have pure weight Ny,. Let Q@ CC G a given open set, and let of € L*(G, Eg)ﬂ
E'(9Q, Eg) be compactly supported differential h-forms such that

o ~a ase— 0 weakly in LY (G, El)

and
{d.a®} is pre-compact in WG Eé\ih“ Nuke (G, ED).
Then there exist h-forms w® € E} and (h — 1)~forms ¢¢ € E(’}_l such
that

i) w® — w strongly in Lj (G, Bl ;
ii) ¢ — 9 strongly in L; (G, qu) E
iil) af = w® + d.y°.
In addition, we can choose w® and ° supported in a fixed suitable neigbor-
hood of €2, which are smooth forms if the a® are also smooth.

(Nh+1 Nh) (

loc

Remark 4.2. We stress that d. : L*(G, EO) — Wg G, El). In-

deed, if a = ZjeIgN ozjfj-l € L*(G,El) and (d.a); is a component of
Vh

weight ¢ of d.a, then (keeping in mind that h-forms have pure weight Np,)

(der)i =3 LZ ;0, where Lh is a homogeneous differential operator in the
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horizontal vector fields of order ¢ — Nj, > 1, so that (d.a); € WG( )S(G).
On the other hand (N}, — Np)q = ¢ — N, and the assertion follows.

The proof of Theorem 4.1 entails several preliminary statements.

Definition 4.3. Let R > 0 be fixed. If 0 < h < n, following Rumin we
define the “0-order differential” acting on compactly supported h-currents
belonging to £'(B(e, R), E!) by

A N2, N2
de = Ag. gt de AT,

where N, is defined in Deﬁmtlon 2.24. By Lemma 6.13, the definition is
well posed, and

d.:E'(B(e,R),El') — £'(B(e,3R), E}).

Analogously, we define the following “0O-order codifferential” acting on com-
pactly supported (h 4 1)-currents belonging to £'(B(e, R), EX*1):

5. = AN 6. A,
Again the definition is well posed, and
6. : E'(B(e, R), E*Y) — £'(B(e,3R), EY).
By Theorem 6.8(a) in Appendix A,

Notice also that ~ 3
=0, 62=0 (modOC™™).
Let now T'=3 Zje[{} TJI_(*fjh) € & ,(B(e, R)) be given.
P ’

By Theorem 2.14, the differential d. acting on h-forms can be identified
with a matrix-valued differential operator L" := (Lh ) where the LZ ;s are

homogeneous left invariant differential operator of order g —p if j € I&p and
€ I&:;l. Thus, by Definition 6.20, we have

P

d.T=3" 3" 35" (A% L, AVRT) (sl ).

q zelh‘gl p<qJ€Ih,p

Analogously, if T =3 Ejelh+1 T; L(*g]*%“) € &(B(e, R), EM™), then
0,p

e T=30 3" > (AYRTL AT L),

h < h+1
q €] 7qq ijI 0,p

Proposition 4.4. Both d. and gc are matriz-valued pseudodifferential oper-
ators of the CGGP-calculus, acting respectively on &' (G, El') and &' (G, Eg“).
Moreover d. ~ Ph = (Ph), where

(32) Pl =P_yx(L};P,) ifie Il and je I,
and 0, ~ Q= (Q ), where
(33) Q= Pyx("Lh,P_y) ifi€ I, and j € IT'.
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Proof. Take 1 € I&;rl and j € I&p. Statement (32) follows by proving that
—q/2 1 h 2 h
Mgk’ Ly AYR ~ Pgx(L;By).
The proof of (33) is analogous. Thus, notice first that, by (55) and Lemma
6.12, the cores of Lgfj Aa}é? and Aé%z are, respectively, LZij and P_,.
Hence the assertion follows by Theorem 6.8 (c). O
Remark 4.5. With Rumin’s notations (see [24], [25]), when acting on So(G, E}),
Oo(Ph) = dY .
An analogous assertion hold for Qg (Q").

We set
IR
The following assertion is a straightforward consequence of Theorem 6.8
and Proposition 4.4.

Proposition 4.6. Aé}?,)R is a matriz-valued 0-order pseudodifferential oper-
ator of the CGGP-calculus acting on £'(G, EL), and
(0) 0) ._ (A(0)
AG,R ~ AG = (AG,ij)’
where

o) _ h ., ph h—1,h—1
Agl; =D (QixPls + Pl xQy ).
¢

Remark 4.7. As in Remark 4.5, with the notations of [24], [25], when acting
on So(G, EY),

Oo(AL)) = O4(Q") 0 deOG(P") + Op(P" 1) 0 5,00(Q" )
=o6YdY +dYsy =Og,.

Theorem 4.8. For any R > 0 there exists a (matriz-valued) CGGP-pseudodifferential
operator (A((G?)R)_l such that

(34) AP A, =1 on €(G,El) (mod OC™),
and
(35) AP AT =1 on E(G,E}) (mod OC™).

Proof. Keeping in mind [5], Theorem 5.1 and Theorem 5.11, it follows from
Rockland’s condition (see Theorem 6.4), that is satisfied by [24], that there

exists (A((G?))_l € K@ such that
0)y— 0 0 0)y—
(AN T#AG = AP (A =4,
The assertion follows taking now (A(((g)R)_l = O((Ag]))}_%l) for R>0. O

Remark 4.9. If a € £'(B(e,r), E}), then, by Lemma 6.13, both

supp (Ag’)R)_lAg)Ra and supp (AggAgR)_la

are contained in a fixed ball B depending only on r, R. Thus, we can multiply
the identities (34) and (35) by a suitable test function ¢ that is identically
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one on B, and then we can replace the smoothing operators .S appearing in
(34) and (35) by operators of the form ¢S, that maps £'(G, E}) in D(G, EL).
Proposition 4.10. For any R > 0

(36) (AR e = d(ATR) TN on €(G,E})  (mod OCT),

and

37) (AR 0 =0(AYR) " on E(G,EL) (mod OC).

Proof. By duality, it is enough to prove (36). In the sequel, S will always
denote a smoothing operator belonging to OC™° that may change from
formula to formula, and, with the same convention, we shall denote by Sy
an operator of the form ¢S, with S € OC™™ and ¢ € D(G). Keeping in
mind Remark 4.9, we have

(AL T ATRd(AD) ™ + S
(8ede + debe)do(ASR) " + So

O

Remark 4.11. We can repeat the arguments of Remark 4.9 also for (36) and
(37).

Proof of Theorem 4.1. In the sequel, S will always denote a smoothing op-
erator belonging to OC™° that may change from formula to formula, and,
with the same convention, we shall denote by Sy an operator of the form
©S, with § € OC™ and ¢ € D(G). Moreover, without loss of generality,
we may assume of € D(Q, E}). Take now R > 0 such that Q C B(e, R); by

Lemma 6.13, A, h/2a € D(B(e,2R), E}) and therefore, by (35),
(38) A((G?’)R(A((E?R)flA(;%h/QOf o A(—;ﬂhﬂas — SA_%h/2a€7

with S € OC™*°. Since supp A(O) (A( ) ) A Nh/2 a C B(e,4R), we can
multiply the previous identity by a cut-off functlon v1 = 1 on B(e,4R)
without affecting the left hand side of the identity. Thus, we can write (38)
as

39)  ADAL) AR Paf - AT et = psAi Pt = Spe,
by Lemma 6.10. From (39), it follows easily that

(0) A (A A e = ST e+ AR
so that, by Lemma 6.23 and arguing as above,

(41) AGPAD AT 0t = of + Spa.
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If we write explicitly Ag )R in (41), we get
(42)
o = AN AN 0, A A g, AT A0 A

Nh 1/2 \Np_1/2

+ AP de AGT NG S AT (A A et
+S[)a .:I1+Iz+50a .

By Lemma 6.23,

(43) —d, ANh 1/2Agj}{_1/2 5, A(—}%h/Q(Ag’)R) AGZI\{{L/? 4 Spaf
= dcl/) + Spat.

Thus (42) becomes

(44)

of = ARV AT 5. AP AT P d AR (AR ) T ag et
+ Spa® + deyp® = W + dcwa.
We want to show that (1)%).~0 and (w®)e>o converge strongly in L (G, EM1
and Lj (G, El), respectively. By Proposition 6.22, (A(_;]Ehma )e>0 cOn-
verges weakly in WNh’ (G, El). On the other hand, by Proposition 6.19, also
0) \—1 A—Np/2 ¢
((AG R Der @ °) £>0
Proposition 6.19, also (A(_;%h/z(Ag)R)_lA(_;JI\;hmae
W™ (G, BY).
For sake of simplicity, denote now by (55, j € I(’)l’ N, @ generic component
of A Nh/2(A( ) =) T AL N’L/2a that converges weakly in WéNh’s(G,E[’)‘). If
I&ql (¢ < Np), then the i-th component of 5Cﬁ§- is given by tLjJﬂ;f.
Keeping in mind that L;; is a homogeneous differential operator in the hor-

converges weakly in Wﬂ’“s (G, E}). Thus, again by

) >0 converges weakly in

izontal vector fields of order Ny — ¢, then (tszﬂj)Do converges weakly in
Wghﬂ’s(@, El), so that, eventually, the i-th component of (¢)¥).~¢ con-

verges weakly in WA ?*(G, E}). Then the assertion follows by Rellich
theorem (Proposition 3.11), since supp 9° is contained is a fixed neighbor-
hood of 2, and ¢ < N},.

Let us consider now (w®)e~0. By Lemma 6.11, we can forget the smoothing
operator Sy. By Proposition 4.10 and Remark 4.11, we can write

AL A5, A AT g, AT AT A S
(45) = ARPAR s AP A d. o + Spaf
= A AD) T AR 5 AL A de of + Spa.

By Proposition 6.22,

“Npy1/2 N —Npia/2 : . Ny 1+Np,s h
Agr TAggr T deat s pre-compact in W ot (G, Ey).

Ih-i-

Arguing as above, denote now by B5.J € Iy, , a generic component of 5% :=

“Nyi1/2 =Ny /2 .
AGEh“/ AGE’I“/ dc a. We know that 3 is pre-compact in Wéﬁﬁh’ (G, EX.
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Moreover notice that d.0; is a h-form, and therefore, by assumption, has pure
weight Ny, If i € I(})L,Nh (N, < p), then the i-th component of 605 is given
by tLj’Zﬂ;f. Keeping in mind that L;; is a homogeneous differential operator
in the horizontal vector fields of order j —i = p — Np, then (6.35); is pre-
-N -N . .
compact in WGNh’ (G). Thus, § AG}’I“/zAGE”“/Q d. of is pre-compact in
—-N —-N
Wé]&: (G, El). Again, by Proposition 6.22, Ag: *}2/2(5 Ag h“/QAG}h“/Q d. af

is pre-compact in Wg ﬁ)’c (G, El). As above, we can rely now on the fact that

—-N —-N
all components of Ag ’}%/25 Ag h“/zAG Rh+1/2 d. of have the same weight
and hence belong to the same Sobolev space, to conclude that

(A AF s AL T P A d, o

is pre-compact in W@l”é’j (G, El). Then, we achieve the proof of the theorem
using again Proposition 6.22.
Finally, the last statement follows by Lemma 6.13 and Theorem 6.8, (b).
U
Lemma 4.12. Ifa € £(G,E}) with2 < h <n and § € (G, Eg_h_2), then
dd.a N (IIgP) = 0.
Proof. By Remark 2.16, we have
ddcaN(IIgB) = (Igpdd.a) A B = (dllgde.a) A B
= (llg, dllgd.a) A B = (dcdea) A5 = 0.
O
Theorem 4.13. If 1 < s; < o0, 0 < hy <nf0ri—12 and 0 < e < 1,
assume that of € L (G, Eg ) fori=1,2, where L —I— —=1and hy+hy =
n. Suppose h1 -forms have pure weight Ny, (by Hodge dualzty, this implies

that also ha-forms have pure weight Np,). Assume that, for any open set
Qy CcC G,

(46) af — o weakly in L% (Q, E(’)”),
and that
N —-N )

(47) {dcai} s pre-compact in W, ioch 1N (G, E(])“)
fori=1,2.

Then
(48) /QDO{?/\CM‘;H/QPOQ/\OQ

G G

for any p € D(G).

Proof. By Remark 4.2, without loss of generality we can assume that both
af and o5 are smooth forms. In addition, let us prove that, if {} is an open
neighborhood of supp ¢, then
Ny 1—N
(49) de(pat) is pre-compact in W, foch G
28
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An analogous argument can be repeat for a5, where ¢ € D() is identically
1 on supp . Thus, without loss of generality, we could restrict ourselves to
prove that

(50) /ofj/\a‘;ﬁ/al/\ag
G G

when (46) and (47) hold and a; € D(Q, El) for i = 1,2.
In order to prove (49), set 5% := de(pai), with 55 =32, 3" hi+ grert.
0,9

Ifai=>3, E]elhl (af);€; " then, by Theorem 2.14, when i € Ihj;rl, we have

= > (Li(e(ad)y)

P<d jelf,
=¢Y D LD+ > Y. (Pp)(@y(af)y)
p<qjerl P<qjerl 1<h|<q—p

+ZZ Z Pyp)(Q~(a1);),

P<qjerl 1<h|<q—p

where P, and @), are homogeneous left invariant differential operators of
order |y| and g — p — ||, respectively, in the horizontal derivatives. By

(47), @(de(aS)); is compact in Wg “™"*(Q). On the other hand Q,(a5);
is bounded in W((;(q_p_h')’s(ﬁ), and therefore compact in W(G_(q_p)’s(Q) by

Proposition 3.11, since |y| > 0. This proves (49).
We can proceed now to prove (50). By Theorem 4.1 we can write

af =do; +wi, i=1,2,

with 97 and w; supported in a suitable neighborhood €2y of Q) and converging
strongly in L% (o, Eg’) Thus the integral of af A o5 in (50) splits into the
sum of 4 terms. Clearly, 3 of them are easy to deal with, since they are the
integral of the wedge product of two sequences of forms, at least one of them
converging strongly. Thus, we are left with the term

/ Ao A dos,
G
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with ¢ € D(Qq, Ei') for i = 1,2. We have
/ Aot A o = / (T, 115 ¢5) A (det's)
G G
- /G (dTL5 65) A (det)  (by (23))
- / 4 (g 5) A (de5)) + (~1) / (T %) A d(det$)
G G

= (-1 /(;(HE ¥i) Ad(deps)  (by Stokes theorem)
— (~1) /G 05 A (g d(des))  (by (22))
— (-1 /G 05 A (dT1p(det5))  (by (21))

= (-1)Mm / ¥i A (de(debs))  (again by (23))
G
=0

since d? = 0. This achieves the proof of the theorem. U

5. DIV-CURL THEOREM AND H-CONVERGENCE

We state some dual formulations of our main theorem for horizontal vector
fields in G, i.e. for sections of HG. Since in this case the compensated
compactness theorem takes a form akin to the original form of the theorem
proved by Murat and Tartar, we can refer to it as to the div — curl theorem
for Carnot groups. In this case, our compensated compactness theorem
applies for any Carnot group G, since, as pointed out in Example 7.4, Eé
consists precisely of all forms of pure weight 1. In addition, as in [12] and
[2], the div — curl theorem makes possible to develop a theory of the H-
convergence for second order divergence form elliptic differential operators
in Carnot groups of the form

(51) Lu=Y"" ) X (ai(x)Xu) = f € W5 *(Q)
u=20 on 99,

with application for instance to non-periodic homogenization. Here A(z) :=
(@i j(2))ij=1,. m is a m x m elliptic matrix with measurable entries.

We stress again that L is elliptic with respect to the structure of the group
G, but is degenerate elliptic as an usual differential operator in R™.

If V is an horizontal vector field, i.e. if V' is a section of HG, as customary

we set
divg V := (xdo(xV)E,
and
curlg V := (V)"
Moreover, if f is a function, we denote by Vg f the horizontal vector field
Vef = (X1f,..., Xmf). Set now Eyp := (EM? (with the induced scalar
product). An orthonormal basis of Ey; is given by Xi,...,X,,, and hence
the horizontal vector field V' can be written in the form V := Z;n:l Vi X;
30



and therefore identified with the vector-valued function (Vi,...,V;,). In
the sequel, we write also (Vx,,...,Vx,,). Thus divg V = Z;”Zl X;V;. The
Dirichlet problem (51) takes the form

{ Lu = —divg(A(z)Vgu) = f € Wg *(Q),

(52) uw=0 on JN.

If we refer to the examples of Appendix B, the operator curlg on a hori-
zontal vector field V' takes the following forms:

e Example 7.5: if V = (Vx, Vy), then
curlgV = Pl(Vx, Vy) XANT + PQ(V)(, Vy) YANT.
Let D be another horizontal vector field. In this case, assumption

(47) of Theorem 4.13, with oy := V% and *as := D¥, becomes
P;(Vx,Vy) compact in VV((EZ"”((G)7 i=1,2

loc
and
divgD compact in W 52(G).
e Example 7.6: if V = (Vx, Vy, Vg), then
curlgV = PL(Vy, o) X AT + Po(Vi, Vo) Y AT
+ (XVg = SVx) X AS+ (YVs — SW)Y A S.
As above, (47) of Theorem 4.13 becomes

P;(Vx,Vy) compact in W_Q’Sl(([})7 i=1,2

Joc

loc

XVg — SVx, YVg — SVy compact in W@l’sl(G),
and
divgD  compact in W iff(G).
e Example 7.7: if V = (Vx,, Vx,, Vy;, V33, V), then
curlgV = (Xiax, — Xoax, ) X1 A Xo + (Yiay, — Yaay; )Y1 A Ys
+ (Xjay, — Yoax,) X1 AYs + (Xoay, — Yiax,)Xo A Y]
+ (Xjas — Sax,) X1 A S+ (Xaag — Sax,)Xa A S,
+ (Yiag — Say, )Y1 A S + (Yaoas — Say,)Ya A S
Xjay, —Yax, — Xoay, + Yoax, i
V2 V2
Here, assumption (47) requires that all the coefficients of curlgV, as

well as divg D, are compact in W 11(;21(@)’ and W 11(;? (G), respec-

(X1 ANY] — X9 A YQ).

tively.
L] Example 7.8 if V= (VXl, VXQ, VX3, VX4, VX5, VXG), then

curlgV = (Xiax, — Xzax,) X1 A X3 + (X1(Xiax, — Xeax,)
— Xyax, ) X1 AN Xy
+ (Xo(Xiax, — Xoax,) — Xgax,)Xo A Xy
+ (Xo(Xoax, — X3ax,) — Xsax,) X2 A X5

+ (X3(X20[X3 — X3zax, X5aX3)X3 AN Xs..
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As above, (47) of Theorem 4.13 becomes

Xiax, — Xsax, compact in Wqﬁc’)‘zl (G),

X1(Xrax, — Xoay,) — Xgax,, Xo(Xiax, — Xeax,) — Xsax,,
Xo(Xoax, — Xsax,) — Xsax, compact in W 2 (G),

Joc

X3(Xoax, — Xsax,) — Xsax, compact in W(;S’Sl (G),

loc

and
divgD  compact in W 22(G).
e Example 7.9: if V = (V4,V3), then
curlgV = (Xo(X1Ve — XoVp) — X3V5) Xo A X3
+ (X (XTVa — (X1 X2 + X3)Vi) — XuVi) Xy A Xy
As above, (47) of Theorem 4.13 becomes
Xo(X1Va — XoVp) — X3V, compact in W_Q’sl(G),

Jloc

Xl(X%VQ — (X1 X2+ X3)V1) — X4Vi compact in W(;?”Sl(@),

loc
and

divgD compact in W /°2(G).
e Example 7.10: if V = (V1,V3), then |
curlgV = (X1(X7Va — X1 XoVi — X3Vi) — Xy Vi) Xy A Xy
+ (Xa(Xo X1V — X3Vi — X3Va) — X5Va) Xo A X5

1
+ 5 (N (X0 Vs — X2V — X3Wa) — X5V;

+ Xo(X7Vo — X1 XoVi — X3V1) — XyVa) (X1 A X5+ Xo A Xy).

Here, assumption (47) requires that all the coefficients of curlgV are
compact in W, i;‘zl (G), and that divg D is compact in W 11(;‘22 (G).
Theorem 4.13 yields the following result that generalizes to arbitrary

Carnot groups Theorem 3.3 of [12] and Theorem 5.5 of [2] , extending to
the setting of Carnot groups Theorem 5.3 and its Corollary 5.4 of [14].

Theorem 5.1. Let 2 C H" be an open set, and let s,0c > 1 be a Hoélder
conjugate pair. Moreover, with the notations of (26), ifp € I3 (i.e. if p > 2
is the weight of an intrinsic 2-form), let a(p) > 1 and b > 1 be such that

Qs Qo

> -_—.

Q+(p—1)s Qto
Let now E* € L{ (Q, HG) and D* € L3, (2, HG) be horizontal vector fields
for k € N, weakly convergent to E and D in L; (2, HG) and in Ly (2, HG),
respectively.

If the components of {curlg E*} of weight p are bounded in Lilo(f)(ﬂ, HG)
for p € I2 and {divg D¥} is bounded in LY (Q, HG), then then

loc

(E*, D*Y — (E,D) inD'(Q),
32
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i.e.
| (@) D @hept@)do = [ (B@). D)ol da
for any p € D(Q).
Proof. We want to apply Theorem 4.13 (with its notations) to the forms
aft := (E™% and aof := «(D")",

taking hy =1, ho =n—1, s1 = s, sy = 0.
The assertion will follow by showing that {divg D"} is compact in W el (9)

loc
and the components of {curlg E*} of weight p are compact in Wé?g’c’s(ﬁ)
Indeed, p — 1 is precisely the component of index p of Ng —1 = Ny — Nj.
But this follows by a simple computation from Remark 3.12, since
i) Lt (Q, HG) is compactly embedded in Wg /7();
ii) Lfo(f)(ﬂ, HG) is compactly embedded in Wé}fés(Q).

Indeed, in order to prove i), it is enough to notice that

V(1-Q/s)+Q>V(1-Q/s+Q(l—-1/0-1/Q)) =0,
whereas, to prove ii) we notice that

Q

o) (01~ Qo) +Q > alp) (p—1- 2 + g - CEE Do

05 )) =0.
O

In particular, as we pointed out above, Theorem 5.1 makes possible to
extend the notion of Murat-Tartar H-convergence (see e.g. [19]), given
in [12] and [2] for G = H", to an arbitrari Carnot group G. In fact, the
definitions given in [12] and [2] are naturally stated in general Carnot groups
as follows.

Definition 5.2. If 0 < a < 3 < oo and 2 is an open subset of GG, we denote
by M (a, 3;2) the set of (m x m)-matrix-valued measurable functions in 2
such that

(A()E, E)pm > ;IA(fﬁ)élém and  (A(2)E, E)pn > aléfin
for all £ € R™ and for a.e. x € Q).

Definition 5.3. We say that a sequence of matrices A* € M(a, 3;Q) H-
converges to the matrix A/f € M(a/,5';Q) for some 0 < o/ < ' < oo, if

for every f e W 12(Q), called uy, the solutions in I/?/éz(ﬂ) of the problems
—divg (A*Vguy) = f, the following convergences hold:

U — Uno N I/IO/%];Q(Q) — weak
AV euy — A Vgus in L*(Q; HG) — weak.
Therefore s, is solution of the problem —divg (AfVgue) = f in Q.

Repeating verbatim the arguments of Theorem 4.4 of [12], we can show
now that the sets M («, 3; 2) are compact in the topology of the H-convergence.
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Theorem 5.4. If0 < a < 8 < 00 and ) is a bounded open subset of G, ,
then for any sequence of matrices A™ € M («, 3;2) there exists a subsequence
A¥i and a matriz ATT € M (a, 3;Q) such that A% H-converges to AeTT

6. APPENDIX A: PSEUDODIFFERENTIAL OPERATORS

To keep the paper as much self-contained as possible, we open this ap-
pendix by reminding some basic definitions and results taken from [5] on
pseudodifferential operators on homogeneous groups.

We set

So={ues : /Gmo‘u(x)da::()}

for all monomials z¢.

If « € Rand o ¢ Z1 := NU {0}, then we denote by K* the set of the
distributions in G that are smooth away from the origin and homogeneous
of degree o, whereas, if « € ZT, we say that K € D'(G) belongs to K¢ if
has the form

K = K +pa) Inal,
where K is smooth away from the origin and homogeneous of degree «, and
p is a homogeneous polynomial of degree «.

Kernels of type o according to Folland [9] belong to K*~@. In particular,
if 0 < a < @, and h(t, x) is the heat kernel associated with the sub-Laplacian
Ag, then ([9], Proposition 3.17) the kernel R, € Li _(G) defined by

1 * (a/2)-1
Ry(x) := T(a/2) /0 t h(z,t) dt
belongs to K* €.

If K € K%, we denote by Oy(K) the operator defined on Sy by Op(K)u :=
ux*x K.

Proposition 6.1 ([5], Proposition 2.2). Oy(K) : Sp — Sp.
Theorem 6.2 (see [15], [16]). If K € K~9, then Oy(K) : L*(G) — L?*(G).

Remark 6.3. We stress that, with the notations of Appendix 6.6, we have
also
So(G) € Dom (Aéam) with « > 0.
Indeed, take M € N, M > «a/2. If u € Sp(G), we can write u = Agv, where
V= (OO(RQ) 0Op(Rz)o0---0 Oo(Rg))u € S(G)

(M times). Since v € Dom (AY) N Dom (A]\G/[_a/z) (by Proposition 3.4),
then u = AMv € Dom (Aéaﬂ), and Agiaﬂv = Aéa/QAé\fv, by [9], Propo-

sition 3.15, (iii).

Theorem 6.4 (see [13] and [5], Theorem 5.11). If K € K=9, and let the
following Rockland condition hold: for every nontrivial irreducible unitary
representation m of G, the operator Tx is injective on C*°(m), the space of

smooth vectors of the representation w. Then the operator Oy(K) : L*(G) —
L?(G) is left invertible.

Obviously, if Oy(K) is formally self-adjoint, i.e. if K = VK, then Op(K)
is also right invertible.
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Proposition 6.5 ([5], Proposition 2.3). If K; € K%, i = 1,2, then there
exists at least one K € K112+ Q gych that

OQ(KQ) 9} Oo(Kl) = Oo(K)

It is possible to provide a standard procedure yielding such a K (see [5],
p.42). Following [5], we write K = KoxK].

We can give now a (simplified) definition of pseudodifferential operator
on G, following [5], Definition 2.4.

Definition 6.6. If o € R, we say that K is a pseudodifferential operator of

order o on G with core K if

1) K e D'(G xG).

2) Let B := —Q — . There exist K™ = K™ ¢ K™ depending
smoothly on z € G such that for each N € N there exists M € Z™
such that, if we set

M
K, =Y KJ':=Ey(z,),
0

then Ey € CN(G x G).
3) For some finite R > 0, supp K, C B(e, R) for all z € G.
4) If u € D(G) and = € G, then

We write K ~ Y K™, K = O(K), and 7(K) = r(K) = inf{ R > 0 such that 3) holds}.
We let

OC*(G) := {pseudodifferential operators of order  on G}.

Clearly, if £ € OC*(G), then K : D(G) — £(G). Moreover, K can be
extended to an operator K : £'(G) — D'(G).

Lemma 6.7. If supp u C B(e, p), then supp Ku C B(e, p+ r(K)).
If vy = (71,...,7) € (ZT)", for any f € D'(G) we set
M,f=a'f,

and, if X = (X1,...,X,,) is our fixed basis of g, we denote by o,(X) the
coefficient of z7 in the expansion of (y!/|y|!)(x - X)),

Theorem 6.8 ([5], Theorem 2.5). We have:

(a) If K := O(K) € OC*(G), then there exists a core K* such that
O(K*) € OC*(G) and

(v, Ku) 26y = (O(K™)v,u) 12()

for all u,v € D(G).
(b) If K € OC*(G), V C G is an open set, and u € E'(G) is smooth on
V, then Ku is smooth on V.
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(c) If Ki € OCH(G), K; ~ >, K™, i=1,2, then K := Ky 0Ky (that
is well defined by Lemma 6.7) belongs to OC****2(G). Moreover
K~ K™, where

Kn= % ;WMMMM*M@W@A
d(y)+j+e=m "

where 0,(X) acts in the x-variable.

Theorem 6.9 (see [5], p.63 (3)). If K € OC(G), then O(K) : L} (G) —
I} (G) is continuous. In particular, by Lemma 6.7, O(K) : LP(G) N
E'(B(e,p)) — LP(G) continuously.

We say that a convolution operator v — u* E(z,-) from & to D’ belongs
to OC~*°(G) if E is smooth on G x G. We notice that, properly speaking,
OC~*°(@G) is not contained in OC*(G) for o € R, since E(z, -) is not assumed
to be compactly supported.

If 7,8 € OCY(G), we say that S =7 mod OC~® if S — T € OC~*(G).

A straightforward computation proves the following result

Lemma 6.10. If S € OC*(G), ¢ € D(G), and O(K) € OC™(G) for
m € R, then both (pS) o O(K) and O(K) o (¢S) belong to OC~°(G).

Lemma 6.11. If Q C G is a bounded open set, m,m' € R, 1 < s < oo, and
T € OC™(G), then, if p € D(G), the map

oT : W (G) N E'(Q) — W (G)
s compact.

Proof. Let us prove first that the map is compact. By proposition 3.11,
without loss of generality we can assume m < 0 < m/, and |m|, m" € NU{0}.
Thus, let u € Wi"*(G) N E'(R2) be given; we have to estimate

sup (X (p(uxT))lg)
TP=!

for g € D(G), with d(I) < m/, and therefore to estimate
(XT0)(ux X7T))|g),

with d(J)+d(L) < m/, g € D(G), ||g||LS/(G) < 1. Because of the compactness
of supp u, there exists ¢ € D(G), ¢ = (R, ¢) such that u* X/T = u *
X7 (pT) on supp ¢. Thus, we can write

(XF0)(ux X7T))|g) = (ul(X"p)g+ X7 (T))

<ullwrsgy D, (X e)g* XM X7 (Tl Lo )
d(M)<|m|

< el @ X )l ) < e lullweslgll o,

by [9], Proposition 1.10 since XMV X7/(oT) L'(G), and then the assertion
follows.
Finally, the compactness follows by the arbitrariness of the choice of m/
and by Lemma 3.6. O
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From now on, let ¢ € D(G) be a fixed nonnegative function such that
1
supp ¢ C B(e,1) and 1 =1 on B(e, 5)

We set
YR =100y R

If K € K™, then K := )rK is a core satisfying 1), 2), 3) of Definition
6.6. In addition, Kr ~ K, since we can write Kp = K + (¢ — 1)K, with
(g — DK € E(G). Thus O(Kg) € OC™ 2(G).

Thus, if K is a Folland kernel of type a € R, then Kpg is a core of a
pseudodifferential operator O(Kgr) € OC~%(G). In particular, if 0 < a < @,
then O((Rq)r) belongs to OC~*(G) (see [9], Proposition 3.17).

Lemma 6.12. If K € K™, and X' is a left invariant homogeneous differ-
ential operator, then

X'0(KR) e oc~m+D=Q(G).
Moreover, the core Kp of X'O(KR) satisfies

Kpr~X'K,
and
X'O(KR) = O((X'K)r) modOC™,

Proof. It is enough to notice that, if u € £'(G), then X' (O(Kr)u) = X (u*
Kg) = ux (X'KR) = ux (X'K)r + X<y« c7u * (X9R) K, and that
(X79r)K € D(G) when |J| > 0. a
Lemma 6.13. If u € £'(G) and supp u C B(0,p) then supp O(Kgr)u C
B(0,R+ p)). Moreover, if p = R, then

O(Kyp)u=ux K on B(0,R).
Proof. The first statement follows from Lemma 6.7. The second assertion is

a straightforward computation. O

Proposition 6.14. Let K; € K' be given cores for i = 1,2, and let R > 0
be fixed. Then

O((K2xK1)Rr) = O((K1)R) ©c O((K2)g) mod OC™°.
=0

In particular, O((K1)r) o O((K2)R) (K) for a suitable core K with
K~ KQiKl.

Proof. 1t is enough to notice that, by Theorem 6.8, O((K1)r) o O((K2)r) =
O(K), with K ~ KQiKl, and that also (KQiKl)R ~ KQle. O

Remark 6.15. As in Remark 5 at p. 63 of [5], the previous calculus can
be formulated for matrix-valued operators and hence, once left invariant
bases {{;1} of E(’} are chosen, we obtain pseudodifferential operators acting
on h-forms and h-currents, together with the related calculus.

,,,,,

,,,,,

belong to K™ii. Then K acts between So(G)Y and Sp(G)M as follows: if
T= (Tl, ce ,TM), then

O()(K)T =Tx*x K := (ZT'J*KM,,ZE*KM])
J J
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When K;; € K™ for all 4, j, we write shortly that K € K™.
If K .= (KZ) i=1,..~ and K’ := (Kl(j)izl ,,,,, M, We write
j=1,...,M' j= M

ceey =1,...,

Notice that
(53) Oo(K,> o Oo(K) — Oo(KlfK)

In addition, if K = (Kw) is a matrix-valued pseudodifferential operator
of the CGGP-calculus, and K = (Kj;) is a matrix-valued core as above
with f(ij ~ Kjj for all i,j, we write K ~ K, and K — K is a matrix-
valued smoothing operator. As above, if all the K;;’s are pseudodifferential
operators of the same order «, we refer to a as to the order of the matrix-

valued pseudodifferential operator K.

Finally, we prove that the fractional powers of Ag, when acting on suitable
function spaces, can be written as suitable convolution operators. This is
more or less know (see for instance [5], Section 6), though not explicitly
stated in the form we need. Because of that, we prefer to provide full
proofs.

Theorem 6.16. If m € R and 1 < s < oo, then Sp(G) C Dom (Ag/Q), and
there exists Py, € K™ 9 such that

Ag/2u =ux Py, foralue S(G).
Moreover, if R > 0 then

(54) O((Pm))r € OC™(G).
Coherently, in the sequel we shall write
(55) AL = O((Pu)).

Proof. Suppose first m > 0. By Proposition 3.4,

So(G) € 8(G) C Dom (AZ/?).
Choose N € ZT such that m < 2N < m + @ (this is possible since Q >
2). Since u € DomA¥ N DomAg/2, then, by [9], Theorem 3.15, AXu €

DomAgﬂ_N and Ag/zu = Ag/2_NAgu. On the other hand, —Q < m —
2N < 0, so that, by [9], Propositions 3.15 and 3.18 ,

Ag/Q_NAgu = Afux Ron—m = ux " (AF)  Ron—m,

since the integral in Ag u* Ron_m, converges absolutely. Thus the assertion
for m > 0 follows by putting P, := V(Ag)ngN_m e KM@,

Let now m := —a < 0. Choose first N € N such that 2N < a < Q 4+ 2N,
that is always possible since () > 3. This choice yields 0 < a — 2N < Q. If
u € So(G), set

g:= (- ((ux Ry)* Ry) *--+)* Ry
where we perform N successive convolutions with the kernel Ry. By [5],
Proposition 2.3,
g = (OO(RQ) @) Oo(Rg) O-++0 OU(RQ))U = O()(RZN)’U,
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for a suitable Ry n € K?N-Q_ Clearly, by Proposition 6.1, g € So(G), and,
in addition, AY¥g = u. By Remark 6.3, g € Dom(Agfaﬂ). Since g €
Dom(AfY), by [9], Proposition 3.15 (iii), then u = Afg € Dom(Aéa/Q) =
Dom(Ag/Q), and

ANTPg = ASPANg = A" u.
Thus, by [9], Proposition 3.18, and [5], Proposition 2.3,
AG""?u = Oy(Ra-2n)9 = Oo(Ra—an) (Oo(Ran)u) := O(Pr)u = u % P,

where P, := Ro—onxRa N € K_m_Q, since @« — 2N —Q +2N —Q + Q =
—m — Q.

Remark 6.17. The same argument shows that, if m > 0, then D(G) C
Dom (Ag/2), and
ATy =ux P, forall u € D(G).
Lemma 6.18. We have
AR o AgH? =1 mod OC™,
and

Ag? o Al = 1d mod OC™.

Proof. By Theorem 6.8 (c), if m is a real number, Agg o Aéné/z has a core
K ~ PP, € K9, If u € Sy(G), then

O0(PrmtPym )t = Og(Pp) 0 Op(P_y)u = A? o AZ™ 0 = u,

by Theorem 6.16 and [9], Theorem 3.15 (iii). By [15], [16], the map u —
wk(PpxP_p,) is continuous in L?(G), and hence, by density, u(P,xP_,) =
u=wuxJ for all w € D(G). Thus the assertion is proved. O

Proposition 6.19. If Q) C G is a bounded open set, m,a € R, 1 < s < o0,
and T € OC*(G), then

T W (G)n & (Q) — W (G)
continuously.
Proof. Suppose first m,m +a > 0. Let u € Wi *°(G) N £'(Q) be given.
Without loss of generality, we can assume u € D(£21), where €25 is a given
bounded open neighborhood of Q, since D(€) is dense in W' **(G) N

E'(Q2). Indeed, by Proposition 3.4, if € > 0, we can find u. € D(G) such that
l|lu— usHWm+a,s(G) < e. Let now ¢ € D(£1) be such that 1) = 1 on Q. Then,
G

by [9], Corollary 4.15,
”u_wuaHWg’L{»a,S(G) = H’lpu—wua”wg+a,5(6) S Cw||u_u5||wén+oa,5(G) < C¢E

By definition, there exists a bounded open set Q7 (depending only on €
and 7) such that 7u € D(Q7). If R > 0 is fixed (sufficiently large), by
Proposition 3.9, we have

m/2
I Tullwme ey~ 1AL TullLs)-
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On the other hand, by Lemma 6.18,
AR Tu=ARR T AP ALy 4 oS,

with § € OC™ and ¢y € D(G) with o9 = 1 on Qp - B(e,2R), since

Aé(}?Jm)/zAé}me)/Qu is supported in Q; - B(e,2R). Then the assertion fol-

lows by Proposition 6.19, since
AR T AT e 0c(6),

by Theorem 6.8, and by Lemma 6 11

Suppose now m,m + a < 0. As above, if u € W5 **(G) N £'(Q) then
supp 7 u is contained in fixed open neighborhood Q7 of Q. Let ¢y € D(G)
such that ¥ =1 on Q7. If ¢ € D(G), by Theorem 6.8 we have

(Tulp) = (Tuldop) = (W|T"(Yop))
< HUngWvS(@)HT*(iﬂoﬁ/?)HWGf(mm),s’(G)

< Cllullymoriey 0l -
< m+a,s —m.s’ B
< Cllulygrses ) 1€y g

by [9], Corollary 4.15. Taking the supremum with respect to ¢, the assertion
follows in this case.
Suppose now m < 0 < m + a. As above, we can write

T = Ay AL T+ oS, with g € D(G) and S € OC™.

Then the assertion follows since Am/ °T € OC™(G), Ag m/ eoc G),
and hence there exist a bounded open neighborhood £ of Q such that
AR T - WET(G) N E(Q) — L5(G) N E'(Q)
and
AW NE () L3(G) — W (G)
continuously, by what we proved above.

Finally, if m + a <0 < m, then the assertion follows in a similar way.
O

Definition 6.20. Let T' € £'(G, E!') be a compactly supported h-current
on G of the form
T=> > TjL(x}) withT; €& (G)forj=1,...,dim Ej.
P jelf,
Let m be a h—vector weight, and let R > 0 be fixed. We set (with the
notation of (55))

m/2T Z Z mp/2 *fh)

In particular, if T' can be identified with a compactly supported h-form
a = Zp > jett, a]f]h, then our previous definition becomes

gga - Z Z )€J

P ]EI(’)L’p
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Remark 6.21. As in Definition 6.20, if m is a h-vector weight, we define the
operator

Oo(P) : So(G, Ey) — So(G, Ef)

as follows: if a =3 Zjdh Oc]{;? with o € So(G), then
m ) = Z Z i * P, )E5-
p JEIo,p
In other words, P, can be identified with the matrix ((Pp)i;), where
(Pa)ij = 01if i # j and (Pp);; = my if j € I{,,.
We can write
AZR ~ Py
The following result is a straightforward consequence of Proposition 6.19,

thanks to “diagonal form” of the operator A / 2,

Proposition 6.22. Let ) C G be a bounded open set. If m and o are
h-vector weights, and 1 < s < oo, then for any R > 0
AL WETS(G, ER) N E(Q, EY) — WE(G, EL)
continuously.
Again thanks to “diagonal form” of the operator Ag/]g , the following
result is a straightforward consequence of Lemma 6.18.

Lemma 6.23. If m is a h-vector weight, then for any R > 0
AR o AGY? =1 mod OC™,

and
AGY? o AR/Y =1d mod OC™.

7. APPENDIX B: DIFFERENTIAL FORMS IN CARNOT GROUPS

For sake of completeness, we present here an explicit proof of point ii) of
Theorem 2.14, concerning the structure of the differential d.. Moreover, we
provide a list of explicit examples of the complex (Ep, d.) for some significant
groups.

Proposition 7.1. The map d. : E(’} — Eé‘“ can be written in the form

a=> ) o —

p jelgyp
(56) Mmax

h+1

— 222 (Fe)sT

q=max{p+1, M} iell 1t P jely,

where the P];Iqj ;s are homogeneous polynomials of degree q — p in the hori-

zontal derivatives.

Since d. = Illg,d 1l g, the proof requires two preliminary results.
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Lemma 7.2. The map g : Eg’p — Q" has the form

a=) o] —
JeIk
(57) Nmax —p

—)HEOz— Z Z Z ,p-i—k,], aJ)Gh

jerh k=0 et

where Qp PTSTE E(G) — &E(G) is an homogeneous differential operator of
degree k in the horizontal derivatives for all j,7 and k.

Proof. By linearity, we can assume o = oejH;-L’p for a fixed j. The proof
relies on Proposition 2.17 and Remark 2.18. Let us argue by induction on
k, keeping in mind that there exist real coefficients Q" a; for i, k with

p<p+k <N and i€ Ip+k such that

p,p+k,j,i

_ h
lpa = Z (Mpa)pk = Z Z 7p+k7J %aﬂ)e
k=0 = ze]h

By the first line in (24), obviously Qpp ;i is an homogeneous differential
operator of degree 0 in the horizontal derivatives. Suppose now «; —
(Qﬁp +2;iQj) is an homogeneous differential operator of degree A in the
horizontal derivatives for A < k and for all ¢ € /'\1, and let us consider now
the case A =k + 1. We have

Mpa)psrir=—d' ( D de D (Qprrri-e;i09)07)

- Th
1<k+1 €Ll

==dy (Y D, > (WaQppinirr5:05)0s NOY).

<kl w(0s)=tiert,,
Now, for all 8,4, w(fs AO?) = +p+k+1—£=p-+k+1, and the order of
WSQQPJF,CH_M equals £ + k+1— ¢ = k + 1. This achieves the proof of the
lemma. O

Lemma 7.3. The map d1lg : Eg’p — QML has the form

h
o = E Oéjej’p—>
JeIk
(58) Ny —p

_)dHEO‘_Z Z Z pp—l—lwz ')H?H

h k=0 h+1
JEI Ip+k

where Qp vikgi @ €(G) — E(G) is an homogeneous differential operator of
degree k in the horizontal derivatives for all 7,1 and k.
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Proof. By linearity, we can assume a = «;0; P for a fixed j. By (57),

a— dllpa

N;:]dx
Z Z ( dQZ,p—l—kJ,iO‘j) NP+ ( Zp-f—kaaj)de )
= zEIh
Npax_p
Z Z (Z (WeQp ik i) 0s N OF + (Qp i jicts) A6} )
= 1€Ih s

Obviously, 0, A 07 € @M 1Lwl)+rtk and W, Qp ok
differential operator in the horizontal derivatives of order w(f;) + k, and
h h+1 h+1
hence (W Qp ok, ;)05 A0 has the form (Qp DR ,0) 0 withi € L
with &' := k 4+ w(6;), and Qp p+k.i 18 an horizontal operator of order &'.
In addition, by Lemma 2.8, dOh is a linear combinations of elements in

©MtLrtk  Since QP has order k, the lemma is completely proved. [J

is an homogenous

p,p+k,j,0

Proof of Proposition 7.1. By linearity, we can assume a = Z ajﬁjh for a
jerl,
fixed p. Since =" and ©" are left invariant basis there exist real constants

h : —
cj \ such that we can write oo = Z ( Z ])\ozj 9/\ Z anon.
XLy jely, eIl

We notice first that, if 3 € /\thl g, then

max
Mh+ 1

(59) Opaf= Y > (B

g=Min e it
Replacing (58) in (59), we get

dea =T g,dllg Y ax0%
eIl
(60) MY Np¥T—p

Z Z Z Z Z pp+kAﬁa%)wgﬂvfzhﬂﬁzhﬂ-

=M iery bt aely k=0 et
We notice now that
h41 h41 cht1
zZ' : <9+,£+>5£0 only if ¢g=p+k,

by Remark 2.6, that in turn is possible only if ¢ > p. Moreover, by Remark
2.18, necessarily ¢ > p. Thus the sum with respect to the index k reduces to
the only term k = ¢—p (we point out that 0 < ¢g—p < MYy —p < N —p,
since M’ is the highest weight in E(]}H C /\h+1 g, whereas N7 is the

highest weight in /\thl g).
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Thus (60) becomes
d.o

max
Mh+l

- Z Z Z Z hH 1011/\130‘/\)§£Hrl

(61) q=max{p+1, M1 }ie [T A€y e 1p

max
Mh+1

— h+1
- p(IJZ ] ’

g=max{p+1, M1} i1l ]elg,p

. h _h+1A
p%]l' Z Z CiNCie qu,f

AET] perhtt

where

is an homogeneous polynomial of degree ¢ — p in the horizontal derivatives.
O

We give now some explicit examples of the classes I} for some significant
groups.

Example 7.4. First of all, we stress that in any Carnot group G the space
Eé consists precisely of all horizontal forms, i.e. of all forms of weight 1.
Indeed, notice first that on 0-forms dy = 0. On the other hand, if X;, X; are
left invariant vector fields, and 6, € ©', by the identity

do(Xi, X;) = df(Xi, X;) = —0,([Xi, Xj]),
it follows that dof, = 0 if and only if 6, has weight one, since [X;, X;] belongs
toVo®--- P V.

Example 7.5. Let G := H' = R? be the first Heisenberg group, with
variables (z,y,t). Set X := 0, + 2y0;, Y := 0y — 220, T := 0;. We have
X' = dz, Y? = dy, T" = 6 (the contact form of H'). The stratification
of the algebra g is given by g = Vi @ Va, where V; = span {X,Y} and
Vo = span {T'}. In this case

E} = span {dz, dy};

E2 = span {dz A 6,dy A 0};

E3 = span {dz A dy A 6}.
Moreover

de(ardz + andy)

1
= HEOd(Oz1d$ + any - Z(XO[Q - Yoq)@)

= D(Ozldl’ + Oégdy),

where D is the second order differential of horizontal 1-forms in H! that has
the form

D(apdx 4+ agdy)
1 1
= —1(X2a2 —2XYon +Y Xai)dw A6 — 2(2Y Xap — Yia; — XYao)dy A6

= Pi(a1,a0)dx N0+ Po(ag,a)dy A 6.
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On the other hand, if
a = +a3dr N0+ aszdy N0 € Eg,

then
dea = (Xagg — Yaug)de Ady N6.

Example 7.6. Let G := H! x R, and denote by (z,y,t) the variables in H*
and by s the variable in R. Set X,Y,T as above, and S := Js. We have
X% = dx, Y% = dy, S? = ds, T" = 6. The stratification of the algebra g is
given by g = Vi @ V;, where V; = span {X,Y, S} and Vo = span {T}. In
this case

E} = span {dz, dy, ds};

E? = span {dz A ds,dy Ads,dz N6, dy A 0};

E3 =span {dx Ady A0,dx Ads AO,dy Ads NG}

Moreover
d.(ardx + aody + azds)
= D(adx 4+ aody) + (Xag — Saq)dx Ads + (Yas — Sasg)dy A ds,

where D is the second order differential of horizontal 1-forms in H! that has
the form D(aqdx + aody) = Pi(aq, a)dx A0 + Pa(ar, as)dy A 6.
On the other hand, if

a = ai3dr A ds + aszdy A ds + ayadz A O + aogdy N6 € Eg,

then
dev = (Xovog — Yaqy)dz Ady A6

1

+ (TOZ13 — Saqq — Z(X20423 — XYalg))d.fL‘ ANds NGO
1

+ (Ta23 — Sagy — Z(YXOQS — Y20413))dy ANds N6.

Example 7.7. Let now G := H? x R, and denote by (x1,z2,y1,y2,t) the
variables in H? and by s the variable in R. Set X; := 0,, + 2y;0, Y; :=
Op, —22i0;, i = 1,2, T := 0, and S := 0s. We have Xf = dx;, Yih = dy;,
i=1,2, 8% = ds, T" = 6 (the contact form of H?. The stratification of the
algebra g is given by g = V1 @& Vi, where V; = span {X1, X5, Y1, Y5, S} and
Vo = span {T'}.
Let us restrict ourselves to show the structure of the intrinsic differential
on E}, i.e on horizontal 1-forms. Using the notations of (17), we can chose
an orthonormal basis of /\h g, h =1,2,3 as follows:
h=1: 0Ll = (01,...,0}) = (dw1,dx2, dy1, dy2, ds), and ©12 = (6) = ().
h=2: 022= (9%, - ,0%0) = (dl‘l Adxa, dys Ndyo, dxy Adyr, dxy Adys, dza A
dy1, dvaAdyz, dwi Ads, droAds, dyy Ads, dyaAds), ©23 = (02,,...,0%) =
(dxy N O,dxo NO,dyr AO,dys N\ 6,ds A D).

h=3: 033 = (0:15, e, 9‘;’0) = (dxl ANdxo A dyy,dxy Adxs A dys,dxy A dzo A
ds,dxy Ndyiy Adys, dx; Adyy Nds, dxo Adyy Adys, dyr Adys Ads, dxy A
dya A ds,dxy A dys A ds,dy; A dys A ds). O3 = (63,,...,03) =
(d:lj'l ANdxo NO,dyy Adys N O, dxy ANdyr A0, dxy Adys A0, dxs A dy; A
0,dxo Ndya N O,dxy ANds ANO,dxo Nds N\ O,dyr Nds N0 ,dya Nds N0).
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We have:
dof} =0 wheni=1,...,5 dofg = 4(0% + 62);
dof? =0 when i =1,...,10 dob?, =463, dob?, = —463,
dobs = —463, dob7y =465, dobis = 4(62 + 63).

Thus

0 0]0

0 0]0

0 04

0 0]0

0 0]0

0 04

My=10 00

0.0i

0 ... 010

0 00
0 0j0 -4 0 0 O
0 0j4 0 0 0O
0 0j0 0 0 0O
0 0j0 0 0 4 O
0 0j0 0 0 0 4
0 0j0 0 —4 0 O
Mp=| 0o 200000
0 0 0O O 0
0 0 0O O 4
0 0j0 0 0 0O
O ... o0 0O O OO

As usual, E} is the space of left invariant horizontal 1-forms, i.e. an or-
thonormal basis of E} is given by {dz1,dx2,dy1, dy2,ds}. Keeping into ac-
count that Eg can be identified with ker My Nker! M, then the left invariant
form a = Zj oz]ﬂ]z belongs to Eg if and only if
Qg = —Q3
and
ajp = a2 = a3 = a1g = ags = 0.
Hence an orthonormal basis of E3 is given by {£7, €3, %(532,—5%), €2,62,¢2 ¢2,
fg, 5%0} = {dl’l A dxo, dy; N dys, %(dl‘l ANdy; — dzog N dyz), dx1 N dys, dxo N\
dyy,dxy N ds,dxa A ds,dy; N\ ds,dys A ds}. In particular, the orthogonal
projection Ilg,a of o on Ej has the form
10

(62) Hg,a = Z Oéjsz +
o

a3 — Qg

5 (& - &),
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We want now to write explicitly d. acting on forms o = () = Z?Zl a; (x)ﬁjl

To this end, let us write first IIgz1a. Because of the structure of /\1 g, by
Proposition 2.17,

Hpia= o+ 96,
for a smooth function v, with v0 = —dy*(d1 ), i.e.
(63) do(’y@) + dia € ker by,

by Corollary 2.11. We can write (63) in the form

4y (dxy A dyr + dzg A dys)
+ (X — Xoay)dzy A dxe + (Yiay — Yoag)dyr A dys
+ (X1a3 — Yian)dzy A dyr + (Xqiag — Yaaq)dxy A dys
+ (Xoasg — Yiag)dza A dyy + (Xoay — Yaan)dxa A dys
+ (Xja5 — Say)dzy Ads + (Xaas — Sag)dzg A ds,
+ (Yias — Sas)dy; A ds + (Yaas — Say)dys A ds € ker dg.

(64)

Because of the form of {M; above, this gives
8y + Xi1a3 — Yiag + Xoay — Yoag =0,
i.e.
1
V= _g(Xla?) — Y11 + Xoay — Yaag).

However, the explicit form of v does not matter in the final expression
of dca. Indeed, keeping in mind that dpaw = 0, and that Ilg,(di(76)) =
g, (dy A @) =0, and Ilg,(d2(o +v0)) = 0, since IIg, vanishes on forms of
weight 3, by our previous computation (64), we have
dea = g, (d(a +76))
=TI, (do(a 4+ ~0) + di (v +70)) + I g, (d2(a + ~0))
= IIg,(do(70) + d1cx)
=Ilg, ((X1a2 — Xoaq)dxy A dxo + (Yiay — Yoas)dy A dyo
+ (X1as — Yiag + 4y)dxy Adyr + (Xiag — Yoaq)dzy A dys
+ (Xoag — Yiaw)dza A dyr + (Xoay — Yoag + 47)dxe A dys
+ (X105 — Sag)dxy Ads + (Xoas — Sag)dza A ds,
+ (Yras — Sas)dyr A ds + (Yoas — Say)dys A ds)
= (X109 — Xoavy)dxy A dzg + (Yiay — Yoas)dyr A dyo
+ (Xjaq — Yoay)dxy A dys + (Xeag — Yiag)dzg A dyy
+ (X105 — Say)dxy Ads + (Xoas — Sag)dza A ds,
+ (Yias — Sag)dy; A ds + (Yoas — Say)dys A ds
Xiag3 — Yia1 — Xoay + Yoan 1

\/i \ﬁ(d.%’l Ady; —dxa A dyg),

by (62).
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Example 7.8. Let G = RS be the Carnot group associated with the vector
fields

X1 = O
Xo = O+ 2104
X3 = 03+ x205 + 2406

and
Xy = O4
Xs = 05+ 110
X¢ = 0g.

Only non—trivial commutation rules are
(X1, Xo] = Xy, [Xo,X3]= X5, [X1,X5]=Xs, [X4, X3]=Xs.

The X;’s are left invariant and coincide with the elements of the canonical
basis of RS at the origin. The Lie algebra g of G admits the stratification

g=9g1Dg2Dgs,

where g1 = span{X1, X, X3}, g2 = span {Xy, X5}, and g3 = span {Xg}.
We set also

95 = d$5 — .nga?g
04 = d$4 — xld:ﬂg
0 = dxg— x1dxs + (331$2 — .’154)dﬂ§3

and
01 =dxy, 09 =dzxy, 03=dzs.
Clearly
0; = X% fori,j=1,..,6.
Moreover

dfy = —01 NBOy, dbBs = —05N03, dbg=05N04— 01 N0s.

As in Example 7.7, let us restrict ourselves to show the structure of the

intrinsic differential on Eé, i.e on horizontal 1-forms. Using the notations of

(17), we can chose an orthonormal basis of A" g, h = 1,2, 3 as follows:

h=1: @1’1 = {91,02,93}, @1’2 = {94,(95}, and @1’3 = {06}

h=2: 022 = {9%,9%,9%} = {91 A6y, 01 A3, 02 N 93}, 0323 = {92, .. ,952)} =
{91 NOy, 01 N\O5,05N\04,05N05,03N04, 93/\(95}, 024 = {0%0, ce ,9%3} =
{91 /\06,92/\96,93/\06,94/\95}, 0325 = {0%4,9%5} = {94/\96,05/\96}

h=3: 03 = {0?} = {91 A O9 N 93} 034 = {93,,9;} = {91 A O9 N
04,00 N Oy N O5,00 N O3 A BOy,00 N\O3 A BOs,05 N\ O3 Ay, 0o N\ O3 A 95},
035 = {03,,0:133} = {91 AN by N Bg, 01 NO3 A Bg, 02 N\O3 A bBg, 01 N
04 N\ O5,05 NGy NO5,035N604 N 95}, 036 = {0‘;’4, - ,0:139} = {01 N7 ZWAN
Og,01 N\ O5 N Og, 0o N\ Oy N BOg, 05 N\ O5 A bOg, 03 N\ Oq A Bg, 03 N O A 66}7
037 = {95’0} = {94 A O5 N\ 06}
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We notice that an orthonormal basis of /\h g, h =4,5,6 can be obtained by
Hodge duality.

We have
000|/-1 010
0000 010
0000 —1]0
000/0 0]O0
0000 0171
0000 010
0000 01O
Mi=|900o0/0 o0]-1
000/0 010
000/ 0 0]O0
0 0l0 00
000/ 0 0]O0
0000 010
000/0 -100 10000 0]0 o0
0 00/0 0O 0O 0 0O/0O0OO O]O0 0
000/(0 O 0O 0 0/00O0-1]0 0
000/0 O OO 0O O/1T 00 O0O]O0 O
000/0 O OO 0O O0/0OO0O1 0[]0 O
000/0 O 0O 0 0/010-1]0 0
000/0 O OO 0O 0/0OO0O O0O]O0 O
000/0 0O 0O 0O 0/0O0OO0 O0]-1 0
My=19000/0 0 00 0 0/00O0 0|0 0
000(0 0O OO 0 0/l0OO0O0 O]O0 -1
000/0 O OO 0 0/00O0 O]1 0
000/0 O OO 0O 0/00O0 O0O]O0 O
000/0 O OO 0 0/00O0 O]O0 1
0 00/0 0O 0O 0 0O/00O0O O]O0 0
000/0 O OO 0O 0/0O0O O]O0 O

As usual, E} is the space of left invariant horizontal 1-forms, i.e. an or-
thonormal basis of E} is given by {61, 0s,603}. Keeping into account that
Eg can be identified with ker My N ker! M, then the left invariant form
=3 aj9]2 belongs to E? if and only if

as = —ag, Q0 =011 =012 =a13 = a4 = a5 =0
and
a5 = g, CthOq:O.
o (62 2 2 _ 2.2 2,3 . .
Therefore, an orthonormal basis {7, ...,&5} of Ej = Ey° @ Ey” is given by

{91 VAN 93} U {91 ANOy, 05 N 0Oy,05 N 05,03 A 95}
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In particular, the orthogonal projection Ilg,a of a € /\2 g on E} has the
form

(65) HEOa:a291A03+a401/\94+oz692A94+a792/\95+a993A05.

We want now to write explicitly d. acting on forms o = a(x) = Z;’Zl a;(z)0;.
To this end, let us write first [I51a. We have

HEla = (HEIO()l + (HE1a)2 + (HE1a)3
=a+ (Igia)y+ (lIgia)s
= a+ (7404 + 7505) + 7606,
with
Y404 + 7505 = —dy 1 (d1 (@161 + b + a3zfs))

(66) = —dal((Xloég — X20[1)91 N (X1a3 — X30(1)91 A O3
+ (XQCtg — X3042>92 A 93),

(67) 7606 = —dy* (d1 (1461 + 7565) + dacr)
Now (66) is equivalent to

do(7404 + 505) + (X102 — Xoa )01 A O + (X1a3 — Xzap)01 A O3

(68) .
+ (X2053 — X3()é2)92 A 03 € ker "M,
i.e.
(69) (—va + X1aa — Xoaq)01 A b2 + (X1a3 — Xgaq )by A O3

+ (=75 + Xoas — X3a2)02 A 03 € ker ' My,

that gives eventually

Y4 = X1042 — X2a1 and Y5 = X2a3 — X3Ck2
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Consider now (67), that is equivalent to
do(v606) + d1 (X102 — Xoa1)0s + (X203 — X302)05 + daa)
=v(03 NOg— 01 N O5) + X1 (Xjag — Xoary )01 A Oy
+ Xo(X1a9 — Xoaq )b A Oy
+ X3(X1ae — Xoaq)05 A 0y + X1 (Xoas — Xsan)01 A O
+ Xo(Xoag — X3a2)02 A 05
+ X3(Xoag — X3a2)03 A 05 — X101 N Oy
— Xyaobs N0y — Xya303 AN Oy — X501001 N O3
— Xsa0s A 05 — X5ai303 A 05
= X1 (Xjag — Xoa1)01 N Oy + Xo(X1ag — Xoag)fa A Oy
+ (X3(Xyag — Xoan) +76)03 A 04 + (X1 (Xaaz — X3zaz2) —76)01 A 05
+ Xo(Xoag — X3a2)02 A 05
+ X3(Xoag — X3a2)03 A 05 — Xgqa101 A Oy — Xy N Oy
— Xyas03 N0y — Xsa101 A G5
— Xsa0s A 05 — X5a303 A 05
= (X1 (X102 — Xoa1) — X401)07 + (X1 (Xoaz — Xzan) — 76 — X501)02
+ (X (X1an — Xoay) — X4a2)02 4 (Xo(Xoaz — Xzan) — Xsa2)62
+ (X3( X100 — Xoaq) + 76 — Xa03)03 + (X3(Xoa3 — Xza2) — X5a3)03
€ ker "M,
i.e. to
X1(Xoas — Xzan) — 76 — Xsan — (X3(X102 — Xaa1) + 96 — Xgag) =0
This yields

1
Yo = 5(X1(X2053 — Xgoég) — X5061 - X3(X10é2 - XQOél) + X40é3)-

Thus
pia = a107 + azfs + asbs
+ (X1a2 — X2a1)04 + (X2a3 — X3a2)05

1
+ §(X1(X2043 — X3az) — Xz — X3(Xi0 — Xoar) + Xgas)0s.

Then
dea = (X1a3 — X3041)91 A 03 + (X1<X1a2 — X2a1) — X4041)91 A 0Oy
+ (Xg(Xlaz — XQOél) — X4062)02 A Oy
+ (Xg(XgOzg — X3042) — X5062)02 A 05
+ (Xg(XgOzg — X3042) — X5063)03 A Os.
Example 7.9. Let G = (R*-) be the Carnot group whose Lie algebra

isg =V, ®Va® V3 with V; = span {X1, X2}, Vo = span {X3}, and
V3 = span {X4}, the only non zero commutation relations being

[XluXQ] :X3 ) [X17X3] :X4-
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The group G is called Engel group. In exponential coordinates an explicit
representation of the vector fields is

xI9 T3 12
X1=0,— =03 — (=
% T

x
X3=83+?104 , X4 =04

2
I xl

0 X9 =20 —0 —0

)04, 2 2—1—2 3—1-124

Denote by 61, ...,604 the dual left invariant forms. The following result is
proved in [25]: as in Remark 7.4, an orthonormal basis of E} is given by
{61,05}; an orthonormal basis of Ej = Eg’g @ E§’4 is given by {62 A 03} U
{61 N 64}. Moreover, bases of ES’ , Eal can be written by Hodge duality.

If o = 101 + by € Eé, then

chz = (XQ(XlO[Q - Xgal) - X3a2)92 AN 03
+ (X1 (X2 — (X1 X9 + X3)a1) — X4a1)0; A by

Example 7.10. Let us consider now the free group G of step 3 with 2
generators, i.e. the Carnot group whose Lie algebra is g =V, & Vo @ V3 with
Vi = span {X1, X2}, Vo = span {X3}, and V3 = span {X4, X5}, the only
non zero commutation relations being

(X1, Xo] =X3 , [X1,X3]=Xy , [Xo, X3]=X5.

In exponential coordinates, the group G can be identified with R®, and an
explicit representation of the vector fields is

2
Xi=01 , Xo=0,+x103+ %64 + 212205
X3 =03+2104+2205 , X4=04 , X5=05.

Denote by 61, ...,05 the dual left invariant forms. As in Remark 7.4, an
orthonormal basis of E} is given by {61,605}
We have df; = df; = 0 and

dfs = —601 Ny, dBy=—01 NB3, dbBs = —05 A 0Os.

Using the notations of (17), we can chose an orthonormal basis of A" g,
h=1,2,3 as follows:

h=1: @1’1 = {91,02}, @1’2 = {93}, and @1’3 = {94,95}.

h=2: 022 = {9%} = {91 A 92}, 023 = {92,9%} = {91 A O3, 05 N 93}, 024 =
{02, e ,0%} = {01 A0y, 01 N0Os,05 A BOy,00 N\ 95}, 025 = {95,93} =
{93 A By, 03 N (95}, 026 = {9%0} = {94 VAN 95}.

h=3: 03*= {0:1))} = {91 /\92/\93}, 035 = {9%,05’} = {91 ANOs Ny, 01 NOs N
05}, 036 = {92,,9?} = {91/\93/\94,01/\93/\95,92/\93/\94,92/\
93/\95}, 037 = {0:83,98} = {91 ANy N 0Os5, 05 /\64/\95}, 038 = {H%O} =
{93 A By A 95}—
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We notice that an orthonormal basis of /\h g, h = 4,5 can be obtained by
Hodge duality. We have

0 0|-1]0 0
0 0]0]1 0
0 0/0]0 —1
0 0]0]0 0
0 0/0]0 0
M=t 9 0lolo o
0 0/0]0 0
0 0]0]0 0
0 0/0]0 0
0 0]0]0 0

Thus, if a = a19% + e+ 06109%0 S Eg, then

a € kert My if and only if a3 =as =a3=0.

Moreover
0j0 0|01 -1 0| O 0 0
00 0j]0O O O O|—-1 0 0
0/0 0j]OO O OL0 -—=1]0
0j0 0|0 O O OO 0 0
My = 0j0 0|0 O O OO 0 |—-1
0j0 0|0 O O OO 0 1 ’
0j0 0|0 O O OO 0 0
0/0 0|0 O O OO 0 0
0/0 0|0 O O OO 0 0
0j0 0|0 O O OO 0 0

that yields
«a € ker My if and only if a5 = ag,as = ag = ajg = 0.

Thus, an orthonormal basis of Eg is given by

1
02, —
{ 4 \/§
We want to show how d,. acts on 1-forms o« = o101 + asfy € Eol. To this
end, let us write [lpav = o + 303 + 7404 + 505. We apply Proposition 2.17.
We get first

’}/393 = —dal(dla) = —dal((Xlag — X2a1)91 VAN 92),

(63 + 65), 02}

ie.
—v301 A O + (X100 — Xoag)01 A Oy
= do(y363) + (X100 — Xoar1 )01 A Oy € ker “M;.
Therefore
73 = X1 — Xoo.
Analogously,

Y404 + Y505 = —dy * (d1(7303) + dacr).
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This gives
Y4 = Xiog — X1 Xp01 — X3on,
¥5 = Xo X0 — X22a1 — X3a09.
Eventually, we get
dea = (X174 — X401)01 N Oy + (Xoys — Xsa)b02 A G5

1
+ §(X1’}/5 — Xsa1 + Xoyg — X4a2)(91 A 05 + 05 N\ 94).

Remark 7.11. It is worth of noticing that Examples 7.5 and 7.10 show that,
if G is a free group with 2 generators of step 2 and 3, all classes of intrinsic
forms have pure weight (0,1,3,4 for the step 2 group, and 0,1,4,6,9,10 for
the step 3 group). This phenomenon could suggest some special feature of
free groups with respect to the weights of intrinsic forms (like, for instance,
that in free groups all forms in Ej§ have pure weight). Unfortunately, this
assertion fails to hold, at least in this naif form. Indeed, A. Ottazzi [20]
showed us a counterexample for ES’ in the free group of step 2 with 3 gener-
ators. In fact, this a general phenomenon, due to the fact that for this case
n =6 (even), so that E3 = xE3, but @ = 9 (odd), yielding a contradiction
with w(xa) = w(a), since w(xa) = Q —w(a). Clearly, this situation occurs
whenever n is even and () is odd.
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