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COMPENSATED COMPACTNESS FOR DIFFERENTIAL

FORMS IN CARNOT GROUPS AND APPLICATIONS
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Abstract. In this paper we prove a compensated compactness theo-
rem for differential forms of the intrinsic complex of a Carnot group.
The proof relies on a L

s–Hodge decomposition for these forms. Be-
cause of the lack of homogeneity of the intrinsic exterior differential,
Hodge decomposition is proved using the parametrix of a suitable 0-
order Laplacian on forms.
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1. Introduction

In the last few years, so-called subriemannian structures have been largely
studied in several respects, such as differential geometry, geometric measure
theory, subelliptic differential equations, complex variables, optimal control
theory, mathematical models in neurosciences, non-holonomic mechanics,
robotics. Roughly speaking, a subriemannian structure on a manifold M
is defined by a subbundle H of the tangent bundle TM , that defines the
“admissible” directions at any point of M (typically, think of a mechanical
system with non-holonomic constraints). Usually, H is called the horizontal
bundle. If we endow each fiber Hx of H with a scalar product 〈, 〉x, there is
a naturally associated distance d on M , defined as the Riemannian length
of the horizontal curves on M , i.e. of the curves γ such that γ′(t) ∈ Hγ(t).
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Nowadays, the distance d is called Carnot-Carathéodory distance associated
with H, or control distance, since it can be viewed as the minimal cost of a
control problem, with constraints given by H.

Among all subriemannian structures, a prominent position is taken by
the so-called Carnot groups (simply connected Lie groups G with stratified
nilpotent algebra g: see e.g. [3], [26], [28]), which play versus subriemannian
spaces the role played by Euclidean spaces (considered as tangent spaces)
versus Riemannian manifolds. In this case, the first layer of the stratification
of the algebra – that can be identified with a linear subspace of the tangent
space to the group at the origin – generates by left translation our horizontal
subbundle. Through the exponential map, Carnot groups can be identified
with the Euclidean space Rn endowed with a (non-commutative) group law,
where n = dim g.

In this picture, horizontal vector fields (i.e. sections of H) are the natural
counterpart of the vector fields in Euclidean spaces. In the Euclidean setting,
several questions in pde’s and calculus of variations (like, e.g., non-periodic
homogenization for second order elliptic equations or semicontinuity of vari-
ational functional in elasticity) can be reduced to the following problem:
given two sequences (Ek)k and (Dn)n of vector fields weakly convergent in
L2(Rn), what can we say about the convergence of their scalar product? The
compensated compactness (or div–curl) theorem of Murat and Tartar ([18],
[19]) provides an answer: it states basically that the scalar product 〈Ek, Dk〉
still converges in the sense of distributions, provided {divDk : k ∈ N} and

{curlEk : k ∈ N} are compact in H−1
loc (Rn) and (H−1

loc (Rn))n(n−1)/2, respec-
tively.

When attacking for instance the study of the non-periodic homogenization
of differential operators in a Carnot group G, it is natural to look for a similar
statement for horizontal vector fields in G. In fact, a preliminary difficulty
consists in finding the appropriate notion of divergence and curl operators
for horizontal vector fields in Carnot groups. To this end, it is convenient
to write our problem in terms of differential forms, and to attack the more
general problem of compensated compactness for sequences of differential
forms. Indeed, we can identify each vector field Ek with a 1-form ηk, and
each vector field Dk with the 1-form γk. Then, the compactness of curlEk is
equivalent to the compactness of dηk. Analogously, denoting by ∗ the Hodge
duality operator, the compactness of divDk is equivalent to the compactness
of ∗d(∗γk), and hence to the compactness of d(∗γk). With these notations,
if ϕ is a smooth function with compact support and dV denotes the volume
element in Rn, then 〈Ek, Dk〉ϕdV = ϕηk ∧ ∗γk.

Thus, a natural formulation of the compensated compactness theorem in
the De Rham complex (Ω, d) reads as follows (see, e.g., [14] and [21]):

If 1 < si < ∞, 0 ≤ hi ≤ n for i = 1, 2, and 0 < ε < 1, assume that
αεi ∈ Lsi

loc(R
n,Ωhi) for i = 1, 2, where 1

s1
+ 1

s2
= 1 and h1 + h2 = n. Assume

that

(1) αεi ⇀ αi weakly in Lsi

loc(R
n,Ωhi) as ε→ 0,

and that

(2) {dαεi} is pre-compact in W−1,si

loc (Rn,Ωhi+1)
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for i = 1, 2.
Then

(3)

∫

Rn

ϕαε1 ∧ αε2 →
∫

Rn

ϕα1 ∧ α2 as ε→ 0

for any ϕ ∈ D(Rn).
Thus, when dealing with Carnot groups, we are reduced preliminarily to

look for a somehow “intrinsic” notion of differential forms such that

• Intrinsic 1–forms should be horizontal 1–forms, i.e. forms that are
dual of horizontal vector fields, where by duality we mean that, if v
is a vector field in Rn, then its dual form v♮ acts as v♮(w) = 〈v, w〉,
for all w ∈ Rn.
• A somehow “intrinsic” notion of exterior differential acting between

intrinsic forms. Again, the intrinsic differential of a smooth function,
should be its horizontal differential (that is dual operator of the
gradient along a basis of the horizontal bundle).
• “Intrinsic forms” and the “intrinsic differential” should define a com-

plex that is exact and self-dual under Hodge ∗-duality.

It turns out that such a complex (in fact a sub-complex of the De Rham
complex) has been defined and studied by M. Rumin in [25] and [24] ([23]
for contact structures), so that we are provided with a good setting for our
theory. For sake of self-consistency of the paper, we present in Section 2 the
main features of this complex, that will be denoted by (E∗

0 , dc), where dc :

Eh0 → Eh+1
0 is a suitable exterior differential. We stress now that a crucial

property of dc relies on the fact that it is in general a non homogeneous
higher order differential operator. To better understand how this feature
affects the compensated compactness theorem, we begin by sketching the
basic steps of the proof in the Euclidean setting. The crucial point consists
in proving the following Hodge type decomposition: if 0 < ε < 1, let αε be
compactly supported differential h-forms such that

(4) αε ⇀ α as ε→ 0 weakly in Ls(Rn)

and

(5) {dαε} is compact in W−1,s
loc (Rn).

Then there exist h–forms ωε and (h− 1)–forms ψε such that

• ωε → ω strongly in Lsloc(R
n) ;

• ψε → ψ strongly in Lsloc(R
n) ;

• αε = ωε + dψε.

Roughly speaking (for instance, modulo suitable cut-off functions), the proof
of the decomposition can be carried out as follows (see e.g. [21]).

• let ∆ := δd+ dδ be the Laplace operator on k–forms, where δ = d∗

is the L2 formal adjoint of d;
• we write

αε = ∆∆−1αε = δd∆−1αε + dδ∆−1αε

• we set

ωε := δd∆−1αε = δ∆−1dαε

3



that is strongly compact in Lsloc(R
n), since dαε is strongly compact

in W−1,s
loc (Rn);

• we set

ψε := δ∆−1αε

that converges weakly in W 1,s
loc (Rn) and hence strongly in Lsloc(R

n).

If we want to repeat a similar argument, we face several difficulties. First of
all, the “naif Laplacian” associated with dc, i.e.

δcdc + dcδc

where δc = d∗c , in general is not homogeneous. Even if dc is homogeneous,
as in the Heisenberg group Hn, such a “Laplacian” is not homogeneous. For
instance, on 1–forms in H1, δcdc is a 4th order operator, while dcδc is a 2nd
order one. This is due to the fact that the order of dc depends on the order
of the forms on which it acts on. In fact, dc on 1–forms in H1 is a 2nd
order operator, as well as its adjoint δc (which acts on 2–form), while δc on
1–forms is a first order operator, since it is the adjoint of dc on 0–forms,
which is a first order operator.

Though in the particular case of 1-forms in H1 this difficulty can be
overcame as in [2], by using the suitable homogeneous 4th order opera-
tor δcdc + (dcδc)

2 defined by Rumin ([23]) that satisfies also sharp a priori
estimates, the general situation requires different arguments.

In general, the lack of homogeneity of dc can be described through the
notion of weight of vector fields and, by duality, of differential forms (see
[25]). Elements of the j-th layer of g are said to have (pure) weight w = j;
by duality, a 1-form that is dual of a vector field of (pure) weight w = j
will be said to have (pure) weight w = j. Vector fields in the direct sum of
the first j − 1 layers of g are said to have weight w < j. Thus, a 1-form is
said to have weight w ≥ j if it vanishes on all vectors of weight w < j. This
procedure can be extended to h-forms. Clearly, there are forms that have
no pure weight, but we can decompose Eh0 in the direct sum of orthogonal
spaces of forms of pure weight, and therefore we can find a basis of Eh0 given
by orthonormal forms of increasing pure weights. We refer to such a basis
as to a basis adapted to the filtration of Eh0 induced by the weight.

Then, once suitable adapted bases of h-forms and (h+1)-forms are chosen,
dc can be viewed as a matrix-valued operator such that, if α has weight p,
then the component of weight q of dcα is given by a differential operator in
the horizontal derivatives of order q−p ≥ 1, acting on the components of α.

The following two simple examples can enlight the phenomenon. We
restrict ourselves to 1-forms, and therefore we need to describe only E1

0 and
E2

0 . For more examples and proofs of the statements, see Appendix B.
Let G := H1 ≡ R3 be the first Heisenberg group, with variables (x, y, t).

Set X := ∂x+2y∂t, Y := ∂y−2x∂t, T := ∂t. The dual forms are respectively
dx, dy and θ, where θ is the contact form of H1. The stratification of the
algebra g is given by g = V1 ⊕ V2, where V1 = span {X,Y } and V2 =
span {T}. In this case, E1

0 = span {dx, dy} and E2
0 = span {dx ∧ θ, dy ∧ θ}.

These forms have respectively weight 1 (1-forms) and 3 (2-forms). As for
4



1-forms, the exterior differential dc acts as follows:

dc(αXdx+ αY dy) = −1

4
(X2αY − 2XY αX + Y XαX)dx ∧ θ

− 1

4
(2Y XαY − Y 2αX −XY αY )dy ∧ θ

:= P1(αX , αY )dx ∧ θ + P2(αX , αY )dy ∧ θ.

Notice that P1, P2 are homogeneous operators of order 2 (=3-1) in the hor-
izontal derivatives.

Consider now a slightly different setting. Let G := H1×R, and denote by
(x, y, t) the variables in H1 and by s the variable in R. Set X,Y, T as above,
and S := ∂s. The dual form of S is ds. The stratification of the algebra g is
given by g = V1⊕V2, where V1 = span {X,Y, S} and V2 = span {T}. In this
case E1

0 = span {dx, dy, ds} and E2
0 = span {dx∧ ds, dy ∧ ds, dx∧ θ, dy ∧ θ}.

Thus, all 1-forms have weight 1, whereas 2-forms have weight 2 (dx∧ds and
dy ∧ ds) and 3 (dx ∧ θ and dy ∧ θ). The exterior differential dc on 1-forms
acts as follows:

dc(αXdx+ αY dy + αSds) = P1(αX , αY )dx ∧ θ
+ P2(αX , αY )dy ∧ θ + (XαS − SαX)dx ∧ ds+ (Y αS − SαY )dy ∧ ds,

where P1, P2 have been defined above. Thus, the components of dc are
homogeneous differential operators of order 2 or 1.

To overcome the difficulties arising from the lack of homogeneity of dc, we
rely on an argument introduced in [25] (when dealing with the notion of CC-
elliptic complex). Let us give a non rigorous sketch of the argument. Denote
by ∆G the positive scalar sublaplacian associated with a basis of the first
layer of g (∆G is a Hörmander’s sum-of-squares operator). Remember that,

once adapted bases of Eh0 and Eh+1
0 are chosen, dc can be viewed as a matrix-

valued differential operator, whose entries are homogeneous operators in the
horizontal derivatives. Then we can multiply dc from the left and from the
right by suitable diagonal matrices whose entries are positive or negative
fractional powers of ∆G, in such a way that all entries of the resulting
matrix-valued operator are 0-order operators. By the way, this notion of
order of an operator, as well as all combination rules that are applied, have
a precise meaning only in the setting of a pseudodifferential calculus. We rely
on the CGGP-calculus (see [5] and Appendix A). In such a way, we obtain

a “0-order exterior differential” d̃c, and eventually a “0-order Laplacian”
d̃c(d̃c)

∗ + (d̃c)
∗d̃c, that, thanks to [25] and [5], has both a right and a left

parametrix. Thus, we can mimic the proof we have sketched above for the
De Rham complex (again, to work in a precise pseudodifferential calculus
allows the composition of different operators).

It is worth noticing that the lack of homogeneity of the exterior differ-
ential dc affects also the natural hypotheses we assume in order to prove
Hodge decomposition and compensated compactness theorem for forms in
E0. Indeed, in the Euclidean setting, assumptions (4) and (5) are natu-
rally correlated by the fact that the exterior differential d is a homogeneous
operator of order 1, which maps continuously Lsloc(R

n) into W−1,s
loc (Rn). In-

stead, when we are dealing with the complex (E∗
0 , dc), given a sequence of
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h-forms αε that converges weakly Lsloc(R
n, Eh0 ), then the different compo-

nents of dc α
ε converge weakly in Sobolev spaces of different negative orders,

according to the weight of the different components. For instance, if we de-

note by W−k,s
G,loc(R

n) the Sobolev space of negative order −k associated with

horizontal derivatives (see Section 3), then in our model examples H1 and
H1×R, with an obvious meaning of the notations, assumption (5) for 1-forms
becomes

{Pi(αεX , αεY )} compact in W−2,s
G,loc(R

n), i = 1, 2,

when G = H1, and

{Pi(αεX , αεY )} compact in W−2,s
G,loc(R

n), i = 1, 2,

as well as

{XαεS − SαεX}, {Y αεS − SαεY } compact in W−1,s
G,loc(R

n)

when G = H1 × R.
Our compensated compactness result for horizontal vector fields is con-

tained in its simplest form in Theorem 5.1, that can be derived by standard
arguments from a general statement (Theorem 4.13) for intrinsic differential
h-forms, that holds whenever all intrinsic h-forms have the same pure weight
(this is always true if h=1).

In Section 2 we establish most of the notations, and we collect more or
less known results about Carnot groups and the basic ingredients of Rumin’s
theory. In Section 3 we introduce from the functional point of view all the
function spaces we need in the sequel, with a special attention for negative
order spaces (which turn out to be spaces of currents). Moreover we empha-
size the connections between our function spaces and the pseudodifferential
operators of the CGGP-calculus. In Section 4 we establish and we prove
our main results: Hodge decomposition and compensated compactness for
forms (Theorems 4.1 and 4.13). In Section 5 we apply our main results to
prove a div–curl theorem for horizontal vector fields (Theorem 5.1). We
illustrate several different explicit examples, and we apply the theory to the
study of the H-convergence of divergence form second order differential op-
erators in Carnot groups. In Appendix A we summarize the basic facts of
the theory of pseudodifferential operators in homogeneous groups as given in
[5]. Moreover, we prove representation theorems and continuity properties
for pseudodifferential operators in our scale of Sobolev spaces. Finally, in
Appendix B we write explicitly the structure of the intrinsic differential dc
and we analyze a list of detailed examples.

2. Preliminary results and notations

A Carnot group G of step κ is a simply connected Lie group whose Lie
algebra g has dimension n, and admits a step κ stratification, i.e. there exist
linear subspaces V1, ..., Vκ such that

(6) g = V1 ⊕ ...⊕ Vκ, [V1, Vi] = Vi+1, Vκ 6= {0}, Vi = {0} if i > κ,

where [V1, Vi] is the subspace of g generated by the commutators [X,Y ] with
X ∈ V1 and Y ∈ Vi. Letmi = dim(Vi), for i = 1, . . . , κ and hi = m1+· · ·+mi

6



with h0 = 0 and, clearly, hκ = n. Choose a basis e1, . . . , en of g adapted to
the stratification, i.e. such that

ehj−1+1, . . . , ehj
is a basis of Vj for each j = 1, . . . , κ.

Let X = {X1, . . . , Xn} be the family of left invariant vector fields such that
Xi(0) = ei. Given (6), the subset X1, . . . , Xm1 generates by commutations
all the other vector fields; we will refer to X1, . . . , Xm1 as generating vector
fields of the group. The exponential map is a one to one map from g onto
G, i.e. any p ∈ G can be written in a unique way as p = exp(p1X1 +
· · · + pnXn). Using these exponential coordinates, we identify p with the
n-tuple (p1, . . . , pn) ∈ Rn and we identify G with (Rn, ·), where the explicit
expression of the group operation · is determined by the Campbell-Hausdorff
formula. If p ∈ G and i = 1, . . . , κ, we put pi = (phi−1+1, . . . , phi

) ∈ Rmi , so

that we can also identify p with (p1, . . . , pκ) ∈ Rm1 × · · · × Rmκ = Rn.
Two important families of automorphism of G are the group translations

and the group dilations of G. For any x ∈ G, the (left) translation τx : G→
G is defined as

z 7→ τxz := x · z.
For any λ > 0, the dilation δλ : G→ G, is defined as

(7) δλ(x1, ..., xn) = (λd1x1, ..., λ
dnxn),

where di ∈ N is called homogeneity of the variable xi in G (see [10] Chapter
1) and is defined as

(8) dj = i whenever hi−1 + 1 ≤ j ≤ hi,
hence 1 = d1 = ... = dm1 < dm1+1 = 2 ≤ ... ≤ dn = κ.

The Lie algebra g can be endowed with a scalar product 〈·, ·〉, making
{X1, . . . , Xn} an orthonormal basis

As customary, we fix a smooth homogeneous norm | · | in G such that the
gauge distance d(x, y) := |y−1x| is a left-invariant true distance, equivalent
to the Carnot-Carathéodory distance in G (see [26], p.638). We set B(p, r) =
{q ∈ G; d(p, q) < r}.

The Haar measure of G = (Rn, ·) is the Lebesgue measure Ln in Rn. If
A ⊂ G is L-measurable, we write also |A| := L(A).

We denote by Q the homogeneous dimension of G, i.e. we set

Q :=
κ∑

i=1

idim(Vi).

Since for any x ∈ G |B(x, r)| = |B(e, r)| = rQ|B(e, 1)|, Q is the Hausdorff
dimension of the metric space (G, d).

Proposition 2.1. The group product has the form

(9) x · y = x+ y +Q(x, y), for all x, y ∈ Rn

where Q = (Q1, . . . ,Qn) : Rn × Rn → Rn and each Qi is a homogeneous
polynomial of degree di with respect to the intrinsic dilations of G defined in
(7), that is

Qi(δλx, δλy) = λdiQi(x, y), for all x, y ∈ G.
7



Moreover, again for all x, y ∈ G

Q1(x, y) = ... = Qm1(x, y) = 0,

Qj(x, 0) = Qj(0, y) = 0 and Qj(x, x) = Qj(x,−x) = 0, for m1 < j ≤ n,
(10)

Qj(x, y) = Qj(x1, . . . , xhi−1
, y1, . . . , yhi−1

), if 1 < i ≤ κ and j ≤ hi.
(11)

Note that from Proposition 2.1 it follows that

δλx · δλy = δλ(x · y)

and that the inverse x−1 of an element x = (x1, . . . , xn) ∈ (Rn, ·) has the
form

x−1 = (−x1, . . . ,−xn).

Proposition 2.2 (see, e.g.[11], Proposition 2.2). The vector fields Xj have
polynomial coefficients and have the form

(12) Xj(x) = ∂j +
n∑

i>hl

qi,j(x)∂i, for j = 1, . . . , n and j ≤ hl,

where qi,j(x) = ∂Qi

∂yj
(x, y)|y=0 so that if j ≤ hl then qi,j(x) = qi,j(x1, ..., xhl−1

)

and qi,j(0) = 0.

The subbundle of the tangent bundle TG that is spanned by the vector
fields X1, . . . , Xm1 plays a particularly important role in the theory, and it
is called the horizontal bundle HG; the fibers of HG are

HGx = span {X1(x), . . . , Xm1(x)}, x ∈ G.

From now on, for sake of simplicity, sometimes we set m := m1.
A subriemannian structure is defined on G, endowing each fiber of HG

with a scalar product 〈·, ·〉x and with a norm | · |x making the basis X1(x),
. . . , Xm(x) an orthonormal basis.

The sections of HG are called horizontal sections, and a vector of HGx

is an horizontal vector.
If f is a real function defined in G, we denote by vf the function defined

by vf(p) := f(p−1), and, if T ∈ D′(G), then vT is the distribution defined
by 〈vT |ϕ〉 := 〈T |vϕ〉 for any test function ϕ.

Following [10], we also adopt the following multi-index notation for higher-

order derivatives. If I = (i1, . . . , in) is a multi–index, we setXI = Xi1
1 · · ·Xin

n .
By the Poincaré–Birkhoff–Witt theorem (see, e.g. [4], I.2.7), the differential
operators XI form a basis for the algebra of left invariant differential opera-
tors in G. Furthermore, we set |I| := i1 + · · ·+ in the order of the differential
operator XI , and d(I) := d1i1 + · · · + dnin its degree of homogeneity with
respect to group dilations. From the Poincaré–Birkhoff–Witt theorem, it
follows, in particular, that any homogeneous linear differential operator in
the horizontal derivatives can be expressed as a linear combination of the
operators XI of the special form above.

8



Again following e.g. [10], we can define a group convolution in G: if, for
instance, f ∈ D(G) and g ∈ L1

loc(G), we set

(13) f ∗ g(p) :=

∫
f(q)g(q−1p) dq for p ∈ G.

We remind that, if (say) g is a smooth function and L is a left invariant
differential operator, then L(f ∗ g) = f ∗ Lg. We remind also that the con-
volution is again well defined when f, g ∈ D′(G), provided at least one of
them has compact support (as customary, we denote by E ′(G) the class of
compactly supported distributions in G identified with Rn). In this case the
following identities hold

(14) 〈f ∗ g|ϕ〉 = 〈g|vf ∗ ϕ〉 and 〈f ∗ g|ϕ〉 = 〈f |ϕ ∗ vg〉
for any test function ϕ. Suppose now f ∈ E ′(G) and g ∈ D′(G). Then, if
ψ ∈ D(G), we have

〈(W If) ∗ g|ψ〉 = 〈W If |ψ ∗ vg〉 = (−1)|I|〈f |ψ ∗ (W I vg)〉
= (−1)|I|〈f ∗ vW I vg|ψ〉.

(15)

The dual space of g is denoted by
∧1

g. The basis of
∧1

g, dual of the
basis X1, · · · , Xn, is the family of covectors {θ1, · · · , θn}. We indicate as 〈·, ·〉
also the inner product in

∧1
g that makes θ1, · · · , θn an orthonormal basis.

We point out that, except for the trivial case of the commutative group Rn,
the forms θ1, · · · , θn may have polynomial (hence variable) coefficients, by
Propositions 2.1 and 2.2.

Following Federer (see [8] 1.3), the exterior algebras of g and of
∧1

g are

the graded algebras indicated as
∧

∗
g =

n⊕

k=0

∧
k
g and

∧∗
g =

n⊕

k=0

∧k
g

where
∧

0 g =
∧0

g = R and, for 1 ≤ k ≤ n,
∧

k
g := span{Xi1 ∧ · · · ∧Xik : 1 ≤ i1 < · · · < ik ≤ n},

∧k
g := span{θi1 ∧ · · · ∧ θik : 1 ≤ i1 < · · · < ik ≤ n}.

The elements of
∧
k g and

∧k
g are called k-vectors and k-covectors.

We denote by Θk the basis {θi1 ∧ · · · ∧ θik : 1 ≤ i1 < · · · < ik ≤ n} of∧k
g. We remind that

dim
∧h

g = dim
∧

h
g =

(
h

n

)
.

The dual space
∧1(

∧
k g) of

∧
k g can be naturally identified with

∧k
g.

The action of a k-covector ϕ on a k-vector v is denoted as 〈ϕ|v〉.
The inner product 〈·, ·〉 extends canonically to

∧
k g and to

∧k
g making

the bases Xi1 ∧ · · · ∧Xik and θi1 ∧ · · · ∧ θik orthonormal.

Definition 2.3. We define linear isomorphisms (Hodge duality: see [8]
1.7.8)

∗ :
∧

k
g←→

∧
n−k

g and ∗ :
∧k

g←→
∧n−k

g,

9



for 1 ≤ k ≤ n, putting, for v =
∑

I vIXI and ϕ =
∑

I ϕIθI ,

∗v :=
∑

I
vI(∗XI) and ∗ ϕ :=

∑
I
ϕI(∗θI)

where
∗XI := (−1)σ(I)XI∗ and ∗ θI := (−1)σ(I)θI∗

with I = {i1, · · · , ik}, 1 ≤ i1 < · · · < ik ≤ n, XI = Xi1 ∧ · · · ∧ Xik ,
θI = θi1 ∧ · · · ∧ θik , I∗ = {i∗1 < · · · < i∗n−k} = {1, · · · , n} \ I and σ(I) is the
number of couples (ih, i

∗
ℓ) with ih > i∗ℓ .

The following properties of the ∗ operator follow readily from the defini-

tion: ∀v, w ∈ ∧
k g and ∀ϕ,ψ ∈ ∧k

g

∗ ∗v = (−1)k(n−k)v = v, ∗ ∗ ϕ = (−1)k(n−k)ϕ = ϕ,

v ∧ ∗w = 〈v, w〉X{1,··· ,n}, ϕ ∧ ∗ψ = 〈ϕ,ψ〉θ{1,··· ,n},
〈∗ϕ|∗v〉 = 〈ϕ|v〉.

(16)

Notice that, if v = v1∧· · ·∧vk is a simple k-vector, then ∗v is a simple (n−k)-

vector. If v ∈ ∧
k g we define v♮ ∈ ∧k

g by the identity 〈v♮|w〉 := 〈v, w〉, and

analogously we define ϕ♮ ∈ ∧
k g for ϕ ∈ ∧k

g.

Definition 2.4. For any q, q′ ∈ G and for any linear map L : TGq → TGq′ ,

ΛkL :
∧

k
TGq →

∧
k
TGq′

is the linear map defined by

(ΛkL)(v1 ∧ · · · ∧ vk) = L(v1) ∧ · · · ∧ L(vk).

Analogously, we can define

H

∧k

p
:= (Λkdτp−1)(H

∧k

e

)

for any p ∈ G, where for any linear map f : TGq → TGq′

Λkf :
∧k

TGq′ →
∧k

TGq

is the linear map defined by

〈(Λkf)(α)|v1 ∧ · · · ∧ vk〉 = 〈α|(Λkf)(v1 ∧ · · · ∧ vk)〉
for any α ∈ ∧k TGq′ and any simple k-vector v1 ∧ · · · ∧ vk ∈

∧
k TGq.

Definition 2.5. If α ∈ ∧1
g, α 6= 0, we say that α has pure weight k, and

we write w(α) = k, if α♮ ∈ Vk. Obviously,

w(α) = k if and only if α =

hk∑

j=hk−1+1

αjθj ,

with αhk−1+1, . . . , αhk
∈ R. More generally, if α ∈ ∧h

g, we say that α has
pure weight k if α is a linear combination of covectors θi1 ∧ · · · ∧ θih with
w(θi1) + · · ·+ w(θih) = k.

Remark 2.6. If α, β ∈ ∧h
g and w(α) 6= w(β), then 〈α, β〉 = 0. Indeed,

it is enough to notice that, if w(θi1 ∧ · · · ∧ θih) 6= w(θj1 ∧ · · · ∧ θjh), with
i1 < i2 < · · · < ih and j1 < j2 < · · · < jh, then for at least one of the indices
ℓ = 1, . . . , h, iℓ 6= jℓ, and hence 〈θi1 ∧ · · · ∧ θih , θj1 ∧ · · · ∧ θjh〉 = 0.

10



We have

(17)
∧h

g =

Nmax
h⊕

p=Nmin
h

∧h,p
g,

where
∧h,p

g is the linear span of the h–covectors of weight p.

Since the elements of the basis Θh have pure weights, a basis of
∧h,p

g is

given by Θh,p := Θh ∩∧h,p
g (in the Introduction, we called such a basis an

adapted basis).
As pointed out in Remark 2.6, the decomposition in (17) is orthogonal.

We denote by Πh,p the orthogonal projection of
∧h

g on
∧h,p

g.

Starting from
∧
h g and

∧h
g, we can define by left translation fiber bun-

dles over G that we can still denote by
∧
h g and

∧h
g, respectively. To do

this, for instance we identify
∧h

g with the fiber
∧h
e g over the origin, and

we define the fiber over x ∈ G pulling back
∧h
e g by the left translation

τx−1 , i.e. defining the fiber over x as
∧h
x g := Λk(dτx−1)

∧h
e g. Sections of∧

h g are called h-vector fields, and sections of
∧h

g are called h-forms. We

denote by Ωh (Ωh) the vector space of all smooth sections of
∧
h g (of

∧h
g,

respectively).

The identification of
∧h

g and
∧h
e g yields a corresponding identification

of the basis Θh of
∧h

g and Θh
e of

∧h
e g. Then Θh

x := Λk(dτx−1)Θh
e is a basis

of
∧h
x g. Notice that the Lie algebra g can be identified with the Lie algebra

of the left invariant vector fields on G ≡ Rn. Hence, the elements of Θh
x can

be identified with the elements of Θh evaluated at the point x. Through all
this paper, we make systematic use of these identifications, interchanging
the roles of left invariant vector fields and elements of

∧
1 g.

Keeping in mind the decomposition (17), we can define in the same way
several fiber bundles over G (that we still denote with the same symbol∧h,p

g), by setting
∧h,p
e g :=

∧h,p
g and

∧h,p
x g := Λk(dτx−1)

∧h,p
e g. Clearly,

all previous arguments related to the basis Θh can be repeated for the basis
Θh,p.

Lemma 2.7. The fiber
∧h
x g (and hence the fiber

∧h,p
x g) can be endowed

with a natural scalar product 〈·, ·〉x by the identity

〈α, β〉x := 〈Λhdτx(α),Λhdτx(β)〉e.

If x, y ∈ G, then

Λhdτy−1 :
∧h

x
g→

∧h

yx
g

is an isometry onto.

As customary, if f : G → G is an isomorphism, then the pull-back f#ω
of a form ω ∈ Ωk is defined by

f#ω(x) :=
(
Λk(dfx)

)
ω(f(x)).

It is easy to see that (f−1)#(f#ω) = ω.
11



We denote by Ωh,p the vector space of all smooth h–forms in G of pure

weight p, i.e. the space of all smooth sections of
∧h,p

g. We have

(18) Ωh =

Nmax
h⊕

p=Nmin
h

Ωh,p.

Lemma 2.8. We have d(
∧h,p

g) =
∧h+1,p

g, i.e., if α ∈ ∧h,p
g is a left

invariant h-form of weight p, then w(dα) = w(α).

Proof. See [25], Section 2.1. �

Let now α ∈ Ωh,p be a (say) smooth form of pure weight p. We can write

α =
∑

θh
i ∈Θh,p

αi θ
h
i , with αi ∈ E(G).

Then
dα =

∑

θh
i ∈Θh,p

∑

j

(Xjαi)θj ∧ θhi +
∑

θh
i ∈Θh,p

αidθ
h
i .

Hence we can write
d = d0 + d1 + · · ·+ dκ,

where
d0α =

∑

θh
i ∈Θh,p

αidθ
h
i

does not increase the weight,

d1α =
∑

θh
i ∈Θh,p

m1∑

j=1

(Xjαi)θj ∧ θhi

increases the weight of 1, and, more generally,

dkα =
∑

θh
i ∈Θh,p

∑

w(θj)=k

(Xjαi)θj ∧ θhi k = 1, . . . , κ.

In particular, d0 is an algebraic operator, in the sense that its action can

be identified at any point with the action of an operator on
∧h

g (that we
denote again by d0) through the formula

(d0α)(x) =
∑

θh
i ∈Θh,p

αi(x)dθhi =
∑

θh
i ∈Θh,p

αi(x)d0θ
h
i ,

by Lemma 2.8. Using the canonical orthonormal system Θh, we have a

canonical isomorphism ihΘ from
∧h

g onto R dim
Vh

g. The mapMh : R dim
Vh

g→
R dim

Vh+1
g makes the following diagram commutative

R dim
Vh

g Mh−−−−→ R dim
Vh+1

g

ihΘ

x
y(ih+1

Θ )−1

∧h
g −−−−→

d0

∧h+1
g.

Because of our choice of the order of the elements of Θh, the matrix associ-
ated with Mh (that we still denote by Mh) is a block matrix, as well as its

12



transposed. More precisely, the entries of Mh are all 0 except at most for
those that belong to groups of rows and columns “of the same weight”.

We stress that all the construction of Mh is left invariant, and hence Mh

has constant entries.
Analogously, δ0, the L2–adjoint of d0 in Ω∗ defined by

∫
〈d0α, β〉 dV =

∫
〈α, δ0β〉 dV

for all compactly supported smooth forms α ∈ Ωh and β ∈ Ωh+1, is again
an algebraic operator preserving the weight. Indeed, it can be written as

(19) (δ0β)(x) = (iΘh
x
)−1(tMh)iΘh+1

x
β(x).

Again, its matrix tMh is a block matrix.

Definition 2.9. If 0 ≤ h ≤ n we set

Eh0 := ker d0 ∩ ker δ0 = ker d0 ∩ (Im d0)⊥ ⊂ Ωh,

or, in coordinates,

Eh0 = {α ∈ Ωh ; iΘh
x
α(x) ∈ kerMh ∩ kertMh−1 for all x ∈ G}.

Since the construction of Eh0 is left invariant, this space of forms can be
viewed as the space of sections of a fiber bundle, generated by left translation
and still denoted by Eh0 .

We denote by Nmin
h and Nmax

h the minimum and the maximum, respec-

tively, of the weights of forms in Eh0 .

If we set Eh,p0 := Eh0 ∩ Ωh,p, then

Eh0 =

Nmax
h⊕

p=Nmin
h

Eh,p0 .

Indeed, if α ∈ Eh0 , by (18), we can write

α =

Nmax
h∑

p=Nmin
h

αp,

with αp ∈ Ωh,p for all p. By definition,

0 = d0α =

Nmax
h∑

p=Nmin
h

d0αp.

But w(d0αp) 6= w(d0αq) for p 6= q, and hence the d0αp’s are linear indepen-
dent and therefore they are all 0. Analogously, δ0αp = 0 for all p, and the
assertion follows.

We denote by Πh,p
E0

the orthogonal projection of Ωh on Eh,p0 .

We notice that also the space of forms Eh,p0 can be viewed as the space
of smooth sections of a suitable fiber bundle generated by left translations,

that we still denote by Eh,p0 .
13



As customary, if Ω ⊂ G is an open set, we denote by E(Ω, Eh0 ) the space
of smooth sections of Eh0 . The spaces D(Ω, Eh0 ) and S(G, Eh0 ) are defined
analogously.

Since both Eh,p0 and Eh0 are left invariant as
∧h

g, they are subbundles of∧h
g and inherit the scalar product on the fibers.

In particular, we can obtain a left invariant orthonormal basis Ξh0 = {ξj}
of Eh0 such that

(20) Ξh0 =

Mmax
h⋃

p=Mmin
h

Ξh,p0 ,

where Ξh,p0 := Ξh∩∧h,p
g is a left invariant orthonormal basis of Eh,p0 . All the

elements of Ξh,p0 have pure weight p. Without loss of generality, the indices
j of Ξh0 = {ξhj } are ordered once for all in increasing way with respect to the
weight of the corresponding element of the basis.

Correspondingly, the set of indices {1, 2, . . . ,dimEh0 } can be written as
the union of finite sets (possibly empty) of indices

{1, 2, . . . ,dimEh0 } =

Nmax
h⋃

p=Nmin
h

Ih0,p,

where

j ∈ Ih0,p if and only if ξhj ∈ Ξh,p0 .

Without loss of generality, we can take

Ξ1
0 = Ξ1,1

0 := Θ1,1.

Once the basis Θh
0 is chosen, the spaces E(Ω, Eh0 ), D(Ω, Eh0 ), S(G, Eh0 )

can be identified with E(Ω)dimEh
0 , D(Ω)dimEh

0 , S(G)dimEh
0 , respectively.

Proposition 2.10. [[25]]If 0 ≤ h ≤ n and ∗ denote the Hodge duality (see
Definition 2.3), then

∗Eh0 = En−h0 .

By a simple linear algebra argument we can prove the following lemma.

Lemma 2.11. If β ∈ Ωh+1, then there exists a unique α ∈ Ωh ∩ (ker d0)⊥

such that

δ0d0α = δ0β. We set α := d−1
0 β.

In particular

α = d−1
0 β if and only if d0α− β ∈ ker δ0.

Since d−1
0 d0 = Id on R(d−1

0 ), we can write d−1
0 d = Id + D, where D

is a differential operator that increases the weight. Clearly, D : R(d−1
0 ) →

R(d−1
0 ). As a consequence of the nilpotency of G, Dk = 0 for k large enough,

and the following result holds.
14



Lemma 2.12 ([25]). The map d−1
0 d induces an isomorphism from R(d−1

0 )
to itself. In addition, there exist a differential operator

P =

N∑

k=1

(−1)kDk, N ∈ N suitable,

such that
Pd−1

0 d = d−1
0 dP = IdR(d−1

0 ).

We set Q := Pd−1
0 .

Remark 2.13. If α has pure weight k, then Pα is a sum of forms of pure
weight greater or equal to k.

We state now the following key results. Some examples will be discussed
in detail in Appendix B.

Theorem 2.14 ([25]). There exists a differential operator dc : Eh0 → Eh+1
0

such that

i) d2
c = 0;

ii) the complex E0 := (E∗
0 , dc) is exact;

iii) the differential dc acting on h-forms can be identified, with respect

to the bases Ξh0 and Ξh+1
0 , with a matrix-valued differential operator

Lh :=
(
Lhi,j

)
. If j ∈ Ih0,p and i ∈ Ih+1

0,q , then the Lhi,j’s are homoge-
neous left invariant differential operator of order q − p ≥ 1 in the
horizontal derivatives, and Lhi,j = 0 if j ∈ Ih0,p and i ∈ Ih+1

0,q , with
q − p < 1.

In particular, if h = 0 and f ∈ E0
0 = E(G), then dcf =

∑m
i=1(Xif)θ1

i is
the horizontal differential of f .

The proof of Theorem 2.14 relies on the following result.

Theorem 2.15 ([25]). The de Rham complex (Ω∗, d) splits in the direct sum
of two sub-complexes (E∗, d) and (F ∗, d), with

E := ker d−1
0 ∩ ker(d−1

0 d) and F := R(d−1
0 ) +R(dd−1

0 ),

such that

i) The projection ΠE on E along F is given by ΠE = Id−Qd− dQ.
ii) If ΠE0 is the orthogonal projection from Ω∗ on E∗

0 , then ΠE0ΠEΠE0 =
ΠE0 and ΠEΠE0ΠE = ΠE.

iii) dc = ΠE0 dΠE.
iv) ∗E = F⊥.

Remark 2.16. By Theorem 2.15, i), we have

(21) dΠE = ΠEd.

Moreover, by Theorem 2.15, iv), if α ∈ Ωh and β ∈ Ωn−h with 0 ≤ h ≤ n,
we have

(22) α ∧ (ΠEβ) = (ΠEα) ∧ (ΠEβ) = (ΠEα) ∧ β.
Finally, if α ∈ Ωh and β ∈ En−h0 with 0 ≤ h ≤ n, we have

(23) α ∧ β = (ΠE0α) ∧ β.
15



Proposition 2.17 ([25], formula (7)). For any α ∈ Eh,p0 , if we denote by
(ΠEα)j the component of ΠEα of weight j (that is necessarily greater or
equal than p, by Remark 2.13), then

(ΠEα)p = α

(ΠEα)p+k+1 = −d−1
0

( ∑

1≤ℓ≤k+1

dℓ(ΠEα)p+k+1−ℓ
)
.(24)

Remark 2.18. In fact, we can notice that, if α ∈ Eh,p0 , then dcα has no
components of weight j = p. Indeed,

ΠEα = α+ terms of weight greater than p.

Thus

dΠEα = d0α+ terms of weight greater than p.

But d0α = 0 by the very definition of Eh,p0 , and the assertion follows.

Definition 2.19. If Ω ⊂ G is an open set, we say that T is a h-current on
Ω if T is a continuous linear functional on D(Ω, Eh0 ) endowed with the usual
topology. We write T ∈ D′(Ω, Eh0 ).

The definition of E ′(Ω, Eh0 ) is given analogously.

Proposition 2.20. If Ω ⊂ G is an open set, and T ∈ D′(Ω) is a (usual)

distribution, then T can be identified canonically with a n-current T̃ ∈
D′(Ω, En0 ) through the formula

(25) 〈T̃ |α〉 := 〈T |∗α〉
for any α ∈ D(Ω, En0 ). Reciprocally, by (25), any n-current T̃ can be iden-
tified with an usual distribution T ∈ D′(Ω).

Proof. See [7], Section 17.5, and [1], Proposition 4. �

Following [8], 4.1.7, we give the following definition.

Definition 2.21. If T ∈ D′(Ω, En0 ), and ϕ ∈ E(Ω, Ek0 ), with 0 ≤ k ≤ n, we

define T ϕ ∈ D′(Ω, En−k0 ) by the identity

〈T ϕ|α〉 := 〈T |α ∧ ϕ〉
for any α ∈ D(Ω, En−k0 ).

The following result is taken from [1], Propositions 5 and 6, and Definition
10, but we refer also to [7], Sections 17.3 17.4 and 17.5.

Proposition 2.22. Let Ω ⊂ G be an open set. If 1 ≤ h ≤ n, Ξh0 =
{ξh1 , . . . ξhdim Eh

0
} is a left invariant basis of Eh0 and T ∈ D′(Ω, Eh0 ), then

i) there exist (uniquely determined) T1, . . . , Tdim Eh
0
∈ D′(Ω) such that

we can write

T =
∑

j

T̃j (∗ξhj );
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ii) if α ∈ E(Ω, Eh0 ), then α can be identified canonically with a h-current
Tα through the formula

〈Tα|β〉 :=

∫

Ω
∗α ∧ β

for any β ∈ D(Ω, Eh0 ). Moreover, if α =
∑

j αjξ
h
j then

Tα =
∑

j

α̃j (∗ξhj );

iii) we say that T is smooth in U when T1, . . . , Tdim Eh
0

are (identified

with) smooth functions. This is clearly equivalent to say that there
exists β ∈ E(Ω, Eh0 ) such that

〈T |α〉 =

∫

U
〈β, α〉 dV

for any α ∈ D(Ω, Eh0 ) (in fact, we choose β =
∑

j Tjξ
h
j ).

The notion of convolution can be extended by duality to currents.

Definition 2.23. Let ϕ ∈ D(G) and T ∈ E ′(G, Eh0 ) be given, and denote
by vϕ the function defined by vϕ(p) := ϕ(p−1). Then we set

〈ϕ ∗ T |α〉 := 〈T |vϕ ∗ α〉
for any α ∈ D(G, Eh0 ).

We need a few definitions. For all our notations related to Rumin’s com-
plex, we refer to Appendix B. We set

(26) Ih0 := {p ; Ih0,p 6= ∅} and |Ih0 | = card Ih0 .
Let

m = (mNmin
h
, . . . ,mNmax

h
)

be a |Ih0 |–dimensional vector where the components are indexed by the el-
ements of Ih0 (i.e. by the possible weights) taken in increasing order. We
stress that, since weights p such that Ih0,p = ∅ can exist, then some con-
secutive indices in m can be missed. In the sequel we shall say that m
is a h–vector weight. We say that m ≥ 0 if mp ≥ 0 for p ∈ Ih0 , and

that m ≥ n if mp ≥ np for all p ∈ Ih0 . We say also that m > n if

mp > np for all p ∈ Ih0 . Finally, if m0 is a real number, we identify
m0 with the h–vector weight m0 = (m0, . . . ,m0). In particular, we set
m−m0 := (mNmin

h
−m0, . . . ,mNmax

h
−m0).

Definition 2.24. A special h–vector weight that we shall use in the sequel
is the h-vector weight Nh = (mNmin

h
, . . . ,mNmax

h
) with

mp = p for all p ∈ Ih0 .

If all h-forms have pure weight Nh, i.e. if Nmin
h = Nmax

h := Nh, then a
h-vector weight has only one component, i.e. m = (mNh

).
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3. Function spaces

Through the next sections, we use notations and results contained in
Appendix A and basically relying on the pseudodifferential operators and
their calculus of Christ, Geller, G lowacki & Polin ([5]). Briefly, we refer
to their operators as to CGGP-operators, and we call CGGP-calculus the
associated calculus.

Let {X1, . . . , Xm} be the fixed basis of the horizontal layer g1 of g chosen
in Section 2. We denote by ∆G the nonnegative horizontal sublaplacian

∆G := −
m∑

j=1

X2
j .

If 1 < s <∞ and a ∈ C, we define ∆a
G

in Ls(G) following [9]. If in addition
m ≥ 0, again as in [9], we denote by Wm,s

G
(G) the domain of the realization

of ∆
m/2
G

in Ls(G) endowed with the graph norm. In fact, since s ∈ (1,∞)
is fixed through all the paper, to avoid cumbersome notations, we do not

stress the explicit dependence on s of the fractional powers ∆
m/2
G

and of its
domain.

Proposition 3.1. The operators ∆
m/2
G

are left invariant on Wm,s
G

(G).

Proof. The proof is straightforward, keeping in mind the form of ∆
m/2
G

([9],
p.181), and the representation of the heat semigroup associated with ∆G

([9], Theorem 3.1 (i)), �

We remind that

Proposition 3.2 ([9], Corollary 4.13). If 1 < s < ∞ and m ∈ N, then the
space Wm,s

G
(G) coincides with the space of all u ∈ Ls(G) such that

XIu ∈ Ls(G) for all multi-index I with d(I) = m,

endowed with the natural norm.

Proposition 3.3 ([9], Corollary 4.14). If 1 < s < ∞ and m ≥ 0, then the
space Wm,s

G
(G) is independent of the choice of X1, . . . , Xm.

Proposition 3.4. If 1 < s <∞ and m ≥ 0, then S(G) and D(G) are dense
subspaces of Wm,s

G
(G).

Proof. The density of D(G) is proved in [9], Theorem 4.5. If m ∈ N∪{0}, by
Proposition 3.2, S(G) ⊂ Wm,s

G
(G), since the vector fields X1, . . . , Xm have

polynomial coefficients (see Proposition 2.2). Thus, by [9], Proposition 4.2,
S(G) ⊂ Wm,s

G
(G) for m ≥ 0. Morevoer, since D(G) is a dense subspace of

Wm,s
G

(G), the assertion follows. �

Definition 3.5. Let m ≥ 0, 1 < s < ∞ be fixed indices. Let Ω ⊂ G

be a given open set with Ln(∂Ω) = 0 (from now on, even if not explicitly
stated, we shall assume this regularity property whenever an open set is

meant to localize a statement). We denote by
◦
W

m,s
G

(Ω) the completion
in Wm,s

G
(G) of D(Ω). More precisely, denote by v → rΩv the restriction

operator to Ω; we say that u belongs to
◦
W

m,s
G

(Ω) if there exists a sequence
of test functions (uk)k∈N in D(Ω) and U ∈ Wm,s

G
(G), such that uk → U in
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Wm,s
G

(G) and u = rΩU . On the other hand, since in particular uk → U in
Ls(G), necessarily U ≡ 0 outside of Ω. Therefore, if u = rΩU1 = rΩU2 with
U1, U2 both belonging to the completion in Wm,s

G
(G) of D(Ω), then U1 ≡ U2,

so that, without loss of generality, we can set

‖u‖ ◦

W
m,s
G

(Ω)
:= ‖p0(u)‖Wm,s

G
(G),

where p0(u) denotes the continuation of u by zero outside of Ω.

It is well known that W 1,s
G,loc(G) is continuously imbedded in W

1/(κ+1)
loc (G)

(see [22]); thus, by classical Rellich theorem and interpolation arguments
([9], Theorem 4.7 and [27], 1.16.4, Theorem 1), we have:

Lemma 3.6. Let Ω ⊂ G be a bounded open set. If s > 1, and m > 0, then
◦
W

m,s
G

(Ω) is compactly embedded in Ls(Ω).

Proposition 3.7. If m ≥ 0, 1 < s <∞ and Ω ⊂ G is a bounded open set,
then

‖u‖ ◦

W
m,s
G

(Ω)
≈ ‖∆m/2

G
p0(u)‖Ls(G)

when u ∈
◦
W

m,s
G

(Ω) and p0(u) denotes its continuation by zero outside of Ω.

Proof. By Definition 3.5,

‖u‖ ◦

W
m,s
G

(Ω)
= ‖p0(u)‖Wm,s(G) ≥ ‖∆m/2

G
p0(u)‖Ls(G),

so that we have only to prove the reverse estimate.

We want to show preliminarily that the map u→ ∆
m/2
G

p0(u) from
◦
W

m,s
G

(Ω)

to Ls(G) is injective. Let u ∈
◦
W

m,s
G

(Ω) be such that ∆
m/2
G

p0(u) = 0.

If (ρε)ε>0 are group mollifiers, by the left invariance of ∆
m/2
G

, we have

ρε ∗ p0(u) ∈ D(G) and ∆
m/2
G

(ρε ∗ p0(u)) = 0 for ε > 0. By [9], Theo-
rem 3.15 (iii), keeping in mind that D(G) ⊂ Dom (∆α

G
) for all α ≥ 0,

if N is an integer number such that N ≥ m/2, then ∆N
G

(ρε ∗ p0(u)) =

∆
N−m/2
G

∆
m/2
G

(ρε ∗ p0(u)) = 0, so that ρε ∗ p0(u) = 0, e.g. by Bony’s maxi-
mum principle. Then, taking the limit as ε → 0, p0(u) = 0, and eventually
u = 0.

We can achieve now the proof by using a simple form of the following
Peetre-Tartar lemma (see, e.g., [6], p. 126):

Lemma 3.8 (Peetre–Tartar). Let V, V1, V2,W be Banach spaces, and let
Ai ∈ L(V, Vi) be continuous linear maps for i = 1, 2, the map A1 being
compact. Suppose there exists c0 > 0 such that

(27) ‖v‖V ≤ c0
(
‖A1v‖V1 + ‖A2v‖V2

)

for any v ∈ V . In addition, let L ∈ L(V,W ) be a continuous linear map
such that

(28) L
∣∣
ker A2

≡ 0.

Then there exists C > 0 such that

(29) ‖Lv‖W ≤ C‖A2v‖V2

for any v ∈ V .
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For our purposes, we choose V =
◦
W

m,s
G

(Ω), V1 = V2 = Ls(G), W =

Wm,s(G), A1 = p0, A2 = ∆
m/2
G
◦ p0, L = p0. Indeed, A1 := p0 is

a compact map from
◦
W

m,s
G

(Ω) to Ls(G), by Lemma 3.6. On the other
hand, we have already pointed out in Definition 3.5 that p0(u) ∈ Wm.s(G),

so that ∆
m/2
G

p0(u) ∈ Ls(G), and ‖∆m/2
G

p0(u)‖Ls(G) ≤ ‖p0(u)‖Wm,s(G) :=

‖u‖ ◦

W
m,s
G

(Ω)
(again by Definition 3.5). Thus A2 := ∆

m/2
G
◦ p0 :

◦
W

m,s
G

(Ω) →
Ls(G) continuously. The same argument shows that (27) holds. On the
other hand, we have shown that ker A2 = {0}, so that (28) holds.

Then (29) reads as

‖u‖ ◦

W
m,s
G

(Ω)
= ‖p0(u)‖Wm,s(G) ≤ C‖∆m/2

G
p0(u)‖Ls(G),

achieving the proof of the proposition. �

Lemma 3.9. If m > 0 let Pm ∈ K−m−Q be the kernel defined in Theorem
6.16 and Remark 6.17. If Ω ⊂⊂ G is an open set, R > R0(s,G,m,Ω) is
sufficiently large, and u ∈ D(Ω), then

‖u‖Wm,s
G

(G) ≈ ‖O((Pm)R)u‖Ls(G) = ‖∆m/2
G,Ru‖Ls(G),

with equivalence constants depending on s,G,m,Ω.

Proof. By Proposition 3.7, there exists cΩ > 0 such that (keeping in mind
that we can think p0(u) = u)

‖∆m/2
G

u‖Ls(G) ≤ ‖u‖Wm,s
G

(G) ≤ cΩ ‖∆
m/2
G

u‖Ls(G).

By Remark 6.17, we have

∆
m/2
G

u = O((Pm)R)u+ Su,

where Su = u ∗ (1− ψR)Pm. Hence

‖∆m/2
G

u‖Ls(G) ≤ ‖O((Pm)R)u‖Ls(G) + ‖u ∗ (1− ψR)Pm‖Ls(G).

On the other hand, by [9], Proposition 1.10, and a standard argument (see
e.g. [15], [16])

‖u∗(1− ψR)Pm‖Ls(G) ≤ Cs‖u‖Ls(G) · ‖(1− ψR)Pm‖L1(G)

≤ C(s,G,m)R−m‖u‖Ls(G) ≤ C(s,G,m)R−mcΩ‖∆m/2
G

u‖Ls(G)

≤ 1

2
‖∆m/2

G
u‖Ls(G),

provided R > R0(s,G,m,Ω). Therefore

‖∆m/2
G

u‖Ls(G) ≤ 2‖O((Pm)R)u‖Ls(G)

and hence
‖u‖Wm,s

G
(G) ≤ 2cΩ ‖O((Pm)R)u‖Ls(G).

Conversely,

‖O((Pm)R)u‖Ls(G)

≤ ‖∆m/2
G

u‖Ls(G) + ‖u ∗ (1− ψR)Pm‖Ls(G)

≤ 3

2
‖∆m/2

G
u‖Ls(G) ≤

3

2
‖u‖Wm,s

G
(G).
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This achieves the proof of the lemma.
�

Definition 3.10. Let Ω ⊂ G be an open set. If m ≥ 0 and 1 < s < ∞,

W−m,s
G

(Ω) is the dual space of
◦
W

k,s′

G
(Ω), where 1/s + 1/s′ = 1. It is well

known that, if m ∈ N and Ω is bounded, then

W−m,s
G

(Ω) = {
∑

d(I)=k

XIfI , fI ∈ Ls(Ω) for any I such that d(I) = k},

and

‖u‖W−m,s
G

(Ω) ≈ inf{
∑

I

‖fI‖Ls(Ω) ; d(I) = k,
∑

d(I)=k

XIfI = u}.

Proposition 3.11. If 1 < s <∞ and m,m′ ≥ 0, m′ < m, then

Wm,s
G

(G) →֒Wm′,s
G

(G) and W−m′,s
G

(G) →֒W−m,s
G

(G)

algebraically and topologically.
In addition, if Ω is a bounded open set, 1 < s < ∞ and m,m′ ≥ 0,

m′ < m, then
◦
W

m,s
G

(Ω) is compactly embedded in Wm′,s
G

(Ω)

and
W−m′,s

G
(Ω) is compactly embedded in W−m,s

G
(Ω).

Proof. The first assertion is nothing but [9], Proposition 4.2. As for the
second assertion, take first R > 0, and let Ω0 be a sufficiently large bounded

open neighborhood of Ω̄. If u ∈
◦
W

m,s
G

(Ω), by Lemma 6.18, we can write

u = ∆
−m′/2
G,R ◦∆

m′/2
G,R u+ ϕSu,

where ϕ ∈ D(Ω0) and S ∈ OC−∞. By Lemma 6.11, the map u → ϕSu

is compact from
◦
W

m,s
G

(Ω) to Wm′,s
G

(Ω0). As for the first term, the same
property follows from Proposition 6.19, Lemma 6.7, and Lemma 3.6.

Finally, the third assertion of the proposition follows by duality. �

Remark 3.12. In fact, the compactness result of Proposition 3.11 can be
improved as in the Euclidean space (see e.g. [17], Section 1.4.6). For sake of
simplicity, let us restrict ourselves to the case m ∈ N and m′ = 0. We have

◦
W

m,s
G

(Ω) is compactly embedded in Lσ(Ω)

and
Lσ

′

(Ω) is compactly embedded in W−m,s′
G

(Ω),

if s, s′ and σ, σ′ are Hölder conjugate exponents, provided σ(m−Q/s)+Q >
0.

Definition 3.13. If m ≥ 0 is a h-vector weight, 0 ≤ h ≤ n, and s > 1,
we say that a measurable section α of Eh0 , α :=

∑
p

∑
j∈Ih

0,p
αjξ

h
j belongs to

W
m,s
G

(G, Eh0 ) if, for all p ∈ Ih0 , i.e. for all p, Nmin
h ≤ p ≤ Nmax

h , such that

Ih0,p 6= ∅,
αj ∈Wmp,s

G
(G)

for all j ∈ Ih0,p, endowed with the natural norm.
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The spaces W
m,s
G

(Ω, Eh0 ), where Ω is an open set in G, as well as the local

spaces W
m,s
G,loc(Ω, E

h
0 ) are defined in the obvious way.

Since

W
m,s
G

(Ω, Eh0 ) is isometric to
∏

p∈Ih
0

(
W

mp,s
G

(G)
)card Ih

0,p ,

then

• Wm,s
G

(Ω, Eh0 ) is a reflexive Banach space (remember s > 1);

• C∞(Ω, Eh0 ) ∩Wm,s
G

(Ω, Eh0 ) is dense in W
m,s
G

(Ω, Eh0 ).

The spaces
◦
W

m,s
G

(Ω, Eh0 ) are defined in the obvious way.
We can define and characterize the dual spaces of Sobolev spaces of forms.

Proposition 3.14. If 1 < s < ∞, 1/s + 1/s′ = 1, 0 ≤ h ≤ n, m is a
h–vector weight, and Ω ⊂ G is a bounded open set, then the dual space( ◦
W

m.s′

G
(Ω, Eh0 )

)∗
coincides with the set of all currents T ∈ D′(Ω, Eh0 ) of the

form (with the notations of Proposition 2.20)

(30) T =
∑

p

∑

j∈Ih
0,p

T̃j (∗ξhj )

with Tj ∈ W−mp,s
G

(Ω) for all j ∈ Ih0,p and for p ∈ Ih0 . The action of T on

the form α =
∑

p

∑
j∈Ih

0,p
αjξ

h
j ∈

◦
W

m,s′

G
(Ω, Eh0 ) is given by the identity

(31) T (α) =
∑

p

∑

j∈Ih
0,p

〈Tj |αj〉.

In particular, it is natural to set

W
−m,s
G

(Ω, Eh0 ) :=
( ◦
W

m,s′

G
(Ω, Eh0 )

)∗
.

Moreover, if T is as in (30)

‖T‖
W

−m,s

G
(Ω,Eh

0 )
≈

∑

p

∑

j∈Ih
0,p

‖Tj‖W−mp,s

G
(Ω)
.

Proof. Suppose (30) holds. If α =
∑

q

∑
i∈Ih

0,q
αiξ

h
i is smooth and compactly

supported in Ω, then (keeping in mind that the basis {ξhj } is orthonormal,

so that ξhi ∧ ∗ξhj = δijdV )

〈
∑

p

∑

j∈Ih
0,p

T̃j (∗ξhj )|α〉 =
∑

p

∑

j∈Ih
0,p

∑

q

∑

i∈Ih
0,q

〈T̃j (∗ξhj )|αiξhi 〉

=
∑

p

∑

j∈Ih
0,p

∑

q

∑

i∈Ih
0,q

〈T̃j |αi(ξhi ) ∧ ∗ξhj 〉 =
∑

q

∑

i∈Ih
0,q

〈Ti|αi〉.

Thus, clearly, if Ti ∈ W
−mq ,s
G

(Ω) for all i ∈ Ih0,q and for q ∈ Ih0 , then the

map α→∑
p

∑
j∈Ih

0,p
〈Tj |αj〉 belongs to

( ◦
W

m,s′

G
(Ω, Eh0 )

)∗
.
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Suppose now T ∈
( ◦
W

m,s′

G
(Ω, Eh0 )

)∗
. Since D(Ω, Eh0 ) →֒

◦
W

m,s′

G
(Ω, Eh0 ),

then T can be identified with a current that we still denote by T . Thus, by
Proposition 2.22, we can write

T =
∑

p

∑

j∈Ih
0,p

T̃j (∗ξhj ).

If i ∈ Ih0,p for some p ∈ Ih0 and f ∈ D(Ω), we can consider the map

f → 〈T |fξhi 〉 =
∑

p

∑

j∈Ih
0,p

〈T̃j |fξhi ∧ (∗ξhj )〉 = 〈Ti|f〉.

Because of the boundedness of T , we get
∣∣〈Ti|f〉

∣∣ ≤ C‖fξhi ‖ ◦

W
m,s′

G
(Ω,Eh

0 )
= C‖f‖ ◦

W
mp,s′

G
(Ω)
,

that yields Ti ∈W−mp,s
G

(Ω). This achieve the proof. �

4. Hodge decomposition and compensated compactness

In this section we state and we prove our main results, i.e. a Hodge decom-
position theorem for forms in E∗

0 and – as a consequence – our compensated
compactness theorem in E∗

0 . Through this section, we assume that h, the
degree of the forms we are dealing with, is fixed once and for all, 1 ≤ h ≤ n,
even if it is not mentioned explicitly in the statements.

From now on, we always assume that an ortonormal left invariant basis
{ξℓj} of Eℓ0 has been fixed for all ℓ = 1, . . . , n, and therefore pseudodif-
ferential operators acting on intrinsic forms or current and matrix-valued
pseudodifferential operators can be identified. We use this identification
without referring explicitly to it.

Theorem 4.1. Let s > 1 and h = 1, . . . , n be fixed, and suppose h-forms
have pure weight Nh. Let Ω ⊂⊂ G a given open set, and let αε ∈ Ls(G, Eh0 )∩
E ′(Ω, Eh0 ) be compactly supported differential h-forms such that

αε ⇀ α as ε→ 0 weakly in Lsloc(G, E
h
0 )

and

{dcαε} is pre-compact in W
−(Nh+1−Nh),s

G,loc (G, Eh0 ).

Then there exist h–forms ωε ∈ Eh0 and (h − 1)–forms ψε ∈ Eh−1
0 such

that

i) ωε → ω strongly in Lsloc(G, E
h
0 ) ;

ii) ψε → ψ strongly in Lsloc(G, E
h−1
0 ) ;

iii) αε = ωε + dcψ
ε.

In addition, we can choose ωε and ψε supported in a fixed suitable neigbor-
hood of Ω, which are smooth forms if the αε are also smooth.

Remark 4.2. We stress that dc : Ls(G, Eh0 ) → W
−(Nh+1−Nh),s

G
(G, Eh0 ). In-

deed, if α =
∑

j∈Ih
0,Nh

αjξ
h
j ∈ Ls(G, Eh0 ) and (dcα)i is a component of

weight q of dcα, then (keeping in mind that h-forms have pure weight Nh)
(dcα)i =

∑
j L

h
i,jαj , where Lhi,j is a homogeneous differential operator in the
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horizontal vector fields of order q−Nh ≥ 1, so that (dcα)i ∈W−(q−Nh),s
G

(G).
On the other hand (Nh+1 −Nh)q = q −Nh, and the assertion follows.

The proof of Theorem 4.1 entails several preliminary statements.

Definition 4.3. Let R > 0 be fixed. If 0 ≤ h ≤ n, following Rumin we
define the “0-order differential” acting on compactly supported h-currents
belonging to E ′(B(e,R), Eh0 ) by

d̃c := ∆
−Nh+1/2

G,R dc ∆
Nh/2
G,R ,

where Nh is defined in Definition 2.24. By Lemma 6.13, the definition is
well posed, and

d̃c : E ′(B(e,R), Eh0 )→ E ′(B(e, 3R), Eh0 ).

Analogously, we define the following “0-order codifferential” acting on com-
pactly supported (h+ 1)-currents belonging to E ′(B(e,R), Eh+1

0 ):

δ̃c := ∆
Nh/2
G,R δc ∆

−Nh+1/2

G,R .

Again the definition is well posed, and

δ̃c : E ′(B(e,R), Eh+1
0 )→ E ′(B(e, 3R), Eh0 ).

By Theorem 6.8(a) in Appendix A,

δ̃c = (d̃c)
∗.

Notice also that
d̃2
c = 0, δ̃2c = 0 (modOC−∞).

Let now T =
∑

p

∑
j∈Ih

0,p
T̃j (∗ξhj ) ∈ E ′

G,h(B(e,R)) be given.

By Theorem 2.14, the differential dc acting on h-forms can be identified
with a matrix-valued differential operator Lh :=

(
Lhi,j

)
, where the Lhi,j ’s are

homogeneous left invariant differential operator of order q−p if j ∈ Ih0,p and

i ∈ Ih+1
0,q . Thus, by Definition 6.20, we have

d̃c T =
∑

q

∑

i∈Ih+1
0,q

∑

p<q

∑

j∈Ih
0,p

˜
(∆

−q/2
G,R Lhi,j ∆

p/2
G,RTj) (∗ξh+1

i ).

Analogously, if T =
∑

p

∑
j∈Ih+1

0,p
T̃j (∗ξh+1

j ) ∈ E ′(B(e,R), Eh+1
0 ), then

δ̃c T =
∑

q

∑

i∈Ih
0,q

∑

q<p

∑

j∈Ih+1
0,p

˜
(∆

q/2
G,R

tLhj,i ∆
−p/2
G,R Tj) (∗ξhi ).

Proposition 4.4. Both d̃c and δ̃c are matrix-valued pseudodifferential oper-
ators of the CGGP-calculus, acting respectively on E ′(G, Eh0 ) and E ′(G, Eh+1

0 ).

Moreover d̃c ∼ P h :=
(
P hij

)
, where

(32) P hij = P−q∗(Lhi,jPp) if i ∈ Ih+1
0,q and j ∈ Ih0,p,

and δ̃c ∼ Qh :=
(
Qhij

)
, where

(33) Qhij = Pq∗(tLhj,iP−p) if i ∈ Ih0,q and j ∈ Ih+1
0,p .
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Proof. Take i ∈ Ih+1
0,q and j ∈ Ih0,p. Statement (32) follows by proving that

∆
−q/2
G,R Lhi,j ∆

p/2
G,R ∼ P−q∗(Lhi,jPp).

The proof of (33) is analogous. Thus, notice first that, by (55) and Lemma

6.12, the cores of Lhi,j ∆
−p/2
G,R and ∆

−q/2
G,R are, respectively, Lhi,jPp and P−q.

Hence the assertion follows by Theorem 6.8 (c). �

Remark 4.5. With Rumin’s notations (see [24], [25]), when acting on S0(G, Eh0 ),

O0(P h) ≡ d∇c .
An analogous assertion hold for O0(Qh).

We set
∆

(0)
G,R := δ̃cd̃c + d̃cδ̃c.

The following assertion is a straightforward consequence of Theorem 6.8
and Proposition 4.4.

Proposition 4.6. ∆
(0)
G,R is a matrix-valued 0-order pseudodifferential oper-

ator of the CGGP-calculus acting on E ′(G, Eh0 ), and

∆
(0)
G,R ∼ ∆

(0)
G

:=
(
∆

(0)
G,ij

)
,

where
∆

(0)
G,ij =

∑

ℓ

(
Qhiℓ∗P hℓj + P h−1

iℓ ∗Qh−1
ℓj

)
.

Remark 4.7. As in Remark 4.5, with the notations of [24], [25], when acting
on S0(G, Eh0 ),

O0(∆
(0)
G

) = O0(Qh) ◦ dcO0(P h) +O0(P h−1) ◦ δcO0(Qh−1)

= δ∇c d
∇
c + d∇c δ

∇
c = �dc

.

Theorem 4.8. For any R > 0 there exists a (matrix-valued) CGGP-pseudodifferential

operator (∆
(0)
G,R)−1 such that

(34) (∆
(0)
G,R)−1∆

(0)
G,R = Id on E ′(G, Eh0 ) (mod OC−∞),

and

(35) ∆
(0)
G,R(∆

(0)
G,R)−1 = Id on E ′(G, Eh0 ) (mod OC−∞).

Proof. Keeping in mind [5], Theorem 5.1 and Theorem 5.11, it follows from
Rockland’s condition (see Theorem 6.4), that is satisfied by [24], that there

exists (∆
(0)
G

)−1 ∈ K−Q such that

(∆
(0)
G

)−1∗∆(0)
G

= ∆
(0)
G
∗(∆(0)

G
)−1 = δ.

The assertion follows taking now (∆
(0)
G,R)−1 := O((∆

(0)
G

)−1
R ) for R > 0. �

Remark 4.9. If α ∈ E ′(B(e, r), Eh0 ), then, by Lemma 6.13, both

supp (∆
(0)
G,R)−1∆

(0)
G,Rα and supp (∆

(0)
G,R∆

(0)
G,R)−1α

are contained in a fixed ballB depending only on r,R. Thus, we can multiply
the identities (34) and (35) by a suitable test function ϕ that is identically
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one on B, and then we can replace the smoothing operators S appearing in
(34) and (35) by operators of the form ϕS, that maps E ′(G, Eh0 ) in D(G, Eh0 ).

Proposition 4.10. For any R > 0

(36) (∆
(0)
G,R)−1d̃c = d̃c(∆

(0)
G,R)−1 on E ′(G, Eh0 ) (mod OC−∞),

and

(37) (∆
(0)
G,R)−1δ̃c = δ̃c(∆

(0)
G,R)−1 on E ′(G, Eh0 ) (mod OC−∞).

Proof. By duality, it is enough to prove (36). In the sequel, S will always
denote a smoothing operator belonging to OC−∞ that may change from
formula to formula, and, with the same convention, we shall denote by S0

an operator of the form ϕS, with S ∈ OC−∞ and ϕ ∈ D(G). Keeping in
mind Remark 4.9, we have

d̃c(∆
(0)
G,R)−1 = (∆

(0)
G,R)−1∆

(0)
G,Rd̃c(∆

(0)
G,R)−1 + S0

= (∆
(0)
G,R)−1(δ̃cd̃c + d̃cδ̃c)d̃c(∆

(0)
G,R)−1 + S0

= (∆
(0)
G,R)−1d̃cδ̃cd̃c(∆

(0)
G,R)−1 + S0

= (∆
(0)
G,R)−1d̃c(δ̃cd̃c + d̃cδ̃c)(∆

(0)
G,R)−1

= (∆
(0)
G,R)−1d̃c∆

(0)
G,R(∆

(0)
G,R)−1 + S0

= (∆
(0)
G,R)−1d̃c + S0.

�

Remark 4.11. We can repeat the arguments of Remark 4.9 also for (36) and
(37).

Proof of Theorem 4.1. In the sequel, S will always denote a smoothing op-
erator belonging to OC−∞ that may change from formula to formula, and,
with the same convention, we shall denote by S0 an operator of the form
ϕS, with S ∈ OC−∞ and ϕ ∈ D(G). Moreover, without loss of generality,
we may assume αε ∈ D(Ω, Eh0 ). Take now R > 0 such that Ω ⊂ B(e,R); by

Lemma 6.13, ∆
−Nh/2
G,R αε ∈ D(B(e, 2R), Eh0 ) and therefore, by (35),

(38) ∆
(0)
G,R(∆

(0)
G,R)−1∆

−Nh/2
G,R αε −∆

−Nh/2
G,R αε = S∆

−Nh/2
G,R αε,

with S ∈ OC−∞. Since supp ∆
(0)
G,R(∆

(0)
G,R)−1∆

−Nh/2
G,R αε ⊂ B(e, 4R), we can

multiply the previous identity by a cut-off function ϕ1 ≡ 1 on B(e, 4R)
without affecting the left hand side of the identity. Thus, we can write (38)
as

(39) ∆
(0)
G,R(∆

(0)
G,R)−1∆

−Nh/2
G,R αε −∆

−Nh/2
G,R αε = ϕS∆

−Nh/2
G,R αε = S0α

ε,

by Lemma 6.10. From (39), it follows easily that

(40) ∆
Nh/2
G,R ∆

(0)
G,R(∆

(0)
G,R)−1∆

−Nh/2
G,R αε = ∆

Nh/2
G,R ∆

−Nh/2
G,R αε + ∆

Nh/2
G,R S0α

ε,

so that, by Lemma 6.23 and arguing as above,

(41) ∆
Nh/2
G,R ∆

(0)
G,R(∆

(0)
G,R)−1∆

−Nh/2
G,R αε = αε + S0α

ε.
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If we write explicitly ∆
(0)
G,R in (41), we get

αε = ∆
Nh/2
G,R ∆

Nh/2
G,R δc ∆

−Nh+1/2

G,R ∆
−Nh+1/2

G,R dc ∆
Nh/2
G,R (∆

(0)
G,R)−1∆

−Nh/2
G,R αε

+ ∆
Nh/2
G,R ∆

−Nh/2
G,R dc ∆

Nh−1/2

G,R ∆
Nh−1/2

G,R δc ∆
−Nh/2
G,R (∆

(0)
G,R)−1∆

−Nh/2
G,R αε

+ S0α
ε := I1 + I2 + S0α

ε.

(42)

By Lemma 6.23,

I2 = dc ∆
Nh−1/2

G,R ∆
Nh−1/2

G,R δc ∆
−Nh/2
G,R (∆

(0)
G,R)−1∆

−Nh/2
G,R αε + S0α

ε

:= dcψ
ε + S0α

ε.
(43)

Thus (42) becomes

αε = ∆
Nh/2
G,R ∆

Nh/2
G,R δc ∆

−Nh+1/2

G,R ∆
−Nh+1/2

G,R dc ∆
Nh/2
G,R (∆

(0)
G,R)−1∆

−Nh/2
G,R αε

+ S0α
ε + dcψ

ε := ωε + dcψ
ε.

(44)

We want to show that (ψε)ε>0 and (ωε)ε>0 converge strongly in Lsloc(G, E
h−1
0 )

and Lsloc(G, E
h
0 ), respectively. By Proposition 6.22, (∆

−Nh/2
G,R αε)ε>0 con-

verges weakly inW
Nh,s
G

(G, Eh0 ). On the other hand, by Proposition 6.19, also(
(∆

(0)
G,R)−1∆

−Nh/2
G,R αε

)
ε>0

converges weakly in W
Nh,s
G

(G, Eh0 ). Thus, again by

Proposition 6.19, also
(
∆

−Nh/2
G,R (∆

(0)
G,R)−1∆

−Nh/2
G,R αε

)
ε>0

converges weakly in

W
2Nh,s
G

(G, Eh0 ).

For sake of simplicity, denote now by βεj , j ∈ Ih0,Nh
, a generic component

of ∆
−Nh/2
G,R (∆

(0)
G,R)−1∆

−Nh/2
G,R αε that converges weakly in W 2Nh,s

G
(G, Eh0 ). If

i ∈ Ih−1
0,q (q < Nh), then the i-th component of δcβ

ε
j is given by tLj,iβ

ε
j .

Keeping in mind that Lj,i is a homogeneous differential operator in the hor-

izontal vector fields of order Nh − q, then
(t
Ljiβ

ε
j

)
ε>0

converges weakly in

WNh+q,s
G

(G, Eh0 ), so that, eventually, the i-th component of (ψε)ε>0 con-

verges weakly in WNh−q,s
G

(G, Eh0 ). Then the assertion follows by Rellich
theorem (Proposition 3.11), since supp ψε is contained is a fixed neighbor-
hood of Ω, and q < Nh.

Let us consider now (ωε)ε>0. By Lemma 6.11, we can forget the smoothing
operator S0. By Proposition 4.10 and Remark 4.11, we can write

∆
Nh

G,R∆
Nh/2
G,R δc ∆

−Nh+1/2

G,R ∆
−Nh+1/2

G,R dc ∆
Nh/2
G,R (∆

(0)
G,R)−1∆

−Nh/2
G,R αε

= ∆
Nh/2
G,R ∆

Nh/2
G,R δc ∆

−Nh+1/2

G,R (∆
(0)
G,R)−1∆

−Nh+1/2

G,R dc α
ε + S0α

ε

= ∆
Nh/2
G,R (∆

(0)
G,R)−1∆

Nh/2
G,R δc ∆

−Nh+1/2

G,R ∆
−Nh+1/2

G,R dc α
ε + S0α

ε.

(45)

By Proposition 6.22,

∆
−Nh+1/2

G,R ∆
−Nh+1/2

G,R dc α
ε is pre-compact in W

Nh+1+Nh,s

G,loc (G, Eh0 ).

Arguing as above, denote now by βεj , j ∈ Ih+1
0,p , a generic component of βε :=

∆
−Nh+1/2

G,R ∆
−Nh+1/2

G,R dc α
ε. We know that βεj is pre-compact inW p+Nh,s

G,loc (G, Eh+1
0 ).
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Moreover notice that δcβε is a h-form, and therefore, by assumption, has pure
weight Nh. If i ∈ Ih0,Nh

(Nh < p), then the i-th component of δcβ
ε
j is given

by tLj,iβ
ε
j . Keeping in mind that Lj,i is a homogeneous differential operator

in the horizontal vector fields of order j − i = p − Nh, then (δcβ
ε
j )i is pre-

compact in W 2Nh,s
G,loc (G). Thus, δc∆

−Nh+1/2

G,R ∆
−Nh+1/2

G,R dc α
ε is pre-compact in

W
2Nh,s
G,loc (G, Eh0 ). Again, by Proposition 6.22, ∆

Nh/2
G,R δc∆

−Nh+1/2

G,R ∆
−Nh+1/2

G,R dc α
ε

is pre-compact in W
Nh,s
G,loc (G, Eh0 ). As above, we can rely now on the fact that

all components of ∆
Nh/2
G,R δc∆

−Nh+1/2

G,R ∆
−Nh+1/2

G,R dc α
ε have the same weight

and hence belong to the same Sobolev space, to conclude that

(∆
(0)
G,R)−1∆

Nh/2
G,R δc∆

−Nh+1/2

G,R ∆
−Nh+1/2

G,R dc α
ε

is pre-compact in W
Nh,s
G,loc (G, Eh0 ). Then, we achieve the proof of the theorem

using again Proposition 6.22.
Finally, the last statement follows by Lemma 6.13 and Theorem 6.8, (b).

�

Lemma 4.12. If α ∈ E(G, Eh0 ) with 2 ≤ h ≤ n and β ∈ E(G, En−h−2
0 ), then

d dcα ∧ (ΠEβ) = 0.

Proof. By Remark 2.16, we have

d dcα ∧ (ΠEβ) = (ΠE d dcα) ∧ β = (dΠE dcα) ∧ β
= (ΠE0 dΠE dcα) ∧ β = (dc dcα) ∧ β = 0.

�

Theorem 4.13. If 1 < si < ∞, 0 ≤ hi ≤ n for i = 1, 2, and 0 < ε < 1,
assume that αεi ∈ Lsi

loc(G, E
hi

0 ) for i = 1, 2, where 1
s1

+ 1
s2

= 1 and h1 + h2 =

n. Suppose h1-forms have pure weight Nh1 (by Hodge duality, this implies
that also h2-forms have pure weight Nh2). Assume that, for any open set
Ω0 ⊂⊂ G,

(46) αεi → αi weakly in Lsi(Ω0, E
hi

0 ),

and that

(47) {dcαεi} is pre-compact in W
−(Nhi+1−Nhi

),si

G,loc (G, Ehi

0 )

for i = 1, 2.
Then

(48)

∫

G

ϕαε1 ∧ αε2 →
∫

G

ϕα1 ∧ α2

for any ϕ ∈ D(G).

Proof. By Remark 4.2, without loss of generality we can assume that both
αε1 and αε2 are smooth forms. In addition, let us prove that, if Ω is an open
neighborhood of supp ϕ, then

(49) dc(ϕα
ε
1) is pre-compact in W

−(Nhi+1−Nhi
),s1

G,loc (G, Eh0 ).
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An analogous argument can be repeat for ψαε2, where ψ ∈ D(Ω) is identically
1 on supp ϕ. Thus, without loss of generality, we could restrict ourselves to
prove that

(50)

∫

G

αε1 ∧ αε2 →
∫

G

α1 ∧ α2

when (46) and (47) hold and αi ∈ D(Ω, Ehi

0 ) for i = 1, 2.

In order to prove (49), set βε := dc(ϕα
ε
1), with βε =

∑
q

∑
i∈Ih1+1

0,q

βεi ξ
h+1
i .

If αε1 =
∑

p

∑
j∈Ih1

0,p

(αε1)jξ
h
j , then, by Theorem 2.14, when i ∈ Ih1+1

0,q , we have

βi =
∑

p<q

∑

j∈Ih
0,p

(Lhi,j(ϕ(αε1)j)

= ϕ
∑

p<q

∑

j∈Ih
0,p

Lhi,j(α
ε
1)j +

∑

p<q

∑

j∈Ih
0,p

∑

1≤|γ|≤q−p
(Pγϕ)(Qγ(αε1)j)

= ϕ(dc(α
ε
1))i +

∑

p<q

∑

j∈Ih
0,p

∑

1≤|γ|≤q−p
(Pγϕ)(Qγ(αε1)j),

where Pγ and Qγ are homogeneous left invariant differential operators of
order |γ| and q − p − |γ|, respectively, in the horizontal derivatives. By

(47), ϕ(dc(α
ε
1))i is compact in W

−(q−p),s
G

(Ω). On the other hand Qγ(αε1)j

is bounded in W
−(q−p−|γ|),s
G

(Ω), and therefore compact in W
−(q−p),s
G

(Ω) by
Proposition 3.11, since |γ| > 0. This proves (49).

We can proceed now to prove (50). By Theorem 4.1 we can write

αεi = dcψ
ε
i + ωεi , i = 1, 2,

with ψεi and ωεi supported in a suitable neighborhood Ω0 of Ω̄ and converging

strongly in Lsi(Ω0, E
hi

0 ). Thus the integral of αε1 ∧ αε2 in (50) splits into the
sum of 4 terms. Clearly, 3 of them are easy to deal with, since they are the
integral of the wedge product of two sequences of forms, at least one of them
converging strongly. Thus, we are left with the term

∫

G

dcψ
ε
1 ∧ dcψε2,
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with ψεi ∈ D(Ω0, E
ki

0 ) for i = 1, 2. We have
∫

G

dcψ
ε
1 ∧ dcψε2 =

∫

G

(ΠE0 dΠE ψ
ε
1) ∧ (dcψ

ε
2)

=

∫

G

(dΠE ψ
ε
1) ∧ (dcψ

ε
2) (by (23))

=

∫

G

d
(
(ΠE ψ

ε
1) ∧ (dcψ

ε
2)

)
+ (−1)h1

∫

G

(ΠE ψ
ε
1) ∧ d(dcψ

ε
2)

= (−1)h1

∫

G

(ΠE ψ
ε
1) ∧ d(dcψ

ε
2) (by Stokes theorem)

= (−1)h1

∫

G

ψε1 ∧ (ΠE d(dcψ
ε
2)) (by (22))

= (−1)h1

∫

G

ψε1 ∧ (dΠE(dcψ
ε
2)) (by (21))

= (−1)h1

∫

G

ψε1 ∧ (dc(dcψ
ε
2)) (again by (23))

= 0,

since d2
c = 0. This achieves the proof of the theorem. �

5. div–curl theorem and H-convergence

We state some dual formulations of our main theorem for horizontal vector
fields in G, i.e. for sections of HG. Since in this case the compensated
compactness theorem takes a form akin to the original form of the theorem
proved by Murat and Tartar, we can refer to it as to the div− curl theorem
for Carnot groups. In this case, our compensated compactness theorem
applies for any Carnot group G, since, as pointed out in Example 7.4, E1

0

consists precisely of all forms of pure weight 1. In addition, as in [12] and
[2], the div − curl theorem makes possible to develop a theory of the H-
convergence for second order divergence form elliptic differential operators
in Carnot groups of the form

(51)

{
Lu :=

∑m
i,j=1X

∗
i (ai,j(x)Xju) = f ∈W−1,2

G
(Ω)

u = 0 on ∂Ω,

with application for instance to non-periodic homogenization. Here A(x) :=
(ai,j(x))i,j=1,··· ,m is a m×m elliptic matrix with measurable entries.

We stress again that L is elliptic with respect to the structure of the group
G, but is degenerate elliptic as an usual differential operator in Rn.

If V is an horizontal vector field, i.e. if V is a section of HG, as customary
we set

divG V := (∗dc(∗V ♮))♮,

and
curlG V := (dcV

♮)♮

Moreover, if f is a function, we denote by ∇Gf the horizontal vector field
∇Gf := (X1f, . . . ,Xmf). Set now E0,h := (Eh0 )♮ (with the induced scalar
product). An orthonormal basis of E0,1 is given by X1, . . . , Xm, and hence
the horizontal vector field V can be written in the form V :=

∑m
j=1 VjXj
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and therefore identified with the vector-valued function (V1, . . . , Vm). In
the sequel, we write also (VX1 , . . . , VXm). Thus divG V =

∑m
j=1XjVj . The

Dirichlet problem (51) takes the form

(52)

{
Lu := −divG(A(x)∇Gu) = f ∈W−1,2

G
(Ω),

u = 0 on ∂Ω.

If we refer to the examples of Appendix B, the operator curlG on a hori-
zontal vector field V takes the following forms:

• Example 7.5: if V = (VX , VY ), then

curlGV = P1(VX , VY )X ∧ T + P2(VX , VY )Y ∧ T.
Let D be another horizontal vector field. In this case, assumption
(47) of Theorem 4.13, with α1 := V ♮ and ∗α2 := D♮, becomes

Pi(VX , VY ) compact in W−2,s1
G,loc (G), i = 1, 2

and

divGD compact in W−1,s2
G,loc (G).

• Example 7.6: if V = (VX , VY , VS), then

curlGV = P1(VX , VY )X ∧ T + P2(VX , VY )Y ∧ T
+ (XVS − SVX)X ∧ S + (Y VS − SVY )Y ∧ S.

As above, (47) of Theorem 4.13 becomes

Pi(VX , VY ) compact in W−2,s1
G,loc (G), i = 1, 2

XVS − SVX , Y VS − SVY compact in W−1,s1
G,loc (G),

and

divGD compact in W−1,s2
G,loc (G).

• Example 7.7: if V = (VX1 , VX2 , VY1 , VY2 , VS), then

curlGV = (X1αX2 −X2αX1)X1 ∧X2 + (Y1αY2 − Y2αY1)Y1 ∧ Y2

+ (X1αY2 − Y2αX1)X1 ∧ Y2 + (X2αY1 − Y1αX2)X2 ∧ Y1

+ (X1αS − SαX1)X1 ∧ S + (X2αS − SαX2)X2 ∧ S,
+ (Y1αS − SαY1)Y1 ∧ S + (Y2αS − SαY2)Y2 ∧ S

+
X1αY1 − Y1αX1 −X2αY2 + Y2αX2√

2

1√
2

(X1 ∧ Y1 −X2 ∧ Y2).

Here, assumption (47) requires that all the coefficients of curlGV , as

well as divGD, are compact in W−1,s1
G,loc (G), and W−1,s2

G,loc (G), respec-

tively.
• Example 7.8: if V = (VX1 , VX2 , VX3 , VX4 , VX5 , VX6), then

curlGV = (X1αX3 −X3αX1)X1 ∧X3 + (X1(X1αX2 −X2αX1)

−X4αX1)X1 ∧X4

+ (X2(X1αX2 −X2αX1)−X4αX2)X2 ∧X4

+ (X2(X2αX3 −X3αX2)−X5αX2)X2 ∧X5

+ (X3(X2αX3 −X3αX2)−X5αX3)X3 ∧X5..
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As above, (47) of Theorem 4.13 becomes

X1αX3 −X3αX1 compact in W−1,s1
G,loc (G),

X1(X1αX2 −X2αX1)−X4αX1 , X2(X1αX2 −X2αX1)−X4αX2 ,

X2(X2αX3 −X3αX2)−X5αX2 compact in W−2,s1
G,loc (G),

X3(X2αX3 −X3αX2)−X5αX3 compact in W−3,s1
G,loc (G),

and

divGD compact in W−1,s2
G,loc (G).

• Example 7.9: if V = (V1, V2), then

curlGV = (X2(X1V2 −X2V1)−X3V2)X2 ∧X3

+ (X1(X2
1V2 − (X1X2 +X3)V1)−X4V1)X1 ∧X4.

As above, (47) of Theorem 4.13 becomes

X2(X1V2 −X2V1)−X3V2 compact in W−2,s1
G,loc (G),

X1(X2
1V2 − (X1X2 +X3)V1)−X4V1 compact in W−3,s1

G,loc (G),

and

divGD compact in W−1,s2
G,loc (G).

• Example 7.10: if V = (V1, V2), then

curlGV =
(
X1(X2

1V2 −X1X2V1 −X3V1)−X4V1

)
X1 ∧X4

+
(
X2(X2X1V2 −X2

2V1 −X3V2)−X5V2

)
X2 ∧X5

+
1

2

(
X1(X2X1V2 −X2

2V1 −X3V2)−X5V1

+X2(X2
1V2 −X1X2V1 −X3V1)−X4V2

)
(X1 ∧X5 +X2 ∧X4).

Here, assumption (47) requires that all the coefficients of curlGV are

compact in W−3,s1
G,loc (G), and that divGD is compact in W−1,s2

G,loc (G).

Theorem 4.13 yields the following result that generalizes to arbitrary
Carnot groups Theorem 3.3 of [12] and Theorem 5.5 of [2] , extending to
the setting of Carnot groups Theorem 5.3 and its Corollary 5.4 of [14].

Theorem 5.1. Let Ω ⊂ Hn be an open set, and let s, σ > 1 be a Hölder
conjugate pair. Moreover, with the notations of (26), if p ∈ I2

0 (i.e. if p ≥ 2
is the weight of an intrinsic 2-form), let a(p) > 1 and b > 1 be such that

a(p) >
Qs

Q+ (p− 1)s
and b >

Qσ

Q+ σ
.

Let now Ek ∈ Lsloc(Ω, HG) and Dk ∈ Lσloc(Ω, HG) be horizontal vector fields
for k ∈ N, weakly convergent to E and D in Lsloc(Ω, HG) and in Lσloc(Ω, HG),
respectively.

If the components of {curlGE
k} of weight p are bounded in L

a(p)
loc (Ω, HG)

for p ∈ I2
0 and {divGD

k} is bounded in Lbloc(Ω, HG), then then

〈Ek, Dk〉 → 〈E,D〉 in D′(Ω),
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i.e. ∫

Ω
〈Ek(x), Dk(x)〉xϕ(x) dx→

∫

Ω
〈E(x), D(x)〉xϕ(x) dx

for any ϕ ∈ D(Ω).

Proof. We want to apply Theorem 4.13 (with its notations) to the forms

αn1 := (En)♮ and αn2 := ∗(Dn)♮,

taking h1 = 1, h2 = n− 1, s1 = s, s2 = σ.
The assertion will follow by showing that {divGD

k} is compact inW−1,σ
G,loc(Ω)

and the components of {curlGE
k} of weight p are compact in W 1−p,s

G,loc (Ω).

Indeed, p− 1 is precisely the component of index p of N2 − 1 = N2 −N1.
But this follows by a simple computation from Remark 3.12, since

i) Lbloc(Ω, HG) is compactly embedded in W−1,σ
G,loc(Ω);

ii) L
a(p)
loc (Ω, HG) is compactly embedded in W 1−p,s

G,loc (Ω).

Indeed, in order to prove i), it is enough to notice that

b′(1−Q/s) +Q > b′(1−Q/s+Q(1− 1/σ − 1/Q)) = 0,

whereas, to prove ii) we notice that

a(p)′(p− 1−Q/σ) +Q > a(p)′
(
p− 1− Q

σ
+Q(1− Q+ (p− 1)s

Qs
)
)

= 0.

�

In particular, as we pointed out above, Theorem 5.1 makes possible to
extend the notion of Murat–Tartar H-convergence (see e.g. [19]), given
in [12] and [2] for G = Hn, to an arbitrari Carnot group G. In fact, the
definitions given in [12] and [2] are naturally stated in general Carnot groups
as follows.

Definition 5.2. If 0 < α ≤ β <∞ and Ω is an open subset of G, we denote
by M(α, β; Ω) the set of (m×m)-matrix-valued measurable functions in Ω
such that

〈A(x)ξ, ξ〉Rm ≥ 1

β
|A(x)ξ|2Rm and 〈A(x)ξ, ξ〉Rm ≥ α|ξ|2Rm

for all ξ ∈ Rm and for a.e. x ∈ Ω.

Definition 5.3. We say that a sequence of matrices Ak ∈ M(α, β; Ω) H-
converges to the matrix Aeff ∈ M(α′, β′; Ω) for some 0 < α′ ≤ β′ < ∞, if

for every f ∈W−1,2
G

(Ω), called uk the solutions in
◦
W

1,2
G

(Ω) of the problems

−divG (Ak∇Guk) = f , the following convergences hold:

uk → u∞ in
◦
W

1,2
G

(Ω)− weak

Ak∇Guk → Aeff∇Gu∞ in L2(Ω;HG)− weak.

Therefore u∞ is solution of the problem −divG (Aeff∇Gu∞) = f in Ω.

Repeating verbatim the arguments of Theorem 4.4 of [12], we can show
now that the setsM(α, β; Ω) are compact in the topology of theH-convergence.
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Theorem 5.4. If 0 < α ≤ β < ∞ and Ω is a bounded open subset of G, ,
then for any sequence of matrices An ∈M(α, β; Ω) there exists a subsequence
Aki and a matrix Aeff ∈M(α, β; Ω) such that Aki H-converges to Aeff .

6. Appendix A: pseudodifferential operators

To keep the paper as much self-contained as possible, we open this ap-
pendix by reminding some basic definitions and results taken from [5] on
pseudodifferential operators on homogeneous groups.

We set

S0 :=
{
u ∈ S :

∫

G

xαu(x) dx = 0
}

for all monomials xα.
If α ∈ R and α /∈ Z+ := N ∪ {0}, then we denote by Kα the set of the

distributions in G that are smooth away from the origin and homogeneous
of degree α, whereas, if α ∈ Z+, we say that K ∈ D′(G) belongs to Kα if
has the form

K = K̃ + p(x) ln |x|,
where K̃ is smooth away from the origin and homogeneous of degree α, and
p is a homogeneous polynomial of degree α.

Kernels of type α according to Folland [9] belong to Kα−Q. In particular,
if 0 < α < Q, and h(t, x) is the heat kernel associated with the sub-Laplacian
∆G, then ([9], Proposition 3.17) the kernel Rα ∈ L1

loc(G) defined by

Rα(x) :=
1

Γ(α/2)

∫ ∞

0
t(α/2)−1h(x, t) dt

belongs to Kα−Q.
If K ∈ Kα, we denote by O0(K) the operator defined on S0 by O0(K)u :=

u ∗K.

Proposition 6.1 ([5], Proposition 2.2). O0(K) : S0 → S0.

Theorem 6.2 (see [15], [16]). If K ∈ K−Q, then O0(K) : L2(G)→ L2(G).

Remark 6.3. We stress that, with the notations of Appendix 6.6, we have
also

S0(G) ⊂ Dom (∆
−α/2
G

) with α > 0.

Indeed, take M ∈ N, M > α/2. If u ∈ S0(G), we can write u = ∆M
G
v, where

v :=
(
O0(R2) ◦ O0(R2) ◦ · · · ◦ O0(R2)

)
u ∈ S0(G)

(M times). Since v ∈ Dom (∆M
G ) ∩ Dom (∆

M−α/2
G ) (by Proposition 3.4),

then u = ∆M
G
v ∈ Dom (∆

−α/2
G

), and ∆
M−α/2
G

v = ∆
−α/2
G

∆M
G
v, by [9], Propo-

sition 3.15, (iii).

Theorem 6.4 (see [13] and [5], Theorem 5.11). If K ∈ K−Q, and let the
following Rockland condition hold: for every nontrivial irreducible unitary
representation π of G, the operator πK is injective on C∞(π), the space of
smooth vectors of the representation π. Then the operator O0(K) : L2(G)→
L2(G) is left invertible.

Obviously, if O0(K) is formally self-adjoint, i.e. if K = vK, then O0(K)
is also right invertible.
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Proposition 6.5 ([5], Proposition 2.3). If Ki ∈ Kαi, i = 1, 2, then there
exists at least one K ∈ Kα1+α2+Q such that

O0(K2) ◦ O0(K1) = O0(K).

It is possible to provide a standard procedure yielding such a K (see [5],
p.42). Following [5], we write K = K2∗K1.

We can give now a (simplified) definition of pseudodifferential operator
on G, following [5], Definition 2.4.

Definition 6.6. If α ∈ R, we say that K is a pseudodifferential operator of
order α on G with core K if

1) K ∈ D′(G×G).
2) Let β := −Q − α. There exist Km = Km

x ∈ Kβ+m depending
smoothly on x ∈ G such that for each N ∈ N there exists M ∈ Z+

such that, if we set

Kx −
M∑

m=0

Km
x := EM (x, ·),

then EM ∈ CN (G×G).
3) For some finite R ≥ 0, supp Kx ⊂ B(e,R) for all x ∈ G.
4) If u ∈ D(G) and x ∈ G, then

Ku(x) = (u ∗Kx)(x).

We writeK ∼∑
mK

m, K = O(K), and r(K) = r(K) = inf{R > 0 such that 3) holds}.
We let

OCα(G) := {pseudodifferential operators of order α on G}.

Clearly, if K ∈ OCα(G), then K : D(G) → E(G). Moreover, K can be
extended to an operator K : E ′(G)→ D′(G).

Lemma 6.7. If supp u ⊂ B(e, ρ), then supp Ku ⊂ B(e, ρ+ r(K)).

If γ = (γ1, . . . , γn) ∈ (Z+)n, for any f ∈ D′(G) we set

Mγf = xγf,

and, if X = (X1, . . . , Xn) is our fixed basis of g, we denote by σγ(X) the

coefficient of xγ in the expansion of (γ!/|γ|!)(x ·X)d(γ).

Theorem 6.8 ([5], Theorem 2.5). We have:

(a) If K := O(K) ∈ OCα(G), then there exists a core K∗ such that
O(K∗) ∈ OCα(G) and

〈v,Ku〉L2(G) = 〈O(K∗)v, u〉L2(G)

for all u, v ∈ D(G).
(b) If K ∈ OCα(G), V ⊂ G is an open set, and u ∈ E ′(G) is smooth on

V , then Ku is smooth on V .
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(c) If Ki ∈ OCαi (G), Ki ∼
∑

mK
m
i , i = 1, 2, then K := K2 ◦ K1 (that

is well defined by Lemma 6.7) belongs to OCα1+α2(G). Moreover
K ∼∑

mK
m, where

Km
x =

∑

d(γ)+j+ℓ=m

1

γ!
[(−M)γ(Kℓ

2)x] ∗ [σγ(X)(Kj
1)x],

where σγ(X) acts in the x-variable.

Theorem 6.9 (see [5], p.63 (3)). If K ∈ OC0(G), then O(K) : Lploc(G) →
Lploc(G) is continuous. In particular, by Lemma 6.7, O(K) : Lp(G) ∩
E ′(B(e, ρ))→ Lp(G) continuously.

We say that a convolution operator u→ u ∗E(x, ·) from E ′ to D′ belongs
to OC−∞(G) if E is smooth on G × G. We notice that, properly speaking,
OC−∞(G) is not contained in OCα(G) for α ∈ R, since E(x, ·) is not assumed
to be compactly supported.

If T ,S ∈ OCℓ(G), we say that S = T modOC−∞ if S − T ∈ OC−∞(G).
A straightforward computation proves the following result

Lemma 6.10. If S ∈ OC−∞(G), ϕ ∈ D(G), and O(K) ∈ OCm(G) for
m ∈ R, then both (ϕS) ◦ O(K) and O(K) ◦ (ϕS) belong to OC−∞(G).

Lemma 6.11. If Ω ⊂ G is a bounded open set, m,m′ ∈ R, 1 < s <∞, and
T ∈ OC−∞(G), then, if ϕ ∈ D(G), the map

ϕT : Wm,s
G

(G) ∩ E ′(Ω)→Wm′,s
G

(G)

is compact.

Proof. Let us prove first that the map is compact. By proposition 3.11,
without loss of generality we can assume m < 0 < m′, and |m|,m′ ∈ N∪{0}.
Thus, let u ∈Wm,s

G
(G) ∩ E ′(Ω) be given; we have to estimate

sup
‖g‖

Ls′ (G)
≤1
〈XI(ϕ(u ∗ T ))|g〉

for g ∈ D(G), with d(I) ≤ m′, and therefore to estimate

〈(XLϕ)(u ∗XJT ))|g〉,
with d(J)+d(L) ≤ m′, g ∈ D(G), ‖g‖Ls′ (G) ≤ 1. Because of the compactness

of supp u, there exists ϕ ∈ D(G), ϕ = ϕ(Ω, ϕ) such that u ∗ XJT = u ∗
XJ(ϕT ) on supp ϕ. Thus, we can write

〈(XLϕ)(u ∗XJT ))|g〉 = 〈u|(XLϕ)g ∗ vXJ(ϕT )〉
≤ ‖u‖Wm,s

G
(G)

∑

d(M)≤|m|
‖(XLϕ)g ∗XM vXJ(ϕT )‖Ls′ (G)

≤ c ‖u‖Wm,s
G

(G)‖(XLϕ)g‖Ls′ (G) ≤ cϕ ‖u‖Wm,s
G

(G)‖g‖Ls′ (G),

by [9], Proposition 1.10 since XM vXJ(ϕT ) L1(G), and then the assertion
follows.

Finally, the compactness follows by the arbitrariness of the choice of m′

and by Lemma 3.6. �
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From now on, let ψ ∈ D(G) be a fixed nonnegative function such that

supp ψ ⊂ B(e, 1) and ψ ≡ 1 on B(e,
1

2
).

We set
ψR := ψ ◦ δ1/R.

If K ∈ Km, then KR := ψRK is a core satisfying 1), 2), 3) of Definition
6.6. In addition, KR ∼ K, since we can write KR = K + (ψR − 1)K, with
(ψR − 1)K ∈ E(G). Thus O(KR) ∈ OC−m−Q(G).

Thus, if K is a Folland kernel of type α ∈ R, then KR is a core of a
pseudodifferential operator O(KR) ∈ OC−α(G). In particular, if 0 < α < Q,
then O((Rα)R) belongs to OC−α(G) (see [9], Proposition 3.17).

Lemma 6.12. If K ∈ Km, and XI is a left invariant homogeneous differ-
ential operator, then

XIO(KR) ∈ OC−m+d(I)−Q(G).

Moreover, the core KR,I of XIO(KR) satisfies

KR,I ∼ XIK,

and
XIO(KR) = O((XIK)R) modOC−∞.

Proof. It is enough to notice that, if u ∈ E ′(G), then XI(O(KR)u) = XI(u∗
KR) = u ∗ (XIKR) = u ∗ (XIK)R +

∑
0<|J |≤|I| cJu ∗ (XJψR)K, and that

(XJψR)K ∈ D(G) when |J | > 0. �

Lemma 6.13. If u ∈ E ′(G) and supp u ⊂ B(0, ρ) then supp O(KR)u ⊂
B(0, R+ ρ)). Moreover, if ρ = R, then

O(K4R)u ≡ u ∗K on B(0, R).

Proof. The first statement follows from Lemma 6.7. The second assertion is
a straightforward computation. �

Proposition 6.14. Let Ki ∈ Ki be given cores for i = 1, 2, and let R > 0
be fixed. Then

O((K2∗K1)R) = O((K1)R) ◦ O((K2)R) mod OC−∞.

In particular, O((K1)R) ◦ O((K2)R) = O(K) for a suitable core K with
K ∼ K2∗K1.

Proof. It is enough to notice that, by Theorem 6.8, O((K1)R)◦O((K2)R) =
O(K), with K ∼ K2∗K1, and that also (K2∗K1)R ∼ K2∗K1. �

Remark 6.15. As in Remark 5 at p. 63 of [5], the previous calculus can
be formulated for matrix-valued operators and hence, once left invariant
bases {ξhj } of Eh0 are chosen, we obtain pseudodifferential operators acting
on h-forms and h-currents, together with the related calculus.

In particular, let K :=
(
Kij

)
i=1,...,N
j=1,...,M

a M × N matrix whose entries Kij

belong to Kmij . Then K acts between S0(G)N and S0(G)M as follows: if
T = (T1, . . . , TM ), then

O0(K)T := T ∗K := (
∑

j

Tj ∗K1j , . . . ,
∑

j

Tj ∗KMj).
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When Kij ∈ Km for all i, j, we write shortly that K ∈ Km.
If K :=

(
Kij

)
i=1,...,N

j=1,...,M′
and K ′ :=

(
K ′
ij

)
i=1,...,M′

j=1,...,M

, we write

K ′∗K :=
( ∑

ℓ

K ′
iℓ∗Kℓj

)
.

Notice that

(53) O0(K ′) ◦ O0(K) = O0(K ′∗K).

In addition, if K̃ = (K̃ij) is a matrix-valued pseudodifferential operator
of the CGGP-calculus, and K = (Kij) is a matrix-valued core as above

with K̃ij ∼ Kij for all i, j, we write K̃ ∼ K, and K̃ − K is a matrix-
valued smoothing operator. As above, if all the Kij ’s are pseudodifferential
operators of the same order α, we refer to α as to the order of the matrix-
valued pseudodifferential operator K.

Finally, we prove that the fractional powers of ∆G, when acting on suitable
function spaces, can be written as suitable convolution operators. This is
more or less know (see for instance [5], Section 6), though not explicitly
stated in the form we need. Because of that, we prefer to provide full
proofs.

Theorem 6.16. If m ∈ R and 1 < s <∞, then S0(G) ⊂ Dom (∆
m/2
G

), and

there exists Pm ∈ K−m−Q such that

∆
m/2
G

u = u ∗ Pm for all u ∈ S0(G).

Moreover, if R > 0 then

(54) O((Pm))R ∈ OCm(G).

Coherently, in the sequel we shall write

(55) ∆
m/2
G,R := O((Pm))R.

Proof. Suppose first m > 0. By Proposition 3.4,

S0(G) ⊂ S(G) ⊂ Dom (∆
m/2
G

).

Choose N ∈ Z+ such that m < 2N < m + Q (this is possible since Q >

2). Since u ∈ Dom∆N
G
∩ Dom∆

m/2
G

, then, by [9], Theorem 3.15, ∆N
G
u ∈

Dom∆
m/2−N
G

and ∆
m/2
G

u = ∆
m/2−N
G

∆N
G
u. On the other hand, −Q < m −

2N < 0, so that, by [9], Propositions 3.15 and 3.18 ,

∆
m/2−N
G

∆N
Gu = ∆N

Gu ∗R2N−m = u ∗ v(∆N
G )vR2N−m,

since the integral in ∆N
G
u ∗R2N−m converges absolutely. Thus the assertion

for m > 0 follows by putting Pm := v(∆N
G

)vR2N−m ∈ K−m−Q.
Let now m := −α < 0. Choose first N ∈ N such that 2N < α < Q+ 2N ,

that is always possible since Q ≥ 3. This choice yields 0 < α− 2N < Q. If
u ∈ S0(G), set

g := (· · · ((u ∗R2) ∗R2) ∗ · · · ) ∗R2

where we perform N successive convolutions with the kernel R2. By [5],
Proposition 2.3,

g =
(
O0(R2) ◦ O0(R2) ◦ · · · ◦ O0(R2)

)
u = O0(R2,N )u
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for a suitable R2,N ∈ K2N−Q. Clearly, by Proposition 6.1, g ∈ S0(G), and,

in addition, ∆N
G
g = u. By Remark 6.3, g ∈ Dom(∆

N−α/2
G

). Since g ∈
Dom(∆N

G
), by [9], Proposition 3.15 (iii), then u = ∆N

G
g ∈ Dom(∆

−α/2
G

) =

Dom(∆
m/2
G

), and

∆
N−α/2
G

g = ∆
−α/2
G

∆N
G g = ∆

−α/2
G

u.

Thus, by [9], Proposition 3.18, and [5], Proposition 2.3,

∆
−α/2
G

u = O0(Rα−2N )g = O0(Rα−2N )
(
O0(R2,N )u

)
:= O0(Pm)u = u ∗ Pm,

where Pm := Rα−2N∗R2,N ∈ K−m−Q, since α − 2N − Q + 2N − Q + Q =
−m−Q.

�

Remark 6.17. The same argument shows that, if m ≥ 0, then D(G) ⊂
Dom (∆

m/2
G

), and

∆
m/2
G

u = u ∗ Pm for all u ∈ D(G).

Lemma 6.18. We have

∆
m/2
G,R ◦∆

−m/2
G,R = Id mod OC−∞,

and
∆

−m/2
G,R ◦∆

m/2
G,R = Id mod OC−∞.

Proof. By Theorem 6.8 (c), if m is a real number, ∆
m/2
G,R ◦∆

−m/2
G,R has a core

K ∼ Pm∗P−m ∈ K−Q. If u ∈ S0(G), then

O0(Pm∗P−m)u = O0(Pm) ◦ O0(P−m)u = ∆
m/2
G
◦∆

−m/2
G

u = u,

by Theorem 6.16 and [9], Theorem 3.15 (iii). By [15], [16], the map u →
u∗(Pm∗P−m) is continuous in L2(G), and hence, by density, u∗(Pm∗P−m) =
u = u ∗ δ for all u ∈ D(G). Thus the assertion is proved. �

Proposition 6.19. If Ω ⊂ G is a bounded open set, m,α ∈ R, 1 < s <∞,
and T ∈ OCα(G), then

T : Wm+α,s
G

(G) ∩ E ′(Ω)→Wm,s
G

(G)

continuously.

Proof. Suppose first m,m + α ≥ 0. Let u ∈ Wm+α,s
G

(G) ∩ E ′(Ω) be given.
Without loss of generality, we can assume u ∈ D(Ω1), where Ω1 is a given

bounded open neighborhood of Ω, since D(Ω1) is dense in Wm+α,s
G

(G) ∩
E ′(Ω). Indeed, by Proposition 3.4, if ε > 0, we can find uε ∈ D(G) such that
‖u−uε‖Wm+α,s

G
(G) < ε. Let now ψ ∈ D(Ω1) be such that ψ ≡ 1 on Ω. Then,

by [9], Corollary 4.15,

‖u−ψuε‖Wm+α,s
G

(G) = ‖ψu−ψuε‖Wm+α,s
G

(G) ≤ Cψ‖u−uε‖Wm+α,s
G

(G) < Cψε.

By definition, there exists a bounded open set ΩT (depending only on Ω1

and T ) such that T u ∈ D(ΩT ). If R > 0 is fixed (sufficiently large), by
Proposition 3.9, we have

‖T u‖Wm,s
G

(G) ≈ ‖∆
m/2
G,R T u‖Ls(G).
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On the other hand, by Lemma 6.18,

∆
m/2
G,R T u = ∆

m/2
G,R T ∆

−(m+α)/2
G,R ∆

(m+α)/2
G,R u+ ϕ0Su,

with S ∈ OC−∞ and ϕ0 ∈ D(G) with ϕ0 ≡ 1 on Ω1 · B(e, 2R), since

∆
−(m+α)/2
G,R ∆

(m+α)/2
G,R u is supported in Ω1 · B(e, 2R). Then the assertion fol-

lows by Proposition 6.19, since

∆
m/2
G,R T ∆

−(m+α)/2
G,R ∈ OC0(G),

by Theorem 6.8, and by Lemma 6.11.
Suppose now m,m + α ≤ 0. As above, if u ∈ Wm+α,s

G
(G) ∩ E ′(Ω) then

supp T u is contained in fixed open neighborhood ΩT of Ω. Let ψ0 ∈ D(G)
such that ψ0 ≡ 1 on ΩT . If ϕ ∈ D(G), by Theorem 6.8 we have

〈T u|ϕ〉 = 〈T u|ψ0ϕ〉 = 〈u|T ∗(ψ0ϕ)〉
≤ ‖u‖Wm+α,s

G
(G)‖T

∗(ψ0ϕ)‖
W

−(m+α),s′

G
(G)

≤ C‖u‖Wm+α,s
G

(G)‖ψ0ϕ‖W−m,s′

G
(G)

≤ C‖u‖Wm+α,s
G

(G)‖ϕ‖W−m,s′

G
(G)
,

by [9], Corollary 4.15. Taking the supremum with respect to ϕ, the assertion
follows in this case.

Suppose now m ≤ 0 ≤ m+ α. As above, we can write

T = ∆
−m/2
G,R ∆

m/2
G,R T + ϕ0S, with ϕ0 ∈ D(G) and S ∈ OC−∞.

Then the assertion follows since ∆
m/2
G,R T ∈ OCm+α(G), ∆

−m/2
G,R ∈ OC−m(G),

and hence there exist a bounded open neighborhood Ω1 of Ω such that

∆
m/2
G,R T : Wm+α,s

G
(G) ∩ E ′(Ω)→ Ls(G) ∩ E ′(Ω1)

and
∆

−m/2
G,R ∩ E ′(Ω1) : Ls(G)→Wm,s

G
(G)

continuously, by what we proved above.
Finally, if m+ α ≤ 0 ≤ m, then the assertion follows in a similar way.

�

Definition 6.20. Let T ∈ E ′(G, Eh0 ) be a compactly supported h-current
on G of the form

T =
∑

p

∑

j∈Ih
0,p

T̃j (∗ξhj ) with Tj ∈ E ′(G) for j = 1, . . . ,dim Eh0 .

Let m be a h–vector weight, and let R > 0 be fixed. We set (with the
notation of (55))

∆
m/2
G,RT :=

∑

p

∑

j∈Ih
0,p

˜
(∆

mp/2
G,R Tj) (∗ξhj ).

In particular, if T can be identified with a compactly supported h-form
α =

∑
p

∑
j∈Ih

0,p
αjξ

h
j , then our previous definition becomes

∆
m/2
G,Rα =

∑

p

∑

j∈Ih
0,p

(αj ∗ (Pmp)R)ξhj .
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Remark 6.21. As in Definition 6.20, if m is a h-vector weight, we define the
operator

O0(Pm) : S0(G, Eh0 )→ S0(G, Eh0 )

as follows: if α =
∑

p

∑
j∈Ih

0,p
αjξ

h
j with αj ∈ S0(G), then

O0(Pm)α :=
∑

p

∑

j∈Ih
0,p

(αj ∗ Pmp)ξhj .

In other words, Pm can be identified with the matrix
(
(Pm)ij

)
, where

(Pm)ij = 0 if i 6= j and (Pm)jj = mp if j ∈ Ih0,p.
We can write

∆
m/2
G,R ∼ Pm.

The following result is a straightforward consequence of Proposition 6.19,

thanks to “diagonal form” of the operator ∆
m/2
G,R .

Proposition 6.22. Let Ω ⊂ G be a bounded open set. If m and α are
h-vector weights, and 1 < s <∞, then for any R > 0

∆
α/2
G,R : W

m+α,s
G

(G, Eh0 ) ∩ E ′(Ω, Eh0 )→W
m,s
G

(G, Eh0 )

continuously.

Again thanks to “diagonal form” of the operator ∆
m/2
G,R , the following

result is a straightforward consequence of Lemma 6.18.

Lemma 6.23. If m is a h-vector weight, then for any R > 0

∆
m/2
G,R ◦∆

−m/2
G,R = Id mod OC−∞,

and

∆
−m/2
G,R ◦∆

m/2
G,R = Id mod OC−∞.

7. Appendix B: differential forms in Carnot groups

For sake of completeness, we present here an explicit proof of point ii) of
Theorem 2.14, concerning the structure of the differential dc. Moreover, we
provide a list of explicit examples of the complex (E0, dc) for some significant
groups.

Proposition 7.1. The map dc : Eh0 → Eh+1
0 can be written in the form

α =
∑

p

∑

j∈Ih
0,p

αjξ
h
j −→

−→
Mmax

h+1∑

q=max{p+1,Mmin
h+1}

∑

i∈Ih+1
0,q

∑

p

∑

j∈Ih
0,p

(
P hp,q,j,iαj

)
ξh+1
i ,

(56)

where the P hp,q,j,i’s are homogeneous polynomials of degree q− p in the hori-
zontal derivatives.

Since dc = ΠE0dΠE , the proof requires two preliminary results.
41



Lemma 7.2. The map ΠE : Eh,p0 → Ωh has the form

α =
∑

j∈Ih
p

αjθ
h
j −→

−→ ΠEα =
∑

j∈Ih
p

Nmax
h

−p∑

k=0

∑

i∈Ih
p+k

(
Qhp,p+k,j,iαj

)
θhi

(57)

where Qhp,p+k,j,i : E(G) → E(G) is an homogeneous differential operator of
degree k in the horizontal derivatives for all j, i and k.

Proof. By linearity, we can assume α = αjθ
h,p
j for a fixed j. The proof

relies on Proposition 2.17 and Remark 2.18. Let us argue by induction on
k, keeping in mind that there exist real coefficients Qhp,p+k,j,iαj for i, k with

p ≤ p+ k ≤ Nmax
h and i ∈ Ihp+k such that

ΠEα =

Nmax
h

−p∑

k=0

(ΠEα)p+k =:

Nmax
h

−p∑

k=0

∑

i∈Ih
p+k

(
Qhp,p+k,j,iαj

)
θhi .

By the first line in (24), obviously Qhp,p,j,i is an homogeneous differential
operator of degree 0 in the horizontal derivatives. Suppose now αi →
(Qhp,p+λ,j,iαj) is an homogeneous differential operator of degree λ in the

horizontal derivatives for λ ≤ k and for all i ∈ Ihλ , and let us consider now
the case λ = k + 1. We have

(ΠEα)p+k+1 = −d−1
0

( ∑

ℓ≤k+1

dℓ
∑

i∈Ih
p+k+1−ℓ

(
Qhp,p+k+1−ℓ,j,iαj

)
θhi

)

= −d−1
0

( ∑

ℓ≤k+1

∑

w(θs)=ℓ

∑

i∈Ih
p+k+1−ℓ

(
WsQ

h
p,p+k+1−ℓ,j,iαj

)
θs ∧ θhi

)
.

Now, for all s, i, w(θs ∧ θhi ) = ℓ+ p+ k+ 1− ℓ = p+ k+ 1, and the order of
WsQ

h
p,p+k+1−ℓ,i equals ℓ+ k + 1− ℓ = k + 1. This achieves the proof of the

lemma. �

Lemma 7.3. The map dΠE : Eh,p0 → Ωh+1 has the form

α =
∑

j∈Ih
p

αjθ
h,p
j −→

−→ dΠEα =
∑

j∈Ih
p

Nmax
h+1−p∑

k=0

∑

j∈Ih+1
p+k

(
Q̃hp,p+k,j,iαj

)
θh+1
i

(58)

where Q̃hp,p+k,j,i : E(G) → E(G) is an homogeneous differential operator of
degree k in the horizontal derivatives for all j, i and k.
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Proof. By linearity, we can assume α = αjθ
h,p
j for a fixed j. By (57),

α→ dΠEα

=

Nmax
h

−p∑

k=0

∑

i∈Ih
p+k

((
dQhp,p+k,j,iαj

)
∧ θhi +

(
Qhp,p+k,j,iαj

)
dθhi

)

=

Nmax
h

−p∑

k=0

∑

i∈Ih
p+k

( ∑

s

(
WsQ

h
p,p+k,j,iαj

)
θs ∧ θhi +

(
Qhp,p+k,j,iαj

)
dθhi

)
.

Obviously, θs ∧ θhi ∈ Θh+1,w(θj)+p+k and WsQ
h
p,p+k,j,i is an homogenous

differential operator in the horizontal derivatives of order w(θj) + k, and

hence (WsQ
h
p,p+k,j,iαj

)
θs∧θhi has the form

(
Q̃hp,p+k′,j,iαj

)
θh+1
i , with i ∈ Ih+1

p+k′ ,

with k′ := k + w(θj), and Q̃hp,p+k′,i is an horizontal operator of order k′.

In addition, by Lemma 2.8, dθhi is a linear combinations of elements in
Θh+1,p+k. Since Qhp,p+k,j,i has order k, the lemma is completely proved. �

Proof of Proposition 7.1. By linearity, we can assume α =
∑

j∈Ih
0,p

αjξ
h
j for a

fixed p. Since Ξh and Θh are left invariant basis, there exist real constants

chj,λ such that we can write α =
∑

λ∈Ih
p

( ∑

j∈Ih
0,p

chj,λαj
)
θhλ :=

∑

λ∈Ih
p

α̃λθ
h
λ.

We notice first that, if β ∈ ∧h+1
g, then

(59) ΠEh+1
0

β =

Mmax
h+1∑

q=Mmin
h+1

∑

i∈Ih+1
0,q

〈β, ξh+1
i 〉ξh+1

i .

Replacing (58) in (59), we get

dcα = ΠE0dΠE

∑

λ∈Ih
p

α̃λθ
h
λ

=

Mmax
h+1∑

q=Mmin
h+1

∑

i∈Ih+1
0,q

∑

λ∈Ih
p

Nmax
h+1−p∑

k=0

∑

ℓ∈Ih+1
p+k

(
Q̃hp,p+k,λ,ℓαλ

)
〈θh+1
ℓ , ξh+1

i 〉ξh+1
i .

(60)

We notice now that

ch+1
i,ℓ := 〈θh+1

ℓ , ξh+1
i 〉 6= 0 only if q = p+ k,

by Remark 2.6, that in turn is possible only if q ≥ p. Moreover, by Remark
2.18, necessarily q > p. Thus the sum with respect to the index k reduces to
the only term k = q−p (we point out that 0 ≤ q−p ≤Mmax

h+1 −p ≤ Nmax
h+1 −p,

since Mmax
h+1 is the highest weight in Eh+1

0 ⊂ ∧h+1
g, whereas Nmax

h+1 is the

highest weight in
∧h+1

g).
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Thus (60) becomes

dcα

=

Mmax
h+1∑

q=max{p+1,Mmin
h+1}

∑

i∈Ih+1
0,q

∑

λ∈Ih
p

∑

ℓ∈Ih+1
q

(
ch+1
i,ℓ Q̃hp,q,λ,ℓα̃λ

)
ξh+1
i

=

Mmax
h+1∑

q=max{p+1,Mmin
h+1}

∑

i∈Ih+1
0,q

∑

j∈Ih
0,p

(
P hp,q,j,iαj

)
ξh+1
i ,

(61)

where
P hp,q,j,i :=

∑

λ∈Ih
p

∑

ℓ∈Ih+1
q

chj,λc
h+1
i,ℓ Q̃hp,q,j,ℓ

is an homogeneous polynomial of degree q − p in the horizontal derivatives.
�

We give now some explicit examples of the classes E∗
0 for some significant

groups.

Example 7.4. First of all, we stress that in any Carnot group G the space
E1

0 consists precisely of all horizontal forms, i.e. of all forms of weight 1.
Indeed, notice first that on 0-forms d0 = 0. On the other hand, if Xi, Xj are
left invariant vector fields, and θℓ ∈ Θ1, by the identity

d0θℓ(Xi, Xj) = dθℓ(Xi, Xj) = −θℓ([Xi, Xj ]),

it follows that d0θℓ = 0 if and only if θℓ has weight one, since [Xi, Xj ] belongs
to V2 ⊕ · · · ⊕ Vκ.

Example 7.5. Let G := H1 ≡ R3 be the first Heisenberg group, with
variables (x, y, t). Set X := ∂x + 2y∂t, Y := ∂y − 2x∂t, T := ∂t. We have

X♮ = dx, Y ♮ = dy, T ♮ = θ (the contact form of H1). The stratification
of the algebra g is given by g = V1 ⊕ V2, where V1 = span {X,Y } and
V2 = span {T}. In this case

E1
0 = span {dx, dy};

E2
0 = span {dx ∧ θ, dy ∧ θ};

E3
0 = span {dx ∧ dy ∧ θ}.

Moreover

dc(α1dx+ α2dy)

= ΠE0d
(
α1dx+ α2dy −

1

4
(Xα2 − Y α1)θ

)

= D(α1dx+ α2dy),

where D is the second order differential of horizontal 1-forms in H1 that has
the form

D(α1dx+ α2dy)

= −1

4
(X2α2 − 2XY α1 + Y Xα1)dx ∧ θ − 1

4
(2Y Xα2 − Y 2α1 −XY α2)dy ∧ θ

:= P1(α1, α2)dx ∧ θ + P2(α1, α2)dy ∧ θ.
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On the other hand, if

α = +α13dx ∧ θ + α23dy ∧ θ ∈ E2
0 ,

then
dcα = (Xα23 − Y α13) dx ∧ dy ∧ θ.

Example 7.6. Let G := H1×R, and denote by (x, y, t) the variables in H1

and by s the variable in R. Set X,Y, T as above, and S := ∂s. We have
X♮ = dx, Y ♮ = dy, S♮ = ds, T ♮ = θ. The stratification of the algebra g is
given by g = V1 ⊕ V2, where V1 = span {X,Y, S} and V2 = span {T}. In
this case

E1
0 = span {dx, dy, ds};

E2
0 = span {dx ∧ ds, dy ∧ ds, dx ∧ θ, dy ∧ θ};

E3
0 = span {dx ∧ dy ∧ θ, dx ∧ ds ∧ θ, dy ∧ ds ∧ θ}.

Moreover

dc(α1dx+ α2dy + α3ds)

= D(α1dx+ α2dy) + (Xα3 − Sα1)dx ∧ ds+ (Y α3 − Sα2)dy ∧ ds,
where D is the second order differential of horizontal 1-forms in H1 that has
the form D(α1dx+ α2dy) = P1(α1, α2)dx ∧ θ + P2(α1, α2)dy ∧ θ.

On the other hand, if

α = α13dx ∧ ds+ α23dy ∧ ds+ α14dx ∧ θ + α24dy ∧ θ ∈ E2
0 ,

then

dcα = (Xα24 − Y α14) dx ∧ dy ∧ θ

+
(
Tα13 − Sα14 −

1

4
(X2α23 −XY α13)

)
dx ∧ ds ∧ θ

+
(
Tα23 − Sα24 −

1

4
(Y Xα23 − Y 2α13)

)
dy ∧ ds ∧ θ.

Example 7.7. Let now G := H2 × R, and denote by (x1, x2, y1, y2, t) the
variables in H2 and by s the variable in R. Set Xi := ∂xi

+ 2yi∂t, Yi :=

∂xi
− 2xi∂t, i = 1, 2, T := ∂t, and S := ∂s. We have X♮

i = dxi, Y
♮
i = dyi,

i = 1, 2, S♮ = ds, T ♮ = θ (the contact form of H2. The stratification of the
algebra g is given by g = V1 ⊕ V2, where V1 = span {X1, X2, Y1, Y2, S} and
V2 = span {T}.

Let us restrict ourselves to show the structure of the intrinsic differential
on E1

0 , i.e on horizontal 1-forms. Using the notations of (17), we can chose

an orthonormal basis of
∧h

g, h = 1, 2, 3 as follows:

h = 1: Θ1,1 = (θ1
1, . . . , θ

1
5) = (dx1, dx2, dy1, dy2, ds), and Θ1,2 = (θ1

6) = (θ).
h = 2: Θ2,2 = (θ2

1, . . . , θ
1
10) = (dx1∧dx2, dy1∧dy2, dx1∧dy1, dx1∧dy2, dx2∧

dy1, dx2∧dy2, dx1∧ds, dx2∧ds, dy1∧ds, dy2∧ds), Θ2,3 = (θ2
11, . . . , θ

2
15) =

(dx1 ∧ θ, dx2 ∧ θ, dy1 ∧ θ, dy2 ∧ θ, ds ∧ θ).
h = 3: Θ3,3 = (θ3

1, . . . , θ
3
10) = (dx1 ∧ dx2 ∧ dy1, dx1 ∧ dx2 ∧ dy2, dx1 ∧ dx2 ∧

ds, dx1∧dy1∧dy2, dx1∧dy1∧ds, dx2∧dy1∧dy2, dy1∧dy2∧ds, dx1∧
dy2 ∧ ds, dx2 ∧ dy2 ∧ ds, dy1 ∧ dy2 ∧ ds). Θ3,4 = (θ3

11, . . . , θ
3
20) =

(dx1 ∧ dx2 ∧ θ, dy1 ∧ dy2 ∧ θ, dx1 ∧ dy1 ∧ θ, dx1 ∧ dy2 ∧ θ, dx2 ∧ dy1 ∧
θ, dx2 ∧ dy2 ∧ θ, dx1 ∧ ds ∧ θ, dx2 ∧ ds ∧ θ, dy1 ∧ ds ∧ θ, dy2 ∧ ds ∧ θ).
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We have:
d0θ

1
i = 0 when i = 1, . . . , 5, d0θ

1
6 = 4(θ2

3 + θ2
6);

d0θ
2
i = 0 when i = 1, . . . , 10 d0θ

2
11 = 4θ3

2, d0θ
2
12 = −4θ3

1,

d0θ
2
13 = −4θ3

6, d0θ
2
14 = 4θ3

4, d0θ
2
15 = 4(θ3

5 + θ3
10).

Thus

M1 =




0 . . . 0 0
0 . . . 0 0
0 . . . 0 4
0 . . . 0 0
0 . . . 0 0
0 . . . 0 4
0 . . . 0 0
...

...
...

...
0 . . . 0 0
0 . . . 0 0
...

...
...

...
0 . . . 0 0




M2 =




0 . . . 0 0 −4 0 0 0
0 . . . 0 4 0 0 0 0
0 . . . 0 0 0 0 0 0
0 . . . 0 0 0 0 4 0
0 . . . 0 0 0 0 0 4
0 . . . 0 0 0 −4 0 0
0 . . . 0 0 0 0 0 0
...

...
...

...
...

...
...

0 . . . 0 0 0 0 0 0
0 . . . 0 0 0 0 0 4
0 . . . 0 0 0 0 0 0
...

...
...

...
...

...
...

...
0 . . . 0 0 0 0 0 0




As usual, E1
0 is the space of left invariant horizontal 1-forms, i.e. an or-

thonormal basis of E1
0 is given by {dx1, dx2, dy1, dy2, ds}. Keeping into ac-

count that E2
0 can be identified with kerM2∩kertM1, then the left invariant

form α =
∑

j αjθ
2
j belongs to E2

0 if and only if

α6 = −α3

and
α11 = α12 = α13 = α14 = α15 = 0.

Hence an orthonormal basis of E2
0 is given by {ξ21 , ξ22 , 1√

2
(ξ23−ξ26), ξ24 , ξ

2
5 , ξ

2
7 , ξ

2
8 ,

ξ29 , ξ
2
10} = {dx1 ∧ dx2, dy1 ∧ dy2,

1√
2
(dx1 ∧ dy1 − dx2 ∧ dy2), dx1 ∧ dy2, dx2 ∧

dy1, dx1 ∧ ds, dx2 ∧ ds, dy1 ∧ ds, dy2 ∧ ds}. In particular, the orthogonal
projection ΠE0α of α on E0 has the form

(62) ΠE0α =
10∑

j=1
j 6=3,6

αjξ
2
j +

α3 − α6

2
(ξ23 − ξ26).
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We want now to write explicitly dc acting on forms α = α(x) =
∑5

j=1 αj(x)ξ1j .

To this end, let us write first ΠE1α. Because of the structure of
∧1

g, by
Proposition 2.17,

ΠE1α = α+ γθ,

for a smooth function γ, with γθ = −d−1
0 (d1α), i.e.

(63) d0(γθ) + d1α ∈ ker δ0,

by Corollary 2.11. We can write (63) in the form

4γ(dx1 ∧ dy1 + dx2 ∧ dy2)

+ (X1α2 −X2α1)dx1 ∧ dx2 + (Y1α4 − Y2α3)dy1 ∧ dy2

+ (X1α3 − Y1α1)dx1 ∧ dy1 + (X1α4 − Y2α1)dx1 ∧ dy2

+ (X2α3 − Y1α2)dx2 ∧ dy1 + (X2α4 − Y2α2)dx2 ∧ dy2

+ (X1α5 − Sα1)dx1 ∧ ds+ (X2α5 − Sα2)dx2 ∧ ds,
+ (Y1α5 − Sα3)dy1 ∧ ds+ (Y2α5 − Sα4)dy2 ∧ ds ∈ ker δ0.

(64)

Because of the form of tM1 above, this gives

8γ +X1α3 − Y1α1 +X2α4 − Y2α2 = 0,

i.e.

γ = −1

8
(X1α3 − Y1α1 +X2α4 − Y2α2).

However, the explicit form of γ does not matter in the final expression
of dcα. Indeed, keeping in mind that d0α = 0, and that ΠE0(d1(γθ)) =
ΠE0(dγ ∧ θ) = 0, and ΠE0(d2(α + γθ)) = 0, since ΠE0 vanishes on forms of
weight 3, by our previous computation (64), we have

dcα = ΠE0(d(α+ γθ))

= ΠE0(d0(α+ γθ) + d1(α+ γθ)) + ΠE0(d2(α+ γθ))

= ΠE0(d0(γθ) + d1α)

= ΠE0

(
(X1α2 −X2α1)dx1 ∧ dx2 + (Y1α4 − Y2α3)dy1 ∧ dy2

+ (X1α3 − Y1α1 + 4γ)dx1 ∧ dy1 + (X1α4 − Y2α1)dx1 ∧ dy2

+ (X2α3 − Y1α2)dx2 ∧ dy1 + (X2α4 − Y2α2 + 4γ)dx2 ∧ dy2

+ (X1α5 − Sα1)dx1 ∧ ds+ (X2α5 − Sα2)dx2 ∧ ds,
+ (Y1α5 − Sα3)dy1 ∧ ds+ (Y2α5 − Sα4)dy2 ∧ ds

)

= (X1α2 −X2α1)dx1 ∧ dx2 + (Y1α4 − Y2α3)dy1 ∧ dy2

+ (X1α4 − Y2α1)dx1 ∧ dy2 + (X2α3 − Y1α2)dx2 ∧ dy1

+ (X1α5 − Sα1)dx1 ∧ ds+ (X2α5 − Sα2)dx2 ∧ ds,
+ (Y1α5 − Sα3)dy1 ∧ ds+ (Y2α5 − Sα4)dy2 ∧ ds

+
X1α3 − Y1α1 −X2α4 + Y2α2√

2

1√
2

(dx1 ∧ dy1 − dx2 ∧ dy2),

by (62).
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Example 7.8. Let G ≡ R6 be the Carnot group associated with the vector
fields

X1 = ∂1

X2 = ∂2 + x1∂4

X3 = ∂3 + x2∂5 + x4∂6

and

X4 = ∂4

X5 = ∂5 + x1∂6

X6 = ∂6.

Only non–trivial commutation rules are

[X1, X2] = X4, [X2, X3] = X5, [X1, X5] = X6, [X4, X3] = X6.

The Xj ’s are left invariant and coincide with the elements of the canonical
basis of R6 at the origin. The Lie algebra g of G admits the stratification

g = g1 ⊕ g2 ⊕ g3,

where g1 = span {X1, X2, X3}, g2 = span {X4, X5}, and g3 = span {X6}.
We set also

θ5 = dx5 − x2dx3

θ4 = dx4 − x1dx2

θ6 = dx6 − x1dx5 + (x1x2 − x4)dx3

and

θ1 = dx1, θ2 = dx2, θ3 = dx3.

Clearly

θi = X♮
i for i, j = 1, ..., 6.

Moreover

dθ4 = −θ1 ∧ θ2, dθ5 = −θ2 ∧ θ3, dθ6 = θ3 ∧ θ4 − θ1 ∧ θ5.
As in Example 7.7, let us restrict ourselves to show the structure of the
intrinsic differential on E1

0 , i.e on horizontal 1-forms. Using the notations of

(17), we can chose an orthonormal basis of
∧h

g, h = 1, 2, 3 as follows:

h = 1: Θ1,1 = {θ1, θ2, θ3}, Θ1,2 = {θ4, θ5}, and Θ1,3 = {θ6}.
h = 2: Θ2,2 = {θ2

1, θ
2
2, θ

2
3} = {θ1 ∧ θ2, θ1 ∧ θ3, θ2 ∧ θ3}, Θ2,3 = {θ2

4, . . . , θ
2
9} =

{θ1∧θ4, θ1∧θ5, θ2∧θ4, θ2∧θ5, θ3∧θ4, θ3∧θ5}, Θ2,4 = {θ2
10, . . . , θ

2
13} =

{θ1∧ θ6, θ2∧ θ6, θ3∧ θ6, θ4∧ θ5}, Θ2,5 = {θ2
14, θ

2
15} = {θ4∧ θ6, θ5∧ θ6}

h = 3: Θ3,3 = {θ3
1} = {θ1 ∧ θ2 ∧ θ3}. Θ3,4 = {θ3

2, . . . , θ
3
7} = {θ1 ∧ θ2 ∧

θ4, θ1 ∧ θ2 ∧ θ5, θ1 ∧ θ3 ∧ θ4, θ1 ∧ θ3 ∧ θ5, θ2 ∧ θ3 ∧ θ4, θ2 ∧ θ3 ∧ θ5},
Θ3,5 = {θ3

8, . . . , θ
3
13} = {θ1 ∧ θ2 ∧ θ6, θ1 ∧ θ3 ∧ θ6, θ2 ∧ θ3 ∧ θ6, θ1 ∧

θ4 ∧ θ5, θ2 ∧ θ4 ∧ θ5, θ3 ∧ θ4 ∧ θ5}, Θ3,6 = {θ3
14, . . . , θ

3
19} = {θ1 ∧ θ4 ∧

θ6, θ1 ∧ θ5 ∧ θ6, θ2 ∧ θ4 ∧ θ6, θ2 ∧ θ5 ∧ θ6, θ3 ∧ θ4 ∧ θ6, θ3 ∧ θ5 ∧ θ6},
Θ3,7 = {θ3

20} = {θ4 ∧ θ5 ∧ θ6}.
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We notice that an orthonormal basis of
∧h

g, h = 4, 5, 6 can be obtained by
Hodge duality.

We have

M1 =




0 0 0 −1 0 0
0 0 0 0 0 0
0 0 0 0 −1 0
0 0 0 0 0 0
0 0 0 0 0 1
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 −1
0 0 0 0 0 0
0 0 0 0 0 0
...

...
...

...
...

...
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0




M2 =




0 0 0 0 −1 0 0 −1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 −1 0 0
0 0 0 0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0 −1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 −1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 −1
0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0




As usual, E1
0 is the space of left invariant horizontal 1-forms, i.e. an or-

thonormal basis of E1
0 is given by {θ1, θ2, θ3}. Keeping into account that

E2
0 can be identified with kerM2 ∩ kertM1, then the left invariant form

α =
∑

j αjθ
2
j belongs to E2

0 if and only if

α5 = −α8, α10 = α11 = α12 = α13 = α14 = α15 = 0

and

α5 = α8, α3 = α1 = 0.

Therefore, an orthonormal basis {ξ21 , . . . , ξ25} of E2
0 = E2,2

0 ⊕E
2,3
0 is given by

{θ1 ∧ θ3} ∪ {θ1 ∧ θ4, θ2 ∧ θ4, θ2 ∧ θ5, θ3 ∧ θ5}.
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In particular, the orthogonal projection ΠE0α of α ∈ ∧2
g on E2

0 has the
form

(65) ΠE0α = α2 θ1 ∧ θ3 + α4 θ1 ∧ θ4 + α6 θ2 ∧ θ4 + α7 θ2 ∧ θ5 + α9 θ3 ∧ θ5.

We want now to write explicitly dc acting on forms α = α(x) =
∑3

j=1 αj(x)θj .
To this end, let us write first ΠE1α. We have

ΠE1α = (ΠE1α)1 + (ΠE1α)2 + (ΠE1α)3

= α+ (ΠE1α)2 + (ΠE1α)3

:= α+ (γ4θ4 + γ5θ5) + γ6θ6,

with

γ4θ4 + γ5θ5 = −d−1
0 (d1(α1θ1 + α2θ2 + α3θ3))

= −d−1
0 ((X1α2 −X2α1)θ1 ∧ θ2 + (X1α3 −X3α1)θ1 ∧ θ3

+ (X2α3 −X3α2)θ2 ∧ θ3),

(66)

and

(67) γ6θ6 = −d−1
0 (d1(γ4θ4 + γ5θ5) + d2α)

Now (66) is equivalent to

d0(γ4θ4 + γ5θ5) + (X1α2 −X2α1)θ1 ∧ θ2 + (X1α3 −X3α1)θ1 ∧ θ3
+ (X2α3 −X3α2)θ2 ∧ θ3 ∈ ker tM1,

(68)

i.e.

(−γ4 +X1α2 −X2α1)θ1 ∧ θ2 + (X1α3 −X3α1)θ1 ∧ θ3
+ (−γ5 +X2α3 −X3α2)θ2 ∧ θ3 ∈ ker tM1,

(69)

that gives eventually

γ4 = X1α2 −X2α1 and γ5 = X2α3 −X3α2
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Consider now (67), that is equivalent to

d0(γ6θ6) + d1((X1α2 −X2α1)θ4 + (X2α3 −X3α2)θ5 + d2α)

= γ6(θ3 ∧ θ4 − θ1 ∧ θ5) +X1(X1α2 −X2α1)θ1 ∧ θ4
+X2(X1α2 −X2α1)θ2 ∧ θ4
+X3(X1α2 −X2α1)θ3 ∧ θ4 +X1(X2α3 −X3α2)θ1 ∧ θ5
+X2(X2α3 −X3α2)θ2 ∧ θ5
+X3(X2α3 −X3α2)θ3 ∧ θ5 −X4α1θ1 ∧ θ4
−X4α2θ2 ∧ θ4 −X4α3θ3 ∧ θ4 −X5α1θ1 ∧ θ5
−X5α2θ2 ∧ θ5 −X5α3θ3 ∧ θ5
= X1(X1α2 −X2α1)θ1 ∧ θ4 +X2(X1α2 −X2α1)θ2 ∧ θ4
+ (X3(X1α2 −X2α1) + γ6)θ3 ∧ θ4 + (X1(X2α3 −X3α2)− γ6)θ1 ∧ θ5
+X2(X2α3 −X3α2)θ2 ∧ θ5
+X3(X2α3 −X3α2)θ3 ∧ θ5 −X4α1θ1 ∧ θ4 −X4α2θ2 ∧ θ4
−X4α3θ3 ∧ θ4 −X5α1θ1 ∧ θ5
−X5α2θ2 ∧ θ5 −X5α3θ3 ∧ θ5
= (X1(X1α2 −X2α1)−X4α1)θ2

4 + (X1(X2α3 −X3α2)− γ6 −X5α1)θ2
5

+ (X2(X1α2 −X2α1)−X4α2)θ2
6 + (X2(X2α3 −X3α2)−X5α2)θ2

7

+ (X3(X1α2 −X2α1) + γ6 −X4α3)θ2
8 + (X3(X2α3 −X3α2)−X5α3)θ2

9

∈ ker tM1,

i.e. to

X1(X2α3 −X3α2)− γ6 −X5α1 − (X3(X1α2 −X2α1) + γ6 −X4α3) = 0

This yields

γ6 =
1

2

(
X1(X2α3 −X3α2)−X5α1 −X3(X1α2 −X2α1) +X4α3

)
.

Thus

ΠE1α = α1θ1 + α2θ2 + α3θ3

+ (X1α2 −X2α1)θ4 + (X2α3 −X3α2)θ5

+
1

2

(
X1(X2α3 −X3α2)−X5α1 −X3(X1α2 −X2α1) +X4α3

)
θ6.

Then

dcα = (X1α3 −X3α1)θ1 ∧ θ3 + (X1(X1α2 −X2α1)−X4α1)θ1 ∧ θ4
+ (X2(X1α2 −X2α1)−X4α2)θ2 ∧ θ4
+ (X2(X2α3 −X3α2)−X5α2)θ2 ∧ θ5
+ (X3(X2α3 −X3α2)−X5α3)θ3 ∧ θ5.

Example 7.9. Let G = (R4, ·) be the Carnot group whose Lie algebra
is g = V1 ⊕ V2 ⊕ V3 with V1 = span {X1, X2}, V2 = span {X3}, and
V3 = span {X4}, the only non zero commutation relations being

[X1, X2] = X3 , [X1, X3] = X4.
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The group G is called Engel group. In exponential coordinates an explicit
representation of the vector fields is

X1 = ∂1 −
x2

2
∂3 − (

x3

2
+
x1x2

12
)∂4 , X2 = ∂2 +

x1

2
∂3 +

x2
1

12
∂4

X3 = ∂3 +
x1

2
∂4 , X4 = ∂4.

Denote by θ1, . . . , θ4 the dual left invariant forms. The following result is
proved in [25]: as in Remark 7.4, an orthonormal basis of E1

0 is given by

{θ1, θ2}; an orthonormal basis of E2
0 = E2,3

0 ⊕ E2,4
0 is given by {θ2 ∧ θ3} ∪

{θ1 ∧ θ4}. Moreover, bases of E3
0 , E

4
0 can be written by Hodge duality.

If α = α1θ1 + α2θ2 ∈ E1
0 , then

dcα = (X2(X1α2 −X2α1)−X3α2)θ2 ∧ θ3
+ (X1(X2

1α2 − (X1X2 +X3)α1)−X4α1)θ1 ∧ θ4.

Example 7.10. Let us consider now the free group G of step 3 with 2
generators, i.e. the Carnot group whose Lie algebra is g = V1⊕V2⊕V3 with
V1 = span {X1, X2}, V2 = span {X3}, and V3 = span {X4, X5}, the only
non zero commutation relations being

[X1, X2] = X3 , [X1, X3] = X4 , [X2, X3] = X5.

In exponential coordinates, the group G can be identified with R5, and an
explicit representation of the vector fields is

X1 = ∂1 , X2 = ∂2 + x1∂3 +
x2

1

2
∂4 + x1x2∂5

X3 = ∂3 + x1∂4 + x2∂5 , X4 = ∂4 , X5 = ∂5.

Denote by θ1, . . . , θ5 the dual left invariant forms. As in Remark 7.4, an
orthonormal basis of E1

0 is given by {θ1, θ2}.
We have dθ1 = dθ2 = 0 and

dθ3 = −θ1 ∧ θ2, dθ4 = −θ1 ∧ θ3, dθ5 = −θ2 ∧ θ3.

Using the notations of (17), we can chose an orthonormal basis of
∧h

g,
h = 1, 2, 3 as follows:

h = 1: Θ1,1 = {θ1, θ2}, Θ1,2 = {θ3}, and Θ1,3 = {θ4, θ5}.
h = 2: Θ2,2 = {θ2

1} = {θ1 ∧ θ2}, Θ2,3 = {θ2
4, θ

2
5} = {θ1 ∧ θ3, θ2 ∧ θ3}, Θ2,4 =

{θ2
4, . . . , θ

2
7} = {θ1 ∧ θ4, θ1 ∧ θ5, θ2 ∧ θ4, θ2 ∧ θ5}, Θ2,5 = {θ2

8, θ
2
9} =

{θ3 ∧ θ4, θ3 ∧ θ5}, Θ2,6 = {θ2
10} = {θ4 ∧ θ5}.

h = 3: Θ3,4 = {θ3
1} = {θ1∧ θ2∧ θ3}, Θ3,5 = {θ3

2, θ
3
3} = {θ1∧ θ2∧ θ4, θ1∧ θ2∧

θ5}, Θ3,6 = {θ3
4, . . . , θ

3
7} = {θ1 ∧ θ3 ∧ θ4, θ1 ∧ θ3 ∧ θ5, θ2 ∧ θ3 ∧ θ4, θ2 ∧

θ3 ∧ θ5}, Θ3,7 = {θ3
8, θ

3
9} = {θ1 ∧ θ4 ∧ θ5, θ2 ∧ θ4 ∧ θ5}, Θ3,8 = {θ3

10} =
{θ3 ∧ θ4 ∧ θ5}-
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We notice that an orthonormal basis of
∧h

g, h = 4, 5 can be obtained by
Hodge duality. We have

M1 =




0 0 −1 0 0
0 0 0 1 0
0 0 0 0 −1
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0




Thus, if α = α1θ
2
1 + · · ·+ α10θ

2
10 ∈ E2

0 , then

α ∈ kertM1 if and only if α1 = α2 = α3 = 0.

Moreover

M2 =




0 0 0 0 1 −1 0 0 0 0
0 0 0 0 0 0 0 −1 0 0
0 0 0 0 0 0 0 0 −1 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 −1
0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0




,

that yields

α ∈ kerM2 if and only if α5 = α6, α8 = α9 = α10 = 0.

Thus, an orthonormal basis of E2
0 is given by

{θ2
4,

1√
2

(θ2
5 + θ2

6), θ2
7}.

We want to show how dc acts on 1-forms α = α1θ1 + α2θ2 ∈ E1
0 . To this

end, let us write ΠEα = α+ γ3θ3 + γ4θ4 + γ5θ5. We apply Proposition 2.17.
We get first

γ3θ3 = −d−1
0 (d1α) = −d−1

0 ((X1α2 −X2α1)θ1 ∧ θ2),

i.e.

−γ3θ1 ∧ θ2 + (X1α2 −X2α1)θ1 ∧ θ2
= d0(γ3θ3) + (X1α2 −X2α1)θ1 ∧ θ2 ∈ ker tM1.

Therefore

γ3 = X1α2 −X2α1.

Analogously,

γ4θ4 + γ5θ5 = −d−1
0 (d1(γ3θ3) + d2α).
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This gives

γ4 = X2
1α2 −X1X2α1 −X3α1,

γ5 = X2X1α2 −X2
2α1 −X3α2.

Eventually, we get

dcα = (X1γ4 −X4α1)θ1 ∧ θ4 + (X2γ5 −X5α2)θ2 ∧ θ5

+
1

2
(X1γ5 −X5α1 +X2γ4 −X4α2)(θ1 ∧ θ5 + θ2 ∧ θ4).

Remark 7.11. It is worth of noticing that Examples 7.5 and 7.10 show that,
if G is a free group with 2 generators of step 2 and 3, all classes of intrinsic
forms have pure weight (0,1,3,4 for the step 2 group, and 0,1,4,6,9,10 for
the step 3 group). This phenomenon could suggest some special feature of
free groups with respect to the weights of intrinsic forms (like, for instance,
that in free groups all forms in E∗

0 have pure weight). Unfortunately, this
assertion fails to hold, at least in this näıf form. Indeed, A. Ottazzi [20]
showed us a counterexample for E3

0 in the free group of step 2 with 3 gener-
ators. In fact, this a general phenomenon, due to the fact that for this case
n = 6 (even), so that E3

0 = ∗E3
0 , but Q = 9 (odd), yielding a contradiction

with w(∗α) = w(α), since w(∗α) = Q−w(α). Clearly, this situation occurs
whenever n is even and Q is odd.
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[18] François Murat. Compacité par compensation. Ann. Scuola Norm. Sup. Pisa Cl. Sci.
(4), 5(3):489–507, 1978.

[19] François Murat and Luc Tartar. H-convergence. In Topics in the mathematical mod-
elling of composite materials, volume 31 of Progr. Nonlinear Differential Equations
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