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Abstract. An advanced multivariate sequential data assim-
ilation system has been implemented within the framework
of the European MFSTEP project to fit a three-dimensional
biogeochemical model of the Eastern Mediterranean to satel-
lite chlorophyll data from the Sea-viewing Wide Field-of-
view Sensor (SeaWiFS). The physics are described by the
Princeton Ocean Model (POM) while the biochemistry of the
ecosystem is tackled with the Biogeochemical Flux Model
(BFM). The assimilation scheme is based on the Singular
Evolutive Extended Kalman (SEEK) filter, in which the er-
ror statistics were parameterized by means of a suitable set
of Empirical Orthogonal Functions (EOFs). To avoid spuri-
ous long-range correlations associated with the limited num-
ber of EOFs, the filter covariance matrix was given com-
pact support through a radius of influence around every data
point location. Hindcast experiments were performed for one
year over 1999 and forced with ECMWF 6 h atmospheric
fields. The solution of the assimilation system was evalu-
ated against the assimilated data and the MedAtlas clima-
tology, and by assessing the impact of the assimilation on
non-observed biogeochemical processes. It is found that the
assimilation of SeaWiFS data improves the overall behavior
of the BFM model and efficiently removes long term biases
from the model despite some difficulties during the spring
bloom period. Results, however, suggest the need of subsur-
face data to enhance the estimation of the ecosystem vari-
ables in the deep layers.

1 Introduction

The Mediterranean Sea is characterized by prominent mor-
phological discontinuities defining sub-basins with different
hydrodynamic and ecological conditions. The high evapo-
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ration, low rainfall and river runoff, in conjunction with the
outflow of the bottom layer at Gibraltar, result in an olig-
otrophic gradient toward the east. The observed oligotro-
phy is thought to be due to low phosphorus concentrations
(decreasing from west to east) limiting phytoplankton and
bacterial growth (Krom et al., 1992). The state of the art in
modelling the circulation of the Mediterranean Sea is an op-
erational system based on physical components (Pinardi et
al., 2003). While these systems exist for ocean physics, the
scientific knowledge and technological capacity to construct
such a system for the ecosystem is currently lacking. The
three dimensional modelling of marine ecosystems is lagging
behind the modelling of marine physics, as it requires robust
hydrodynamic models and adequate computing resources.
Furthermore, ecosystem models need to be adjusted with bi-
ological, physical and chemical data at relevant space-time
scales to achieve accurate simulation of the variability of the
area under study. The framework of data assimilation pro-
vides the appropriate tools for improving models’ agreement
with data and for enhancing their predictive capabilities. An
assimilation system is composed of two basic components,
an observing system and a numerical model complemented
with a data assimilation scheme that can efficiently extract
the reliable information from the observations to optimally
initialize the forecast. Although assimilation systems for me-
teorological and oceanic models are well established, the use
of data assimilation techniques with marine ecosystem mod-
els is far less developed.

One of the few information sources on the state of coastal
and pelagic ecosystems comes from “ocean colour” satellite
remote sensing (Platt et al., 1995). Since the launch of the
Coastal Zone Colour Scanner on the Nimbus 7 satellite in
1978, satellite borne ocean colour sensors have become the
standard tool for determining distributions of phytoplankton
and other biogeochemical parameters in the ocean (IOCCG,
1999). Satellite data benefits from a high temporal reso-
lution with repeated coverage of the same area of the sea
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surface on a daily basis. The quality of the data is, how-
ever, limited by the ability of remote sensing of ocean colour,
through the analysis of ocean leaving radiance, to yield in-
formation on water-quality parameters such as phytoplank-
ton pigments (more precisely chlorophyll-a and phaeophytin-
a), suspended sediment, and yellow substance (gelbstoff) in
the euphotic layer (Tassan, 1994). Chlorophyll-a is a key
parameter in the model as it is calculated from each phy-
toplankton group separately and describes the total primary
biomass. Additionally with the use of remote sensing tech-
niques, adequate data of Chlorophyll-a will become more
and more available offering significant opportunities for data
assimilation systems. Therefore the appropriate use of satel-
lite data may guide the modelling and forecasting processes
closer to realistic conditions. However, the key to the use of
these data in ecosystem modelling/forecasting research re-
lies on the availability of two premises: a well calibrated
algorithm to retrieve accurate chlorophyll-a estimates from
the original spectral data, and an assimilation technique ca-
pable of efficiently assimilating these surface data into the
ecosystem model. In the domain of marine ecology, early
studies used four-dimensional variational data assimilation
techniques for estimating poorly known parameters in the
model. Such techniques basically seek for the unknown pa-
rameters that minimize the misfit between model simula-
tions and data, e.g. the adjoint method (Fennel et al., 2001;
Friedrichs, 2001; Gunson et al., 1999; Lawson et al., 1996;
Spiitz et al., 1998; Vallino, 2000), direct minimization meth-
ods (Fasham and Evans, 1995; Prunet et al., 1996), and
Monte Carlo methods (Harmon and Challenor, 1996; Matear,
1995). Recently, focus shifted toward the use of Kalman fil-
ter based sequential assimilation techniques to directly com-
pute estimates of the system state, as these methods allow
for efficient handling of the model uncertainties while inter-
mittently adjusting the model trajectory each time new ob-
servations are available (Ghil and Malanotte-Rizzoli, 1991).
Taking into account (even partially) the model error is a key
step for building a successful ecosystem assimilation system
because of significant uncertainties in the current ecologi-
cal models. For instance, Anderson et al. (2000) used op-
timal interpolation to assimilate both physical and biological
data into a mesoscale-resolution 3-D ocean model. Allen et
al. (2002) and Natvik and Evensen (2002) demonstrated the
effectiveness of the well-known ensemble Kalman filter for
data assimilation with a 1-D, three-component model. The
Singular Evolutive Extended Kalman (SEEK) filter, which
is a suboptimal extended Kalman (EK) filter developed by
Pham et al. (1997), was particularly popular and successfully
implemented in several marine ecosystem data assimilation
studies. The SEEK filter operates with low-rank matrices
to avoid the prohibitive computational cost of the EK filter
while only adjusting the model forecast in the directions of
error growth. It further supports different degrees of sim-
plifications in the evolution of its “correction directions” at
a minimal loss of performance (Hoteit et al., 2002, 2004).

Carmillet et al. (2001) used the SEEK filter with an invari-
ant set of Empirical Orthogonal Functions (EOFs) correc-
tion directions to assimilate pseudo-ocean colour data into
a 3-D physical–biogeochemical model of the North Atlantic
Ocean. Hoteit et al. (2003a) used the same filter with a 1-
D complex ecosystem model of the Cretan Sea assimilating
real observations of oxygen and nitrate and validating the fil-
ter with behavior independent chlorophyll data. Triantafyl-
lou et al. (2003) implemented the ensemble variant of the
SEEK filter in a three dimensional ecosystem model of the
Cretan Sea. In the same area, (Hoteit et al., 2005) success-
fully tested the SEEK filter with semi-evolutive correction
directions composed of global and local EOFs. The reader is
referred to Triantafyllou et al. (2005) for a review on the im-
plementation of the SEEK filter and its variants in different
shelf and regional areas of the Mediterranean Sea.

One of the major goals of the Mediterranean ocean Fore-
casting System (MFS) project during its second phase (2003–
2006), named Toward Environmental Predictions (MF-
STEP), was the development of numerical forecasting sys-
tems at basin and regional scale. Within the framework of
this project, one of the tasks was to implement the SEEK
filter to assimilate Sea viewing Wide Field of view Sensor
(SeaWiFS) data into a coupled physical (Princeton Ocean
Model) – biological (Biogeochemical Flux Model) model of
the Eastern Mediterranean, developed during the first phase
of the MFSTEP project. This study presents the first attempt
to use an advanced Kalman filtering technique for the assim-
ilation of ocean colour data into a complex state-of-the-art
three-dimensional marine ecosystem model. The controlla-
bility of the ecosystem variability using satellite measure-
ments is a major question in marine ecology and will be ad-
dressed here. After presenting the physical and ecological
components of the Eastern Mediterranean ecosystem model
in Sect. 2, a general overview of the SeaWiFS data is pro-
vided in Sect. 3. The assimilation scheme is described in
Sect. 4. Assimilation results of SeaWiFS data into the cou-
pled model are reported and the behavior of the assimilation
system is discussed in Sect. 5. A general conclusion, includ-
ing a discussion on the progress made thus far and the prob-
lems that still need to be addressed, is offered in Sect. 6.

2 The Eastern Mediterranean ecosystem model

The Eastern Mediterranean ecosystem model consists of two,
on-line coupled sub-models: the Princeton Ocean Model
(POM), which describes the hydrodynamics of the area, and
provides the physical forcing to the second sub-model, the
Biogeochemical Flux Model (BFM).

2.1 The physical model

The hydrodynamic model is based on the Princeton Ocean
Model (POM), a primitive equation, 3-D circulation model.
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POM has been extensively described in the literature (Blum-
berg and Mellor, 1987; Horton et al., 1997; Lascaratos and
Nittis, 1998) and is accompanied by a comprehensive User’s
guide (Mellor, 1998). It has been previously used in the
Mediterranean area by Drakopoulos and Lascaratos (1997)
and Zavatarelli and Mellor (1995) and in the eastern Levan-
tine basin by Lascaratos and Nittis (1998) and Korres and
Lascaratos (2003). The model has a bottom – following ver-
tical sigma coordinate system, a free surface and a split mode
time step. Potential temperature, salinity, velocity and sur-
face elevation, are prognostic variables. Horizontal diffusion
terms are evaluated using the Smagorinsky (1963) diffusion
formulation while the vertical mixing coefficients are com-
puted according to the Mellor-Yamada 2.5 turbulence clo-
sure scheme (Mellor and Yamada, 1982). The model has one
open boundary located at 20◦ E as shown in Fig. 1 where
open boundary conditions apply. The computational grid has
a horizontal resolution of 1/10◦×1/10◦ and 25 sigma levels
in the vertical with a logarithmic distribution near the sea
surface, which results in a better representation of the sur-
face mixed layer. As for the min/max depths of the first
sigma level these range from 0.08 to 11.88 m. Within the
first 30 m of the water column there are at minimum 1 sigma
levels (at grid points with depths greater than 3250 m) and at
maximum 24 levels (at grid points with depths of 25–29 m).
Considering the size (10–14 km) of the internal Rossby ra-
dius of deformation for the Eastern Mediterranean basin,
such a model resolution (∼10 km) can marginally resolve the
mesoscale eddy activity. The U.S. Navy Digital Bathymet-
ric Data Base 5 (1/12◦×1/12◦) was used for building up the
model’s bathymetry using bilinear interpolation to map the
data onto the model’s grid. The model is very similar to the
ALERMO model used in Korres and Lascaratos (2003) with
the only exception being the horizontal resolution (coarser)
as the computational burden in this particular study was very
high due to coupling with the BFM, the incorporation of data
assimilation and the execution of several sensitivity tests.
The model includes parameterization of the Dardanelles out-
flow into the Aegean Sea, the runoff of the major rivers of the
Thermaikos Gulf (Aliakmonas, Axios and Loudias) and the
runoff of Nestos and Evros rivers to north-central and north-
eastern Greece. The Dardanelles outflow into the Aegean Sea
is a dominant factor for the freshwater budget of the basin,
providing approximately 300 km3 of brackish water on an
annual basis. The main Greek rivers (Axios, Aliakmonas,
Gallikos, Pinios, Sperchios, Evros, Strimonas and Nestos)
on the other hand, with a total runoff of∼19 km3/yr, have a
much lower contribution. Even lower is the contribution of
the Turkish rivers with a total runoff of∼5 km3/yr.

2.2 Biogeochemical Flux Model (BFM)

BFM is a generic highly complex model based on the Eu-
ropean Regional Seas Ecosystem Model (ERSEM) (Baretta
et al., 1995; Vichi et al., 2004). A detailed description of

Fig. 1. Bathymetric map of the Eastern Mediterranean model do-
main.

the BFM is provided by Vichi et al. (2007a, b), and its im-
plementation in the Eastern Mediterranean can be found in a
companion paper (Petihakis et al., 2007). Hereafter a brief
description is given. As in ERSEM the model uses a func-
tional group approach separating the organisms according to
their trophic level (producers, consumers and decomposers)
and further subdivided on the basis of their trophic links
and/or size. Although within each trophic level the groups
have the same processes, differentiation is achieved through
the different parameter values. All the important physiologi-
cal (ingestion, respiration, excretion and egestion), and pop-
ulation (growth, migration and mortality) processes are in-
cluded, and are described by fluxes of carbon and nutrients.
Carbon is the basic unit cycled in the system, followed by
macronutrients, chlorophyll and oxygen, with variable car-
bon/nutrients and carbon/chl-a ratios. Following the model’s
food web, diatoms are preyed on by microzooplankton and
omnivorous mesozooplankton, nano-phytoplankton to an ex-
tent by heterotrophic nanoflagellates but mostly by micro-
zooplankton, pico-phytoplankton mostly by heterotrophic
nanofalgellates and to a lesser extent by microzooplankton
and finally flagellates by microzooplankton and omnivorous
mesozooplankton. Bacteria consume Dissolved Organic Car-
bon (DOC) both labile and semi-labile, act as decomposers
on Particulate Organic Carbon (POC) and compete with phy-
toplankton for inorganic nutrients. Their main predators are
the heterotrophic nanoflagellates. Heterotrophic nanoflagel-
lates are preyed on by microzooplankton which in turn is
eaten by omnivorous mesozooplankton. Omnivorous meso-
zooplankton is preyed on by carnivorous mesozooplankton
which is the top predator of the food chain. For all consumers
there is feeding within the same functional group (cannibal-
ism), which acts as a stabilizing mechanism.
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Fig. 2. The free surface elevation distribution for the 1 January
1999.

2.3 Climatological run

The physical model climatological run was initialized
with the Mediterranean Ocean Data-Base (MODB-MED4)
(Brasseur et al., 1996) which contains seasonal profiles of
temperature and salinity mapped on a 1/4◦×1/4◦ horizon-
tal grid. These data were mapped onto the model’s hor-
izontal grid using bilinear interpolation. Temperature and
salinity profiles at the eastern boundary were also derived
from the same database. The biogeochemical model initial
conditions for the nutrients were taken from Levitus (1982)
while the other biogeochemical state variables were initial-
ized using the same method as the one described in Petihakis
et al. (2002).

The ecosystem model initialized from spring conditions
was run for four years forced with a perpetual year atmo-
spheric data set in order to reach a quasi steady state and
to obtain inner fields fully coherent with the boundary con-
ditions. More specifically the momentum budget at the sea
surface was specified according to the ECMWF wind stress
monthly climatology (Korres and Lascaratos, 2003). The
heat flux and water flux boundary conditions at the surface
were set as follows:

ρo cp KH

∂ T

∂ z

∣

∣

∣

∣

z=0
=QT − QSOL + c1

(

T ∗
− T1

)

(1)

wσ=0 = E−P−R +c2
S∗ −S1

S1
(2)

whereQT is the monthly average total heat flux field,E is
the evaporation rate taken from the Kondo-Bignami monthly
climatology (Kondo, 1975), precipitation rateP is taken
from Jaeger’s monthly climatology (Jaeger, 1976) andT ∗, S∗

fields are taken from MODB-MED4 SST and SSS seasonal

climatology. Solar radiation fluxQSOL is calculated with
the Reed formula (Reed, 1977) using the ECMWF monthly
cloud cover data.

The ecosystem pelagic state variables along the open
boundary are described by solving water column 1-D ecosys-
tem models at each grid point on the open boundary. For the
physical model, open boundary conditions were set as fol-
lows: Zero gradient condition for the free surface elevation.
Flather boundary condition (Flather, 1976) for the barotropic
velocity normal to the open boundary. Sommerfeld radiation
for the internal (baroclinic) velocities (Sommerfeld, 1949).
Temperature and salinity at the open boundary are advected
upstream. When there is inflow through the open bound-
ary, temperature and salinity profiles are prescribed from the
MODB-MED4 seasonal climatology.

2.4 Hindcast experiment

In this experiment the model was integrated for year 1999
(January–December 1999) initialized from the climatologi-
cal run. At the same time the model was asynchronously
(off-line) coupled with the coarse resolution (0.5◦×0.5◦)
ECMWF 6 h atmospheric data (wind velocity, air tempera-
ture, relative humidity and cloud cover) for the same period
of time covering the whole Mediterranean basin. This set of
atmospheric data was used by the air-sea interaction scheme
of the physical model for the estimation of heat, freshwater
and momentum fluxes at the sea surface. In order to adjust
the basin climatological dynamics to the interannual forcing,
the model was integrated for two years using the same atmo-
spheric data set. The free surface elevation distribution for
the 1st Jan 1999 (during the second year of model integra-
tion) is shown in Fig. 2. The physical model setup is able
(despite its rather coarse resolution) to represent several key
features of the Eastern Mediterranean general circulation. As
shown in Fig. 2, the model produces an intense and elon-
gated Rhodes gyre with a strong two-lobe Mersha Matruh
anticyclone to the south. At the eastern end of the basin a
stretched Shikmona anticyclone is reproduced by the model
while to the southwest of Peloponissos the signature of the
Pelops gyre is evident.

3 Ocean color data

Daily data from the SeaWiFS sensor onboard the SeaStar
satellite at local area coverage spatial resolution (∼1.1 km
by 1.1 km pixels) for one year (1999) were used for this
study. This represented more than 20 GB of data which were
acquired from NASA Goddard through the NASA Ocean
Colour Web and ftp service (Feldman and McClain, 2004).
The data were processed by the NASA SeaDAS software
v4.0 (Baith et al., 2001) from the original spectral data using
default values from the SeaWiFS level 2 product processing
chain which includes atmospheric correction, georeferencing
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and chlorophyll-a retrieval OC4v4 (O’Reilly et al., 2000; Patt
et al., 2003). The OC4v4 algorithm, which was designed for
biological studies of the global oceanic environment, uses
the following fourth order polynomial equation to calculate
chlorophyll-a estimates

log10 (chl-a)=

0.366− 3.067R4S + 1.930R2
4S + 0.649R3

4S − 1.532R4
4S (3)

where R is reflectance,R4S is the maximum value of
R443/R555, R490/R555 or R510/R555 and 443, 490, 510 and
555 represent the wavelengths of the four SeaWiFS bands
used. This empirical method of retrieving chlorophyll-a pro-
vided reasonably accurate estimates for most case-I waters
(Bricaud et al., 2002), except for concentrations under cer-
tain oligotrophic conditions, and was found inaccurate for
case-II waters of the Eastern Mediterranean (Bricaud et al.,
2002; Sancak et al., 2005). This means that the data used
in this study may occasionally be spoiled by important ob-
servational errors. At the time of processing and data assim-
ilation, these SeaWiFS data were, however, the best avail-
able satellite derived chlorophyll-a concentration estimates
for the area of interest. In principle, observational errors can
be accounted for in the assimilation system if accurate infor-
mation about the statistics of the observational errors were
available (see Sect.4). In this feasibility study, errors statis-
tics were estimated from the data sets, while simply identify-
ing large observational errors over areas of strong ecosys-
tem variability. More accurate estimates of these errors
will be however beneficial for any future operational anal-
ysis/forecasting system. The daily chlorophyll-a estimates
were remapped to a flat grid using a cylindrical equidistant
projection, again using the NASA SeaDAS software. Fi-
nally, 8-day averages were produced that took into account a
land mask and data masked by clouds, and provided gridded
chlorophyll estimates suitable for assimilation into the cou-
pled hydrodynamic-ecosystem models. These pre-processed
data were used every 8 days to correct the state of BFM us-
ing a sequential data assimilation procedure that we briefly
describe in the following section.

4 The assimilation scheme

The assimilation scheme is sequential and is based on the
Singular Evolutive Extended Kalman (SEEK) filter devel-
oped by Pham et al. (1997). The SEEK filter is a simpli-
fied Extended Kalman (EK) filter suitable for applications
with high dimensional systems (the system dimension is de-
noted byN ), as in meteorology and oceanography. The filter
avoids the prohibitive computational burden associated to the
significant size of the EK filterN×N -error covariance matri-
ces (denoted byP ) by operating with low-rank error covari-
ance matrices. More precisely, the SEEK filter uses the stan-
dard decompositionP=LULT of a low-rank matrix, where
L and U are respectivelyN×r and r×r matrices, so that

numerical calculations involvingP can be likewise achieved
by means ofL andU . This allows drastic computational sav-
ings in time and storage without requiring major changes in
the EK filter’s algorithm. Starting from an initial low-rankr
error covariance matrix obtained via an Empirical Orthogo-
nal Functions (EOF) analysis (see below), Pham et al. (1997)
showed that when the model dynamics are perfect (no model
error), the EK filter error covariance matrices always remain
of the same rankr. The EK filter analysis step is then only
applied along the directions ofL; hence its columns are re-
ferred to as the correction directions of the filter. When the
model is imperfect, the model error can be projected onto the
subspace spanned by the correction direction to avoid con-
tinuous increase in the rank of the error covariance matrices.
In its most general form, the SEEK filter evolves its correc-
tion directions in time with the tangent linear model to follow
changes in the model dynamics. In this study, however, these
directions were kept invariant for reasons explained below.
The filter’s algorithm is summarized below. A more detailed
description can be found in Pham et al. (1997).

4.1 The filter algorithm

After every observation cycle (8 days in the present study),
a vector of observationsY o

k , represented as a function of the
system stateXt

k and a measurement of uncertaintyεk

Y o
k = Hk(X

t
k) + εk, (4)

is available at a given timetk. Assuming that a model fore-
cast Xf

k is available at timetk together with the associ-

ated (low-rank) error covariance matrixP f

k decomposed as
LkUk−1L

T
k , the SEEK filter serially entrains these observa-

tions with the forecast of the modelX
f

k to produce the anal-
ysis stateXa

k with the formula

Xa
k = X

f

k + Gk[Y
o
k − Hk(X

f

k )]. (5)

The gain matrixG, which linearly interpolates between the
observations and the forecast, is given by

Gk = P
f

k HT
k [HkP

f

k HT
k + Rk]

−1
= LkUk(HkLk)

T R−1
k , (6)

whereHk denotes the linearization of the observation oper-
atorHk aboutXf

k , and the matrixUk is recursively updated
according to

U−1
k = [Uk−1 + P T

Lk
QkPLk

]
−1

+ (HkLk)
T R−1

k HkLk (7)

with Qk being the covariance matrix of model uncertainties
andPLk

=(LT
k Lk)

−1Lk the projection operator onto the sub-
space spanned by the columns ofLk. Once the analysis is
made, a new forecast of the state is obtained by advancing
the previous analyzed stateXa

k with the model

X
f

k+1 = Mk,k+1(X
a
k ), (8)
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Fig. 3. Chlorophyll-a RMS error for the analysis and the forecast
for three different choices of the radius of influence (EXP1: 70 km,
EXP2: 150 km, and EXP3: 250 km) along with the free run.

whereM is the transition operator representing the model
dynamics. The covariance matrix of the forecast error is then

P
f

k+1 = Lk+1UkLk+1 + Qk, (9)

where the new correction directionsLk+1 evolve in time with
the tangent linear modelMk,k+1 (evaluated about the ana-
lyzed stateXa

k ) according to

Lk+1 = Mk,k+1Lk. (10)

The evolution of the correction directions is generally bene-
ficial to keep track of changes in the model dynamics (Hoteit
et al., 2002; Hoteit and Pham, 2003b). The numerical in-
tegration of Eq. (9) requires, however,r+1 times forecast
model runs, which can be rather significant with a heavily
loaded coupled physical-biogeochemical model such as the
one used in this study. Following Brasseur et al. (1999)
who found that a reliable set of invariant EOFs describing
the dominant modes of the system may provide a good cor-
rection subspace for quasi-linear dynamical models, the cor-
rection directions of the SEEK filter were kept invariant in
the present study. Theoretically, this can be supported by
assuming that the ecosystem state generally undergoes lit-
tle change between two consecutive observations, which al-
lows approximatingMk,k+1 by the identity matrix. In prac-
tice, several studies (e.g. Carmillet et al., 2001; Hoteit et al.,
2003) suggested that performance losses associated with this
approximation were not significant given the achieved dras-
tic reduction in the computational burden of the SEEK filter
as only one model integration is required in this case for the
computation of the forecast state.

4.2 Localization of the filter analysis

The low-rank approximation generally results in very few de-
grees of freedom for the filter analysis to fit available ob-
servations. Another difficulty in the assimilation system is
that the initial EOFs correction directions are not updated
with model dynamics. These functions, especially those as-
sociated with the least energetic modes, can be spoiled with
spurious auto/cross correlations, which inevitably introduces
noise into the filter analysis. As suggested by Houtekamer
and Mitchel (2001), a simple strategy to deal with this prob-
lem is to exclude observations greatly distant from the grid
point being analyzed. This allows the retention of the struc-
tures of the short-range correlations in the filter’s error co-
variance matrices, which are assumed to be more reliable,
while filtering out long-range correlations. This “localiza-
tion” of the filter analysis can be efficiently implemented
through a Schur product (an element by element multipli-
cation) of the error covariance matrix and a correlation func-
tion with local support (Gaspari and Cohn, 1999). In this
approach, the filter’s gain in Eq. (7) is reformulated as

Gk = (γ ◦ P T
k )HT

k [Hk(γ ◦ P
f

k )HT
k + Rk]

−1, (11)

whereγ ◦P
f

k denotes the Schur product of the forecast co-

variance matrixP f

k with the localization functionγ . Al-
though this formulation entails an approximation in the fil-
ter’s algorithm, it is naturally supported by the fact that only
data points located in the “neighbourhood” of an analyzed
grid point should contribute to the analysis at this point.

In the current system, the localization function is defined
by means of a radius of influenced (in km) around the an-
alyzed grid point. All data located outside this horizontal
(×24 vertical levels) area of influence are not retained in the
analysis. Assimilation experiments were performed in order
to find an appropriate value ford. Figure 3 shows the time
evolution of the Chl-a Root Mean Square (RMS) estimation
error (data/model misfit) for the forecast (i.e. just before the
assimilation of the new observations) and the analysis as they
result from three assimilation runs with different choices of
the radius of influence: 250 km (EXP1), 150 km (EXP2) and
70 km (EXP3), respectively. RMS of the filter runs are com-
pared to those obtained from a model free-run (i.e. model
run without assimilation). The assimilation system behaves
poorly withd=70 km. Although the choice of 250 km seems
to be the best choice in terms of the analysis RMS error, the
forecast system shows some weaknesses for such large value
of d, as can be noticed from the forecast RMS misfit plot-
ted in the lower panel of Fig. 3. This increase in the forecast
RMS might be explained by some spurious large-range cor-
relations in the EOFs correction directions that affected the
quality of the filter’s analysis, occasionally providing defec-
tive initial conditions to compute the forecast. These results
suggest that a radius of influence should be chosen neither
too large to filter out spurious large-range correlations, nor
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too small in order to obtain smoother analysis states. Fol-
lowing these findings, a radius of influenced=150 km was
selected in the sequel.

4.3 Model and observational errors

The observational and model error covariance matricesR

andQ need to be specified in the filter’s algorithm. These
matrices are generally very poorly known. It is common to
consider a time-invariant diagonal observation error covari-
ance matrixR. This means that the observational errors are
assumed to be spatially uncorrelated, but this can be partly
accounted for by overestimating the diagonal coefficients of
R. Following the discussion for the observational errors in
Sect. 3, the diagonal coefficients ofR were set as a frac-
tion of the variance of the SeaWIFS data at each observed
location. The specification ofQ is considerably more com-
plex because very little information are available about the
model error, and because of the significant number (N×N)
of parameters that need to be estimated. Following Pham et
al. (1997), a simple compensation technique is used to re-
place the termP T

Lk
QkPLk

in Eq. (10) by a forgetting factorρ
which artificially amplifies the background error covariance
matrix. This leads to a new update formula for the matrixU:

U−1
k =ρU−1

k−1 + (HkLk)
T R−1

k HkLk (12)

The value ofρ depends on the system under study, since it
can be further used to account for other sources of errors in
the filter, such as the underestimation of the error covariance
matrices by low-rank matrices or linearization errors, by as-
signing more weights to recent observations.ρ was empir-
ically set to 0.3 after several sensitivity assimilation experi-
ments with different values ofρ ranging between 0 and 1. As
an example, Fig. 4 plots the RMS analysis and forecast errors
as obtained from the filter with three different choices ofρ

(EXP4: 0.15, EXP2: 0.3, EXP5: 0.6) to show that, in our
experiments, the lowest analysis and forecast RMS misfits
were obtained usingρ=0.3.

4.4 The correction directions

A common strategy to determine the filter’s correction direc-
tions is to use model statistics as an approximation of the true
system statistics (Pham et al., 1997). Then by appropriate
sampling of model state vectors one can obtain an approxi-
mation of the filter’s covariance matrix through the dominant
empirical orthogonal functions (EOFs). In the present study,
the EOFs were generated as follows. After the 4-year cli-
matological run (described in Sect. 2.3), another 2-year in-
tegration of the coupled system (physical & biogeochemical
model) was carried out (described in Sect. 2.4) to generate
a historical sequence of model states, sampled every 2 days
during the last year of the integration. Since the state vari-
ables are of different nature, a multivariate EOF analysis was
applied to the sampled set of 180 state vectors. In this anal-
ysis, model state variables were normalized by the inverse of
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Fig. 4. RMS error for two experiments with different choices of the
forgetting factor (EXP2: 0.3; EXP4: 0.15, EXP5: 0.6).

the square-root of their domain-averaged variances. For the
assimilation experiment, 25 EOFs were retained explaining
95% of the sampled ecosystem variability.

5 Assimilation of satellite ocean color data for the pe-
riod 1999

This section presents and discusses the results of the main as-
similation experiment in which the 1999 SeaWiFS data were
assimilated into the Eastern Mediterranean ecosystem model
using the SEEK filter with a radius of influenced=150 km
and a forgetting factorρ=0.3. Morel (1998) suggested that
the depth sensed by SeaWiFS depends upon the concentra-
tion of chlorophyll and the wave band, and for waters with
chlorophyll≤0.1 mg/m3, as in the case of the Levantine, this
depth is about 30 m. In this study, the observation operator
Hk integrates vertically the model chlorophyll profiles for the
four phytoplankton groups over the first 30 m in the filter’s
equations. Hereafter, the overall behavior of the assimilation
system as compared to the assimilated data and the MedAt-
las climatology (MEDAR group, 2002) is first presented and
analyzed. The impact of the assimilation of ocean colour
data on the other ecological components of the model is then
discussed. This allows us (i) to assess the relevance of the
assimilation system to efficiently propagate surface observa-
tions into the deep ocean, and (ii) to study the ability of the
BFM model to properly assimilate the information from the
SeaWiFS data.

Figure 5 plots the time evolution of the RMS error be-
tween the assimilated chlorophyll data and the estimated
chlorophyll concentrations as it results from the model free-
run (without assimilation), and the filter run before (fore-
cast) and after (analysis) the filter’s correction. Overall the
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Fig. 5. Chlorophyll Root Mean Square difference (RMS) of the
free run model data, the forecast and the analysis over the entire
computation field.

filter’s behavior is quite satisfactory, obviously improving
the model/data consistency. The RMS error for both fore-
cast and analysis is always smaller than the RMS error of
the free-run, with only exception the period of spring bloom
between the end of March and the end of April, when the
filter, particularly the forecast state, was not able to follow
the rapid changes in the ecosystem state. The filter correc-
tion step efficiently brings the model closer to the assimilated
data after every filtering cycle as the analysis RMS error is
always smaller than the forecast RMS error. The filter analy-
sis state is also shown to respect the dynamics of the model,
as the forecast RMS error remains stable after each analysis
step, which allows the BFM model to smoothly assimilate
the SeaWiFS data, suggesting that the assimilation system is
properly working.

The poor behavior of the filter during the spring bloom
period is a common difficulty for a Kalman filter technique,
generally inefficient with highly intermittent and fastly vary-
ing processes, having probability distributions not well char-
acterized by means and variances (Bennett, 1992; Hoteit et
al., 2005). This particular period is also known to be char-
acterized by increased variability in both nutrients and bio-
logical variables with significant gradients being developed
over very short time periods (a few days only), shorter than
the 8 days assimilation window. The estimation error might
therefore quickly increase in the lack of adequate data to
guide the system toward the true trajectory during this un-
stable period. The limited impact of the filter’s correction
step during this period might be also due to the misrepre-
sentation of the bloom event in the EOFs based correction
directions. Indeed, the dynamics of the assimilated variable
are mainly controlled by the supply of phosphorus and ni-
trogen, while the grazing pressure becomes significant only
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Fig. 6. Spatial distribution of the chlorophyll RMS differences over
the entire assimilation period (Free run, Forecast, Analysis).

during the bloom period. Thus, the calculation of the dom-
inant EOFs from a phosphate limited system with relatively
small top down control on primary production for most of
the year might be insufficient to efficiently approximate the
covariance matrix of the filter during the bloom period. The
use of seasonal sets of EOFs that can be associated with the
major ecological events, and the evolution of the correction
directions with the model dynamics are expected to improve
the behavior of the filter during this period.

The spatial distribution for the chlorophyll RMS model-
filter/data misfits averaged over the entire assimilation win-
dow is shown in Fig. 6. The top panel clearly shows that
the model free-run/data misfits are the largest, with the worse
model performance observed in the northern Aegean Sea and
the area close to the northern coast of Africa. The North
Aegean Sea is characterised by an important ecosystem vari-
ability during most of the year. This characteristic stems
from the combination of shallow depths at the north and deep
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basins at the central part of the Aegean in conjunction with
the significant inputs from Dardanelles, Evros, Nestos, Ali-
akmomas and Axios rivers, which are not well represented
in the model (lack of data). The lower panel of Fig. 6 sug-
gests that the filter correction step is always able to efficiently
improve the forecast, even over the North Aegean area; the
analysis error was, over the whole domain, less than that of
the free and the forecast runs. The fact that the filter fore-
cast error significantly increases after every analysis step in
the area of the North Aegean (middle panel) means that the
model is not able to properly assimilate the information con-
tained in the data. Additionally, the filter did not provide a
good analysis to restart the model, although the analysis was
close enough to the data in the area. A plausible explanation
for the poor forecast is therefore a dynamically imbalanced
analysis caused by the important model/data differences or,
in other words, the model error.

As a demonstration of the good performance of the assimi-
lation system, Fig. 7 plots surface chlorophyll concentrations
from satellite observations (top panel), model free-run (mid-
dle panel) and analysis (lower panel) for the period 21–28
June. In order to compare satellite observations with model
results, surface chlorophyll concentrations produced by the
model were integrated over the first 30 m of depth and aver-
aged over the same period. The model free run significantly
overestimates the surface chlorophyll concentrations in the
Levantine Sea, and particularly in the Aegean Sea. The filter
successfully corrects the forecast driving the model closer to
the satellite data over the whole model domain, although the
improvement over the Aegean Sea is less significant. It is in-
teresting to note that the filter efficiently reduces the strong
variability in the Levantine Sea.

To further validate the behavior of the assimilation system,
annual mean model chlorophyll concentrations from the free
and the assimilated runs were compared with MedAtlas data
(MEDAR group, 2002) across an East-West transect at lati-
tude 34◦ N (Fig. 8). In the upper part of the euphotic zone the
improvement in the assimilated run is evident with the misfit
being significantly smaller compared to the values from the
free run. An interesting outcome is the poorer behavior of the
filter at the deeper parts around the DCM where the free run
seems to be closer to the MedAtlas data. Although one has to
take into consideration that the attempted comparison is be-
tween climatological field data and model results for 1999,
a possible explanation is that in cases the ecological model
is more productive compared to the field measurements, the
assimilation of sea color data is constraining it by reducing
primary production. As a result, functional groups feeding
on the removed phytoplankton cannot sustain their acquired
biomass and sink as detritus to deeper layers forming a de-
position area just under the euphotic zone. However, to fully
understand this process, a set of modelling experiments in a
data rich area, are one of our immediate tasks.

A well known and reasonably studied hydrological feature
over the modelling area is the Rhodes Gyre, offering a good

Fig. 7. Satellite surface chlorophyll observations (top panel), model
free run (central panel) and analysis (lower panel) for the period
21–28 June.

opportunity to further assess the ecosystem functioning of
the assimilation system in the deep layers. Figure 9 plots a
North–South cross section of different ecological variables
at longitude 28.5◦ E during the summer period as they result
from the assimilation system. Knowledge about the biogeo-
chemical processes in this area (Krom et al., 2003) can be
used to validate the behavior of the assimilation system. The
Rhodes Gyre is a cold core eddy that tends to change in-
tensity, size and location with time. The main characteristic
of the Gyre is the upwelling of nutrients in the center that
results in increased phytoplankton biomass and primary pro-
ductivity. The top panel shows the vertical distribution of
the chlorophyll concentrations where the DCM is depicted
at 60 m with a magnitude of∼0.3 mg/m3 in close agreement
with Salihoglu et al. (1990). The middle panel shows the
integrated chlorophyll, exhibiting a peak with a magnitude
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Fig. 8. Cross section of the upper 300 m of the water column along
a section at latitude 34◦ N: Annual chlorophyll-a misfit of the 1999
assimilation run (top panel) and of the free run (bottom panel) from
MedAtlas climatology.

of ∼28 mg/m2 which is a slight underestimation compared
to 39 mg/m2as estimated by Ediger and Yilmaz (1996). The
phosphate concentrations plotted in the lower panel shows
a formation of nutricline at 75 m. Phosphorous has been
depleted in the upper layers exhibiting concentration values
less than 0.02µg-at/l, while in cross section phosphate in-
creases with depth to a maximum of 0.22µ g-at/l. Model
phosphate concentrations (free-run and assimilated) for this
particular area when compared with insitu data from MedAt-
las (Fig. 10), show a clear improvement in the assimilation
system reducing the misfit at the top 300 m of the water col-
umn.

The performance of the assimilation system is also as-
sessed in Fig. 11 which plots the time evolution of the depth
integrated chl-a concentrations for the Rhodes gyre as it re-
sults from the model free-run and as estimated by the assim-
ilation system. The model free-run without any assimilation
provides quite good estimates of the integrated chl-a concen-
trations (35 mg/m2) compared to the ones provided by the
field measurements (39 mg/m2). The assimilation of ocean
colour data clearly reduces the surface chl-a concentrations
pushing the model top layers towards a more oligothrophic
condition according to the information extracted from the ob-
servations. However this drives the system dynamics away
from the “truth” in the deep layers, not-visible by the satel-
lite, subsequently reducing the depth integrated chl-a concen-
trations, being in disagreement with the observed values. For
reasons already explained there are certain limitations in the
assimilation of only surface ocean colour data which call for
the need of constraining the model dynamics with subsurface
ecological data as well.

Fig. 9. Cross section at longitude 28.5◦ E. for Free run (Left panels)
and Assimilation run (Right panels). (Top) Summer distribution of
chlorophyll concentrations (mg/m3). (Middle) Integrated chloro-
phyll concentrations over 0–120 m averaged over the summer pe-
riod (mg/m2) (Lower) Summer vertical distribution of phosphorous
concentrations (mmols/m3).

Having stated the above limitation of the assimilation sys-
tem in oligotrophic areas, which is mainly related to complex
and highly variable ecological processes associated with cy-
clonic gyres and upwelling areas and the fact that the hydro-
dynamical part (which is an important driving mechanism
for the ecology) needs to be constrained with assimilation of
some key physical observations (satellite measured SLA for
example), the overall performance of the assimilation sys-
tem is in general quite positive as can be seen for example
in the spatially integrated chl-a concentration during August
(Fig. 12). The values resulting from the assimilation system
are quite closer to the measured concentrations of Ignatiades
et al. (2002); Siokou-Frangou et al. (2002) than those simu-
lated by the model free-run. Additionally the decomposers
in both free-run and assimilation run are within the range of
measured values in the North, North-East and South Aegean
as shown in Table 1. Moreover, it was found that the free
run exhibits a more uniform spatial pattern, in contrast to
the one estimated by the assimilation system which exhibits
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Fig. 10. Cross section of the upper 300 m of the water column at
longitude 28.5◦ E. Top panel shows the summer phosphate misfit
of the 1999 assimilation run from MedAtlas summer climatology
while bottom panel shows the summer phosphate misfit of the free
run from MEDATLAS summer climatology.

Fig. 11. Integrated chlorophyll (mg/m2) from the model free-run
(black line) and the assimilation run (green line).

significantly more spatial variability. Bacteria in oligotrophic
systems play a very important role as they remineralise and
consume nutrients (which are in short supply), sustaining an
active microbial loop. As their growth depends on the avail-
able nutrient concentrations and the supply of DOC, which
in turn are strongly coupled to the hydrodynamic fields, one
would expect such strong spatial variability to be in agree-
ment with the characteristics of the complex system of gyres
and jets of the Eastern Mediterranean.

Fig. 12. Integrated chlorophyll (mg/m2) over (0–150 m) from the
model free-run and the assimilation run during August.

6 Conclusions

This study describes the implementation of an advanced as-
similation system for the marine ecosystem of the East-
ern Mediterranean based on a complex three-dimensional
ecological model and a simplified Extended Kalman filter
to assimilate SeaWiFS ocean colour data. The ecosystem
model is composed of two coupled sub-models: the physical
Princeton Ocean model (POM) and the Biogeochemical Flux
Model (BFM). The filter is based on the Singular Evolutive
Extended Kalman (SEEK) filter, in which the error statis-
tics were parameterized by means of a suitable set of Em-
pirical Orthogonal Functions (EOFs). A localization of the
filter analysis step was implemented to filter out any spuri-
ous long-range correlations in the EOFs. After several sen-
sitivity experiments which were performed in order to find
appropriate values for some of the filter parameters, a hind-
cast experiment was conducted for the year 1999 with the
aim of demonstrating the effectiveness of this system and to
validate its outputs. The results of this experiment clearly
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Table 1. In situ and integrated bacterial biomass from the free-run and the assimilation run of 1999 during March and September at three
areas in the Aegean Sea.

BACTERIA N. AEGEAN S. AEGEAN NE. AEGEAN
(mgC/m2) March Sep March Sep March Sep

Siokou et al. (2002) 1406±327 1470±273 1423±43 1505±432 1403±142 1251±107
Free-run 1022±172 799±42 1197±59 1072±42 1298±126 808±27
Assimilation 1022±182 1245±123 1357±112 1072±134 1395±123 1181±79

demonstrate that the assimilation system operates in a satis-
factory way: the assimilation system was capable of success-
fully fitting the observational data, and to propagate to some
extent the surface observations to the deep layers. Further-
more, the assimilation improved the model behaviour and
the impact of the satellite ocean colour data on all ecolog-
ical components of the model was mainly positive. This is in
agreement with the multivariate property of the assimilation
scheme used in the present study.

However, some weaknesses were also observed, especially
in the complex oligotrophic areas where adjustments were
necessary in order to improve the model/data consistency.
The filter nevertheless did not adjust several ecological com-
ponents in the deep layers well enough to cover signifi-
cant model errors not represented in the assimilation system.
Even though the availability of a limited subsurface data set
is not enough to solve this problem, the assimilation of these
data would constrain the model variability in the deep lay-
ers and help preventing any deviation from reality. An im-
portant issue related to this problem is the assumption of
“perfect physics” retained in this study. The improvement
of the physical solution through the assimilation of physi-
cal data is expected to improve the behavior of the coupled
model, which means less model errors in the ecological so-
lution. Another poor performance of the assimilation system
was observed during the spring bloom period during which
the filter failed to follow the rapid change in the dynamics
of the ecosystem. However, it is expected that the assimila-
tion of more data, and the evolution of the filter correction
directions would improve the behavior of the system during
such periods. The quality of the data was also an issue in the
present study. One solution could be to assimilate the colour
data directly, before converting them to chlorophyll, by in-
cluding a bio-optical algorithm to predict the colour from the
model phytoplankton values, which hopefully will result in a
reduction of the uncertainties in the data. The use of better
estimate of the covariance matrix of the observational errors
can be also beneficial for the assimilation system and should
be considered in future studies.

Despite the use of a state-of-the-art coupled physical-
biogeochemical marine ecosystem model constrained with
the most synoptic ecological data sets using an advanced as-
similation scheme, the overall results of this study are still at
a preliminary stage, though giving all the improvements that

can be reported to the system. This study, however, clearly
indicates that the development of an assimilation system ca-
pable of providing reliable estimates of the ecosystem state
is achievable. This is an important finding since an alike
system can be also implemented for any area of the global
ocean. This conclusion is of particular interest for the marine
ecosystem community and provides us with encouraging and
promising results for future developments.
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