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Abstract. Random walk models are a powerful tool for
the investigation of transport processes in turbulent flows.
However, standard random walk methods are applicable
only when the flow velocities and diffusivity are sufficiently
smooth functions. In practice there are some regions where
the rapid but continuous change in diffusivity may be rep-
resented by a discontinuity. The random walk model based
on backward̂Ito calculus can be used for these problems.
This model was proposed by LaBolle et al. (2000). The lat-
ter is best suited to the problems under consideration. It is
then applied to two test cases with discontinuous diffusivity,
highlighting the advantages of this method.

1 Introduction

The transport of a tracer can be described by using the
advection-diffusion equation. In general, this equation can-
not be solved analytically, so that numerical methods must
be resorted to. The most popular method is an Eulerian ap-
proach, in which the transport equation is solved on a fixed
spatial grid. The finite element method and finite difference
method are primary examples of this class of solution meth-
ods.

An alternative method is the Lagrangian approach, which
follows particles through space at every time step. The move-
ment of an individual particle is usually modeled in two
steps: the advection, which is deterministic, is simulated by
a translation of each particle with a velocity derived from the
local fluid velocity field. Diffusion is generally simulated us-
ing stochastic methods. Then, by averaging the positions of
many particles the advection-diffusion processes can be de-
scribed (Thomson, 1987; Sawford, 1993; Costa and Ferreira,
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2000; Zimmermann et al., 2001; Proehl et al., 2005; Delhez
and Deleersnijder, 2006).

Particle-tracking models offer advantages over Eulerian
methods in several respects. First, the solution obtained by
using the particle tracking method is always mass conserva-
tive and non-negative, while the Eulerian methods is suscep-
tible to excessive numerical dispersion and artificial oscil-
lations (Zheng and Bennett, 2002) for advective dominated
problems or problems with large gradients on the initial con-
centration field. Second, for problems where the tracer does
not occupy the whole model domain, the Lagrangian meth-
ods models may be computationally more efficient than their
Eulerian counterparts (Hunter, 1987; Spivakovskaya et al.,
2005). Third, if the velocity field can be locally described by
an analytic function, then particles may be advected exactly
through that field by simple integration (Hunter et al., 1993).
However, it should be noted, that the numerical flow can af-
fect the accuracy of the particle tracking method. In this case
the interpolation of flow variables in arbitrary particle loca-
tion that can lead to local mass balance error and solution
anomalies (LaBolle et al., 1996).

In general, both approaches have their own advantages and
disadvantages: for instance, the Lagrangian approach can
be an alternative to the Eulerian methods in case of steep
concentration profile. On the other hand, the Eulerian ap-
proach is more suitable for dispersion-dominated problems,
for which it provides accurate solution in reasonable time.
The choice of a method depends on the problem under con-
sideration. Sometimes, it is not easy to classify the prob-
lem and decide which method should be applied. The mixed
Eulerian-Lagrangian methods attempt to combine the advan-
tages of Lagrangian and Eulerian methods (Konikow and
Bredehoeft, 1978; Celia et al., 1990; Yeh, 1990; Zhang et
al., 1993; Zheng and Wang, 1999).

For space-varying diffusivity the advection part of the
random walk model requires an additional correction term,
which is proportional to the diffusivity gradient. Because of
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this correction term the particles do not accumulate in re-
gions of low diffusivity (Hunter et al., 1993; Visser, 1997;
Ross and Sharples , 2004). This random walk model can be
introduced by using the theory of stochastic differential equa-
tions (SDE) (Heemink, 1990; Dimou and Adams, 1993; Stij-
nen et al., 2006; Spivakovskaya et al., 2007). The advection-
diffusion equation is interpreted as the Fokker-Planck equa-
tion (Oksendal, 1985) and the corresponding SDE inÎto
sense can be derived. As a result, the particle’s track is simu-
lated by a stochastic process, whose transition density func-
tion coincides with the tracer concentration. TheÎto formu-
lation is not the only way to introduce the particle tracking
model. Another random walk model based on Stratonovich
stochastic calculus is also quite popular.

Unfortunately, the common random-walk methods for
simulating transport can only be applied when the diffusivity
is sufficiently smooth, otherwise the correction term in the
advection part dominates the flow velocity. In many situa-
tions the rapid but continuous change in turbulence statistics
that occurs may be represented by a discontinuity (Thomson
et al., 1997). Even without the large gradients, numerical
simulation of the flow can result in discontinuities in the ve-
locity field and, therefore, the velocity-dependent dispersion
tensor may become discontinuous. One of the method to treat
this problem is to interpolate the velocities in order to gener-
ate a smooth dispersion field (LaBolle et al., 1996). Recently
LaBolle et al. (2000) proposed a random walk model based
on backward̂Ito calculus that requires no corrective velocity.

In this paper, we discuss the random walk models based on
Îto, Stratonovich and backward̂Ito calculus. The backward
Îto random walk model is seen to be appropriate for dealing
with a discontinuity in the diffusivity field. It is applied to
two test cases, for which key properties of the solutions can
be derived analytically.

2 The Îto, Stratonovich and the backward Îto random
walk models

Let us consider the following one-dimensional advection-
diffusion problem:

∂C

∂t
= −

∂

∂x

(

uC − k
∂C

∂x

)

(1)

Here C(t, x) is the concentration of a passive tracer,u is
flow velocity andk(x) is diffusivity term. Equation (1) can
be interpreted as a Fokker-Planck equation (see Karatzas
and Shreve, 1998; Oksendal, 1985) and the corresponding
Stochastic Differential Equation (SDE) in̂Ito sense can be
considered

(I) dX(t) =
(

u + k′(x)
)

dt +
√

2kdW(t) (2)

whereW is a Wiener process, i.e. a stochastic process with
the following statistics (t1≤t2≤t3≤t4)

E(W(t2) − W(t1)) = 0
E((W(t4) − W(t3)(W(t2) − W(t1)) = 0
E((W(t2) − W(t1))(W(t2) − W(t1)) = t2 − t1

(3)

HereE(X) denotes the expectation of the random variableX.
The solution of the advection-diffusion problem (1) is then th
e probability density function of the stochastic processX(t).
The SDE (2) actually is not a “differential” equation, but can
be interpreted as an integral equation

(I) X(t) = x0 +
t

∫

0

(

u + k′(x)
)

dt +
t

∫

0

√
2kdW(t) (4)

The first integral (advection) in the right hand side of (4) is a
standard Lebesgue integral, while the second part (diffusion)
of (4) may be introduced as the limit of the sum (LaBolle et
al. (2000))

(I)

t
∫

0
f (X, t)dW(t) =

ms- lim
n→∞

n
∑

k=1
f (X(tk−1), tk−1)[W(tk) − W(tk−1)]

(5)

Here 0=t0<t1< . . . tn−1=tn=t and ms− lim denotes the
limit in the mean square sense. In general, to de-
fine unique stochastic integral one needs to specify at
which point the functionf (X, t) is evaluated. For in-
stance, in the definition of thêIto integral the function
f is always evaluated in the beginning of subinterval
[tk−1, tk] renderingf (X(tk−1), tk−1) statistically indepen-
dent of [W(tk)−W(tk−1)] and thus ensuring that thêIto
integral has zero mean. One well-known alternative, the
Stratonovich integral, may be defined as a limit of the sum
in which the function is evaluated at the middle of the time
interval

(S)

t
∫

0
f (X, t)dW(t) =

ms- lim
n→∞

n
∑

k=1
f

(

X(
tk−1+tk

2 ),
tk−1+tk

2

)

×

[W(tk) − W(tk−1)]

(6)

The corresponding random walk model can be written as fol-
lows:

(S) dX(t) =
(

u +
1

2
k′(x)

)

dt +
√

2kdW(t) (7)

The random walk models in thêIto or Stratonovich sense
contain the diffusivity gradient in the advection part. For
problems with large space variations of the diffusivity, this
gradient may be very high and, therefore, dominates in the
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advection term. As a result, the solution obtained by the ran-
dom walk model in thêIto or Stratonovich sense will not
be accurate. To circumvent this diffusivity, one may have
recourse to a random walk model that does not require a dif-
fusivity gradient in the advection part. This formulation is
based on the backwardÎto integral (see Karatzas and Shreve
(1998); LaBolle et al. (2000)).

(bI)

t
∫

0
f (X, t)dW(t) =

ms- lim
n→∞

n
∑

k=1
f (X(tk), tk)[W(tk) − W(tk−1)]

(8)

Using the backward̂Ito SDE for modelling advection-
diffusion processes with discontinuous diffusivity was pro-
posed by LaBolle et al. (2000). The corresponding random
walk model may be written as follows:

(bI) dX(t) = udt +
√

2kdW(t) (9)

The sensitivity of the limit of the integral sums to the choice
of location at which the function is evaluated is a conse-
quence of the unbounded variation of the Wiener process
(Karatzas and Shreve, 1998). However, each of the ran-
dom walk methods introduced above is consistent with the
advection-diffusion Eq. (1). For the continuous diffusion
term, all these methods provide the same solution of Eq. (1).
Remark. The stochastic differential equations in theÎto,
Stratanovich and backward̂Ito formulations are equivalent
in case of smooth coefficients. When the coefficients are
discontinuous the convergence of the stochastic differen-
tial equation in backward̂Ito formulation is not guaran-
teed. In LaBolle et al. (2000) the convergence of the back-
wardÎto stochastic differential equations were proven for the
one-dimensional case and demonstrated for two-dimensional
case. However, there is no proof of the convergence for
the multi-dimensional case. From the mathematical point of
view, it would be more correct to use the term “generalized
backward̂Ito” method to distinguish the difference between
the stochastic differential equation with continuous and dis-
continuous parameters. For the sake of simplicity, we use the
term “backward̂Ito” in this paper.

3 Numerical integration of the SDEs

It can be shown from the advection-diffusion Eq. (1) (see
Hunter et al., 1993) that the mean and variance of the tracer
cloud spread during time range(t, t + 1t) are given by

N1 = ui1t + k′(Xi)1t

N2 − N2
1 = 2k(Xi)1t + o(1t) ≈ 2k(Xi)1t

(10)

HereNi , i=1, 2 denote theith moment of the concentration.
Now we show that the first two moments of the displacement
1Xi=Xi+1−Xi , i=1, . . . , L in the random walk models (in

Îto, Stratonovich and backward̂Ito senses) are the same as
the first moments of the concentrationC.

Specific numerical schemes are associated with each of the
stochastic methods mentioned above. For instance, the SDE
in theÎto sense can be numerically integrated by applying the
explicit Euler method:

Xi+1 = Xi + ui1t + k′(Xi)1t +
√

2k(Xi)1tRi (11)

Here, Xi=X(ti), ui=u(t i, Xi), ti=i1t , i=0, . . . , L − 1,
1t=t/L and Ri are mutually independent normally dis-
tributed random numbers with parameters(0, 1), e.g. the ran-
dom variables with the following density function

p(y) =
1

√
2π

e− y2

2 (12)

We need only to find the probability law of the solutionX(t)

of the SDE (in other words, solution in the weak sense), but
not to approximate the solution itself. For these purposes, it
is not necessary to chose normally distributed random vari-
ables. We can use any distribution with the same mean and
variance, for instance, random numbers uniformly varying
between−

√
3 and

√
3.

The solution obtained by using the random walk model
(11) has the same properties

E(1Xi) = E(ui1t + k′(Xi)1t +
√

2k(Xi)1tRi) =
ui1t + k′(Xi)1t

V ar(1Xi) = E
(

1Xi − (E(1Xi))
)2 =

E(
√

2k(Xi)1tRi)2 = 2k(Xi)1t

(13)

As a result the solution obtained by this random walk model
is consistent with the advection-diffusion Eq. (1).

The Heun method is more suitable for the Stratonovich
formulation of the particle model (Kloeden and Platen, 1999)

1X̃i =
√

2k(Xi)1tRi

Xi = Xi−1 + ui1t + 1
2k′(Xi)1t+

1
2

(

√

2k(Xi)1t +
√

2k(Xi + 1X̃i)1t

)

Ri

(14)

Let us consider the mean and variance of1Xi obtained by
method (14)

E(1Xi) = E

(

ui1t + 1
2k′(Xi)1t

+1
2(

√

2k(Xi)1t +
√

2k(Xi + 1X̃i)1t)Ri

)

=

ui1t + 1
2k′(Xi)1t + 1

2E

(

√

2k(Xi + 1X̃i)1tRi

)

(15)
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Advection-diffusion equation

⇓ ⇓ ⇓

Îto Stratonovich backward Îto

⇓ ⇓ ⇓

t∗k = tk−1 t∗k = (tk + tk−1)/2 t∗k = tk

⇓ ⇓ ⇓

dX = (u + ∂k
∂x

)dt +
√

2kdW (t) dX = (u + 1
2

∂k
∂x

)dt +
√

2kdW (t) dX = udt +
√

2kdW (t)

⇓ ⇓ ⇓

Euler explicit Heun Euler backward

⇓ ⇓ ⇓

∆X
i = (u

i + (k
′(X

i))∆t +

q

2k(Xi)∆tR
i

∆X̃
i =

q

2k(Xi)∆tR
i

∆X
i = (u

i + 1
2
(k

′(X
i))∆t+

1
2
(

q

2k(Xi)∆t +

q

2k(Xi + ∆X̃i)∆t)R
i

∆X̃
i =

q

2k(Xi)∆tR
i

∆X
i = u

i∆t +

q

2k(Xi + ∆X̃i)∆tR
i

⇓ ⇓ ⇓

Random walk model (consistent with the advection-diffusion equation)

Fig. 1. Comparison between̂Ito, Stratonovich and backwardÎto formulations.

Let us expand the functionB(Xi+1X̃i)=
√

2k(Xi+1X̃i)

into Taylor series

B(Xi + 1X̃) = B(Xi) + B ′(Xi)1X̃ + O(1X̃2) =
√

2k(Xi) + k′(Xi)
√

1tRi + o(1t) ≈
√

2k(Xi) + k′(Xi)
√

1tRi

In other words the following equation is valid
√

2k(Xi + 1X̃i) ≈
√

2k(Xi) + k′(Xi)
√

1tRi (16)

Substituting (16) into (15) yields

E(1Xi) = ui1t + 1
2k′(Xi)1t + 1

2k′(Xi)1tE(Ri)2 =
ui1t + k′(Xi)1t

(17)

The variation of the displacement1X in the Heun scheme
coincides with the variation of the concentration

Var(1Xi) =

E

(

1
2((

√

2k(Xi)1t +
√

2k(Xi + 1X̃)1t)Ri − k′(Xi)1t)

)2

=

E
(

√

2k(Xi)1tRi + 1
2k′(Xi)(Ri − 1)1t

)2
=

2k(Xi)1t + o(1t) ≈ 2k(Xi)1t

(18)

We can conclude that the random walk model (14) has the
same first two moments as a standard random walk model in
theÎto sense and as in (10).

Finally, the backward Euler scheme is appropriate for the
backward̂Ito formulation (see LaBolle et al., 2000)

1X̃i =
√

2k(Xi)1tRi

Xi = Xi−1 + ui1t +
√

2k(Xi + 1X̃i)1tRi
(19)

Using Eq. (16) we can again find the moments of the distri-
bution ofX(t) obtained by backward Euler scheme

E(1Xi) =

E

(

ui1t +
√

2k(Xi + 1X̃i)1tRi

)

=

ui1t + E
(

(
√

2k(Xi) + k′(Xi)
√

1tRi)
√

1tRi
)

=
ui1t + k′(Xi)1t

(20)

and

V ar(1Xi) =

E

(

√

2k(Xi + 1X̃i)1tRi − k′(Xi)1t

)2

=

E
(

√

2k(Xi)1tRi + k′(Xi)1t(Ri)2 − k′(Xi)1t
)2

=
2k(Xi)1t + o(1t) ≈ 2k(Xi)1t.

(21)

As a result the solution obtained by the backwardÎto ran-
dom walk model is consistent with the advection-diffusion
Eq. (1). The main differences between theÎto, Stratonovich
and the backward̂Ito formulation are shown in Fig. 1.

4 Illustrations

In this section the random walk models (inÎto and backward
Îto senses) are applied to two test cases. In general, the an-
alytical solution of the direct problem (1) cannot be found;
however, the residence time of a tracer can be obtained (Del-
hez et al., 2004; Deleersnijder et al., 2006a,b). The residence
time of a water or tracer parcel in a control domain is usu-
ally defined as the time taken by this parcel to leave the do-
main of interest (Bolin and Rodhe, 1973; Zimmerman, 1976,
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 h
x velocity: w

sinking/settlingmixed layer
(water)

vertical mixing
eddy diffusivity: k(x)

into/from the pycnocline

air−water interface
atmosphere

Fig. 2. Sinking-diffusion model: illustration of its geometry, parameters and boundary conditions. Source Deleersnijder et al. (2006a).

1988; Braunschweig et al., 2003; Takeoka, 1984; Delhez and
Deleersnijder, 2006). As such, the residence time is one of
the most popular tool to describe and understand environ-
mental issues.

Mathematically, the mean residence timeθ(x) of the tracer
of initial massm(t0) released at timet0 can be computed by
monitoring the temporal evolution of the mass of the tracer in
the control region (Bolin and Rodhe (1973); Takeoka (1984))

θ(x) = −
1

m(t0)

∫ 0

m(t0)

t dm (22)

Delhez et al. (2004) introduced an alternative procedure de-
signed for numerical models. They showed that the residence
time can be found from the solution of the adjoint problem
to the advection-diffusion equation.

For both examples, we assume that the diffusivity is dis-
continuous at some location. Such diffusivity profile does
not exist in the nature; however, there are regions of large
space variations of the diffusivity. The discontinuous diffu-
sivity can be considered as a limit case for which it is gen-
erally easier to find the analytical solution. In addition, if
the Lagrangian method under consideration can successfully
handle a discontinuity in the diffusivity field, it is safe to as-
sume that this method will be able to deal with region of high
gradients of the eddy coefficient.

4.1 Illustration 1: Settling and diffusion problem

First, we apply the random walk model (9) to the settling and
diffusion model (Fig. 2) proposed and analyzed by Deleer-
snijder et al. (2006a,b). In this model we assume thatx is a
vertical coordinates that increases upwards. It is zero at the

interface between the mixed layer and the underlying pyc-
nocline. If h is the height of the mixed layer, the water-air
interface is located atx=h. w represents the settling veloc-
ity (we assume thatw is a constant) andk(x) is the vertical
eddy diffusivity, which is positive in the interval 0<x<h and
is zero in the pycnocline, i.e. underneath the domain of in-
terest. We suppose that the upper boundary of the domain is
impermeable
[

wC + k
∂C

∂x

]

x=h

= 0 (23)

It is only by settling that the particles of the tracer under study
can leave the domain of interest and enter the pycnocline, so
the turbulent diffusion flux must be prescribed to be zero at
the bottom of the mixed layer
[

k
∂C

∂x

]

x=0
= 0 (24)

The initial concentration is

C(0, x) = δ(x − x0) (25)

whereδ(x) denotes Dirac delta function.
Deleersnijder et al. (2006b) showed that the residence time

may exhibit a discontinuity at the interfaces between the
mixed layer (0<x<h) and pycnocline (x<0), for the eddy
diffusivity is zero in the latter and positive in the former.
Now we assume that the boundary of interest isx=ǫ, rather
thanx=0. ǫ is positive or negative according to whether the
boundary is located in the mixed layer or the pycnocline, re-
spectively. The corresponding residence time is hereinafter
denoted

θ(x0, ǫ) =
∞

∫

0

h
∫

ǫ

C(t, x)dxdt

www.ocean-sci.net/3/525/2007/ Ocean Sci., 3, 525–535, 2007
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Fig. 3. The profile of the residence timesθ(x, 0−) and θ(x, 0+) in the surface mixed layer for various values of the Peclet number.
Dimensionless variables are used and the eddy diffusivity is assumed to be constant in the mixed layer.1t=10−4, N=105.
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Fig. 4. The track of a particle released at locationx0=0.1 in case of(a) Îto and(b) backward̂Ito random walk models.

which may be recast as a function ofx. There is no closed
form solution forC(t, x), but the residence time may becal-
culated analytically (Deleersnijder et al., 2006a).

For the sake of simplicity, it is assumed that the eddy dif-
fusivity is a positive constantλ, in the mixed layer and zero
in the pycnocline. It is also desirable to introduce dimension-
less variables:

x′ =
x

h
, θ ′ =

θ

h/w
, P e =

wh

λ
(26)

From now on, only dimensionless variables will be used, so
that it is appropriate to drop the primes. Ifǫ>0, the lower
boundary is located at a level where the eddy diffusivity is
nonzero, whileǫ<0 corresponds to the case, when the lower
boundary is located below the pycnocline. Let us assume that
the lower boundary of the domain is pushed towards the bot-
tom of the mixed layerǫ>0, ǫ→0+, ǫ<0, ǫ→0−. Deleer-
snijder et al. (2006b) show that the corresponding residence
times are different. In particular, for the chosen value of the
diffusivity

θ(x, 0−) = x +
1 − e−Pe(1−x)

Pe
(27)

and

θ(x, 0+) = x −
e−Pe(1−x) − e−Pe

Pe
(28)

We apply thêIto and the backward̂Ito random walk mod-
els to simulate the transport of the tracer in the proposed
model. ThêIto random walk model formulation corresponds
to the case when the lower boundary of the domain is placed
above the pycnocline, while the backwardÎto random walk
model provides the solution of the case when the lower
boundary of the domain is placed under pycnocline.

The exact and the numerical solutions forN=104 particles
are shown in Fig. 3.

From Fig. 3 we can conclude that the residence times ob-
tained by applying thêIto and backward̂Ito random walk
schemes are different. One can wonder which scheme pro-
vides the right solution. In reality, the both methods are cor-
rect, however they give answers for two different problems.

In Sect. 3 it was shown that for a smooth diffusivity func-
tion both random walk schemes are identical. In theÎto case,
an additional drift due to the spatial variation of the diffusiv-
ity is present. Because of this additional drift particles can-
not stay in regions with low diffusivity. In the backwardÎto
formulation the additional drift term has disappeared and is
included in the random term by applying the two-steps back-
ward Euler scheme.

The disadvantage of thêIto formulation is that it cannot
handle the case of discontinuous diffusivity. By applying an
Îto model in this case the diffusivity drift is zero everywhere
except exactly at the boundary where it is infinite. By ap-
plying a numerical scheme, particles will never reach exactly
the pycnocline and as a result the diffusivity drift becomes
essentially zero. Therefore a particle that comes close to the
boundary will never go back into the domain (see Fig. 4a)
and the residence time computed is in fact the residence time
O(x, 0+).

By applying the backward̂Ito model the diffusivity drift
is included in the random term of the model. Now a particle
does get back into the domain even if it is very close to the
boundary (see Fig. 4b). So the presence of the pycnocline is
taken into account, leading to the residence timeO(x, 0−).
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4.2 Illustration 2: The direct and adjoint problems for the
residence time

In the previous section we considered a model, in which the
diffusivity exhibits a discontinuity at the boundary of thedo-
main. However, in practice the diffusivity can change rapidly
inside the domain of interest. An example of such a problem
is needed. In this respect, inspiration may be found in Delhez
and Deleersnijder (2006).

Let t andx denote time and a space coordinate, respec-
tively. In the domain−L≤x≤L, the concentration of the
tracerC(t, x) obeys the following partial differential prob-
lem

∂C

∂t
= −

∂

∂x

(

uC − k
∂C

∂x

)

,

C(0, x, x0) = δ(x − x0), −L < x0 < L,

C(t, ±L, x0) = 0

(29)

where the positive constantu is the fluid velocity, while
k(x)>0 denotes the eddy diffusivity. The residence time
in the domain of interest of the tracer whose concentration
obeys the partial differential problem (29) is (Delhez et al.,
2004)

θ(x0) =
∞

∫

0

L
∫

−L

C(t, x)dxdt (30)

In principle this value may be evaluated for any admissi-
ble value ofx0. The ensuing function may then be recast as
a function ofx, i.e. θ(x). However, obtaining the analyti-
cal solution of the direct problem (29) is usually considered
as difficult. Fortunately, it is much easier to obtain the res-
idence time by solving the adjoint problem (Delhez et al.,
2004; Delhez and Deleersnijder, 2006):

d

dx

(

k
dθ

dx
+ uθ

)

= −1,

θ(±L) = 0
(31)

For the purposes of the present study, the eddy diffusivity
must exhibit a discontinuity inside the domain of the interest.
The simplest expression that satisfies this constraint probably
is the following piecewise constant function

k(x) =
{

k+, 0 < x ≤ L

k−, −L ≤ x < 0
(32)

wherek+ andk− are positive constants. Therefore, atx = 0,
the residence time must satisfy two matching conditions:

[θ(x)]x=0+
x=0− = 0 (33)

[

k
∂θ

∂x
+ uθ

]x=0+

x=0−
= 0 (34)
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Fig. 5. The profile of the residence time in case of zero advec-
tion. Dimensionless variables were used. The value of parameter:
µ=0.1.
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Fig. 6. The profile of the residence time in case of zero advection.
Dimensionles s variables were used. Numerical solution forN=104

particles with time step1t=10−4.

In the developments below, the residence time atx = 0 will
be denotedθ0. In other words, the latter satisfies the equali-
ties

θ(0−) = θ0 = θ(0+) (35)

4.2.1 The zero advection case

If the advection is zero (u=0), then it is appropriate to intro-
duce the dimensionless parameterµ = k+/k− and variables

t ′ =
t

L/(k−)2
, (x′, x′

0) =
(x, x0)

L
, k′ =

k

k− ,

C′ =
C

1/L
, (θ ′, θ ′

0) =
(x, x0)

L/(k−)2

(36)
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For the sake of simplicity the primes can be dropped. Hence,
the dimensionless diffusivity is

k(x) =
{

µ, 0 < x ≤ 1
1, −1 ≤ x < 0

(37)

After some calculations, the residence time is obtained:

θ(x) =















−
x2

2µ
−

2µθ0 − 1

2µ
x + θ0, 0 < x ≤ 1

−
x2

2
+

2θ0 − 1

2
x + θ0, −1 ≤ x < 0

(38)

with

θ0 =
1

1 + µ
(39)

The analytical and numerical solutions obtained byÎto,
Stratonovich and backward̂Ito random walk methods are
shown on Figs. 5, 6 respectively. Clearly, the backward
Îto solution is much better than the Stratonovich solution,
which, in turn, is better than that obtained by the classicalÎto
method.

4.2.2 The advection-diffusion case

If advection is present (u>0), then it is appropriate to intro-
duce the following dimensionless parameters and variables:

t ′ =
t

L/u
, (x′, x′

0) =
(x, x0)

L
, P e±′ =

uL

k± ,

C′ =
C

1/L
, (θ ′, θ ′

0) =
(x, x0)

L/u

(40)

As in the previous example the primes can be dropped. It is
also useful to define a piecewise constant Peclet number:

Pe(x) =
{

Pe+, 0 < x0 ≤ 1
Pe−, −1 ≤ x0 < 0

(41)

After some calculations, the residence time is obtained:

θ(x) =
{

a+ − x + b+e−Pe+x, 0 < x ≤ 1
a− − x + b−e−Pe−x, −1 ≤ x < 0

(42)

with

a± =
e∓Pe±

θ0 ∓ 1

e∓Pe± − 1
, a± =

±1 − θ0

e∓Pe± − 1
(43)

and

θ0 =
Pe+ − Pe−

Pe+Pe−
(e−Pe+ − 1)(e−Pe− − 1)

e−Pe+ − e−Pe− −

e−Pe+ + e−Pe−−1

e−Pe+ − e−Pe−

(44)
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Fig. 7. The profile of the residence time in case of non zero advec-
tion. The value of parameter:Pe+=0.5, Pe−=10. Dimensionless
variables were used.
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Fig. 8. The profile of the residence time in case of non zero advec-
tion. Numerical solution forN=104 particles,Pe+=0.5,Pe−=10.
Dimensionless variables were used.

Figure 7 shows the analytical solution and the numeri-
cal solutions obtained from̂Ito, Stratonovich and backward
Îto formulations are shown on Fig. 8. One can see easily
that only the solution obtained by the backwardÎto random
walk model is very close to the analytical solution, while the
Stratonovich and̂Ito solutions significantly differ from the
exact residence time.

5 Conclusions

In this paper we considered the random walk model that
can be applied to model the transport process in the regions
with large space variations of the diffusivity, or as the limit
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case with discontinuous diffusivity. This model proposed by
LaBolle et al. (2000) is based on the backwardÎto stochas-
tic integral. It is consistent with the advection-diffusion
equation and does not contain the diffusivity gradient in the
advection part. Two test cases were analyzed: a sinking-
diffusion model, in which the diffusivity exhibits a discon-
tinuity at one boundary of the domain and an advection-
diffusion problem with a discontinuity in the diffusivity in-
side the domain of interest. For both test cases the analytical
solution of the indirect problem, e.g. finding the residence
time, is known. The backward̂Ito random walk model was
applied and the results show that this model provides the cor-
rect results for discontinuous diffusivities, while other, better
known, random walk models perform rather poorly.

Acknowledgements. Eric Deleersnijder is a Research Associate
with the Belgian National Fund for Scientific Research (FNRS).
His contribution to the present study was made in the framework of
the Interuniversity Attraction Pole TIMOTHY (IAP. 13) which is
funded by the Belgian Federal Science Policy Office (BELSPO).

Edited by: N. C. Wells

References

Bjøork, T.: Arbitrage Theory in Continuous Time, Oxford Univer-
sity Press, 1998.

Bolin, B. and Rodhe, H.: A note on concepts of age distribution and
transit time in natural reservoirs, Tellus, 25, 58–62, 1973.

Braunschweig, F., Martins, F., Chambel, P., and Neves, R.: A
methodology to estimate renewal time scales in estuaries: the
Tagus Estuary case, Ocean Dynam., 53, 137–145,2003.

Celia, M. A., Russell, T. F., Herrera, I., and Ewing, R. E.: An
Eulerian-Lagrangian localized adjoint method for an advection-
diffusion equation, Adv. Water Resour., 13(4), 187–206, 1990.

Costa, M. and Ferreira, J. S.: Discrete particle distribution model
for advection-diffusion transport, J. Hydraul. Eng., 126(7), 525–
532, 2000.

Deleersnijder E., Beckers J. M., and Delhez E. J. M.: The residence
time of settling in the surface mixed layer, Environ. Fluid Mech.,
6(1), 25–42, 2006a.

Deleersnijder E., Beckers J. M., and Delhez E. J. M.: On the be-
havior of the residence time at the bottom of the mixed layer,
Environ. Fluid Mech., 6, 541–547, 2006b.

Delhez, E. J. M., Heemink, A. W., and Deleersnijder, E.: Resi-
dence time in a semi-enclosed domain from the solution of an
adjoint problem, Estuarine, Coastal and Shelf Science, 61, 691–
702, 2004.

Delhez, E. J. M. and Deleersnijder, E.: The boundary layer of the
residence time field, Ocean Dynam., 56, 139–150, 2006.

Dimou, K. N. and Adams, E. E.: A random-walk, particles tracking
models for well-mixed estuaries and coastal waters, Estuarine,
Coastal and Shelf Science, 37, 99–110, 1993.

Heemink, A. W.: Stochastic modeling of dispersion in shallow wa-
ter, Stochastic Hydrol. Hydraul., 4, 161–174, 1990.

Hunter, J. R.: The application of Lagrangian particle-tracking tech-
nique to modelling of dispersion in the sea, in: Numerical Mod-

elling: Applications to Marine Systems, edited by: Noye, J.,
257–269, 1987.

Hunter, J. R., Craig P. D., and Phillips H. E.: On the use of random
walk models with spatially variable diffusivity, J. Comput. Phys.,
106, 366–376, 1993.

Karatzas, I. and Shreve, S. E.: Brownian motion and stochastic cal-
culus, Springer, New York, 1998.

Kloeden, P. E. and Platen, E.: Numerical Solution of Stochastic
Differential Equations, Springer, New York, 1999.

LaBolle, E. M., Fogg, G. E., and Tompson, A. F. B.: Random-walk
simulation of transport in heterogeneous porous media: Local
mass-conservation problem and implementation methods, Water
Resour. Res., 32(3), 583–593, 1996.

Konikow, L. F. and Bredehoeft, J. D.: Computer model of two-
dimensional solute transport and dispersion in ground water, U.S.
Geological survey water-resources investigations book 7, Chap-
ter C2, 1978.

LaBolle, E. M., Quastel, J., Fogg, G. E., and Granver, J.: Diffu-
sion processes in composite porous media and their numerical
integration by random walks: Generalized stochastic differential
equations with discontinuous coefficients, Water Resour. Res.,
36(3), 651–662, 2000.

Oksendal, B.: Stochastic differential equations, Springer, New-
York, 1985.

Proehl, J. A., Lynch, D. E., McGillicuddy Jr., D. J., and Led-
well, J. R.: Modelling turbulent dispersion of the North Flank
of Georges Bank using Lagrangian Methods, Cont. Shelf Res.,
25, 875–900, 2005.

Ross, O. N. and Sharples, J.: Recipe for 1-D Lagrangian particle
tracking models in space-varying diffusivity, Limnol. Oceanogr.:
Methods 2, 289–302, 2004.

Sawford, B. L: Recent developments in the Lagrangian stochastic
theory of turbulent dispersion, Bound.-Lay. Meteorol., 62, 197–
215, 1993.

Spivakovskaya, D., Heemink, A. W., Milstein, G. N., and Schoen-
makers, J. G. M.: Simulation of the transport of particles in
coastal waters using forward and reverse time diffusion, Adv.
Water Resour., 28, 927–938, 2005.

Spivakovskaya, D., Deleersnijder, E., and Heemink, A. W.: La-
grangian modelling of multi-dimensional advection-diffusion
with space-varying diffusivities: theory and idealized test cases,
Ocean Dynam., 57, 189–203, 2007.

Stijnen, J. W., Heemink A. W., and Lin, H. X.: An efficient 3D par-
ticle model for use in stratified flow, Int. J. Numer. Meth. Fluids
51, 331–350, 2006.

Takeoka, H.: Fundamental concepts of exchange and transport time
scales in a coastal sea, Cont. Shelf Res., 3, 311–326, 1984.

Thomson, D. J.: Criteria for the selection of stochastic models of
particles trajectories in turbulent flow, J. Fluid Mech., 180, 529–
556, 1987.

Thomson, D. J., Physick, W. L., and Maryon, R. H.: Treatment of
Interfaces in Random Walk Dispersion Models, J. Appl. Meteo-
rol., 36, 1284–1295, 1997.

Visser, A. W.: Using random walk models to simulate the vertical
distribution of particles in a turbulent water column, Mar. Ecol.
Prog. Ser., 158, 275–281, 1997.

Yeh, G. T.: A Lagrangian-Eulerian method with zoomable hidden
fine-mesh approach to solving advection-dispersion equations,
Water Resour. Res., 26(6), 1133–1144, 1990.

Ocean Sci., 3, 525–535, 2007 www.ocean-sci.net/3/525/2007/
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