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Abstract

In some dinoflagellate species, physiological processes appear to be altered by expo-

sure to certain turbulent conditions. Here we investigated how two levels of turbulent

kinetic energy dissipation rates (ε = 0.4 and 27 cm
2

s
−3

) affected the toxin and ecdysal

cyst dynamics of two bloom forming species, Alexandrium minutum and A. catenella.5

The most striking responses were observed at the high ε generated by an orbital

shaker. In A. catenella, lower cellular toxin content was measured in cultures shaken

for more than 4 days. The same trend was observed in A. minutum, although variability

masked statistical significance. For the two species, inhibition of ecdysal cyst produc-

tion occurred immediately and during the period of exposure of the cultures to stirring10

(4 or more days) at any time during their growth curve. Recovery of cyst abundances

was always observed when turbulence stopped. When turbulence persisted for more

than 4 days the net growth rate significantly decreased and the final biomass yield was

lower than in the unshaken cultures. This study suggests that high levels of small-scale

turbulence would contribute to the modulation of the harmful bloom dynamics through15

the interaction at the level of toxin and encystment processes.

1 Introduction

Many dinoflagellate species have been reported to be sensitive to small-scale turbu-

lence in both field and laboratory studies. Particular water circulation patterns, coin-

ciding with relatively calm weather and water column stability, may favour the occur-20

rence of dinoflagellate red tides (e.g., Wyatt and Horwood, 1973; Margalef et al., 1979;

Pollingher and Zemel, 1981; Berman and Shteiman, 1998; Smayda and Reynolds,

2001). Laboratory data obtained using different species and experimental designs

and setups show that dinoflagellate cells can be somehow directly affected by turbu-

lence (e.g. Estrada et al., 1987; Peters and Marrasé, 2000; last review by Berdalet25

and Estrada, 2005). While some studies have noted positive or indifferent responses
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(Berdalet and Estrada, 1993; Sullivan and Swift, 2003; Havskum et al., 2005; Havskum

and Hansen, 2006), many others reported negative effects that, in general, point to

the interference of small-scale turbulence with cell division and life cycle processes (in-

cluding migration) (e.g., Berdalet, 1992; Havskum et al., 2005; Yeung and Wong, 2003,

Yeung et al., 2006). Although direct comparison among studies is not possible (Peters5

and Marrasé, 2000), the available data suggest that the response to small-scale tur-

bulence should be species-specific and dependent on turbulence intensity and quality

(Berdalet and Estrada, 1993; Sullivan and Swift, 2003; Berdalet et al., 2007).

In the present study we investigate the effect of turbulence on two red-tide form-

ing dinoflagellates, Alexandrium minutum Halim and A. catenella (Whedon and Kofoid)10

Balech, with special emphasis on the modulation of toxin and cyst production dynam-

ics. The two organisms are reported to bloom in diverse coastal areas (e.g. Halim,

1960; Honsell et al., 1995; Hallegraef et al., 1998; Vila et al., 2001a, b). Dinoflagellates

have complex life cycles that include alternation of resting stages (cysts) and vegeta-

tive cells, with benthic or planktonic phases, respectively (e.g. Wyatt and Jenkinson,15

1997; Garcés et al., 2002). In turn, cysts can be formed sexually by fusion of haploid

gametes (producing a diploid planozygote that subsequently undergoes encystment)

or asexually from ecdysis of a vegetative cell (loss of flagella and cell wall). Differ-

ent factors can trigger encystment and excystment after latency, but the mechanisms

involved and the role of cysts in the dynamics of blooms in nature are not well under-20

stood. Both, A. minutum and A. catenella are heterothallic species (Yoshimadzu, 1984;

Figueroa et al., 2007) and are reported to produce ecdysal cysts in clonal strains. A

previous study revealed that high turbulence intensity decreased the growth of A. minu-

tum and interfered somehow with cyst production, although a clear conclusion was not

drawn (Berdalet et al., 2007). Further, exposure to small-scale turbulence has been25

reported to cause poor sexual encystment in A. tamarense (Anderson and Lindquist,

1985), inhibition of sexual cyst production in Akashiwo sanguinea (Tynan, 1993, as

indicated in Thomas et al., 1997) and in Scrippsiella lachrymosa (Smith and Persson,

2005), and increase of cellular toxin content in A. fundyense (Juhl et al., 2001). This
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study was done using the same experimental devices and designs of previous studies

(Berdalet, 1992; Berdalet and Estrada, 1993; Havskum et al. 2005; Berdalet et al.,

2007) to allow direct comparison between results.

2 Materials and methods

The clonal strain of Alexandrium minutum (strain IEO - AL1V, isolated by S. Fraga from5

the Rı́a de Vigo)) was provided by the Vigo Oceanographic Center (Spain) and that

of Alexandrium catenella (isolated by M. Delgado from the NW Mediterranean coast,

Tarragona) belongs to the ICM culture collection. Non-axenic stock and experimen-

tal unialgal cultures were maintained in a temperature controlled room under identical

temperature (20
◦
C±1

◦
C), irradiance (120µmol photon m

−2
s
−1

, 12:12 h LD cycle, light10

period starting at 08:00 a.m.) and culture media (f/2-enriched seawater without sili-

cate addition, Guillard, 1975; seawater of salinity 38 obtained from Blanes Bay -NW

Mediterranean-, 1 km offshore at a 5 m depth).

Turbulence was generated with either an orbital shaker or a vertically oscillating grid

system. The orbital shaker was operated at 120 rpm and a displacement of 30 mm.15

We used 4-L spherical (Florence) flasks (containing 3 L culture medium). An average

ε of 27 cm
2

s
−3

was calculated from the equation log10 ε=−8.667+5.05 · F , where F is

frequency in Hz. This equation was derived from data acquired with acoustic Doppler

velocimetry technology. The oscillating grids device was designed by one of us (F. Pe-

ters) as described by Dolan et al. (2003). The grids were made of stainless steel20

coated with a plastic polyamide, had a diameter of 11.9 cm, a 0.38 cm bar thickness

and a mesh size of 1.42 cm. We used 2-L cylindrical Plexiglas containers, an oscillat-

ing frequency of 9.1 rpm and a stroke of 10 to 11 cm. An average ε of 0.4 cm
2

s
−3

was

calculated following Peters and Gross (1994), considering a drag coefficient of 0.7 for

the grid.25

Experimental vessels were inoculated after several transfers of exponentially growing

stock cultures to new media. The initial cell concentration was around 400 cells mL
−1
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for A. minutum and 65 cells mL
−1

for A. catenella. The cultures were allowed to

reach exponential phase before turbulence was started. Turbulence was applied dur-

ing the exponential phase (Exponential), the stationary phase (Stationary) or during

both phases (Always) of the growth curve (Table 1). In each experiment, two flasks re-

mained under still conditions throughout the entire experiment (Control). All treatments5

were done in duplicate. The response of A. catenella to the turbulence generated by

the orbital shaker was studied in two replicate experiments (Table 1). In the first one, 4

treatments were applied and only samples for microscopic observations were obtained.

In the second one, with only two treatments (Control and Always), we also sampled for

toxin analyses. Samples for microscopic cell observations and toxin analyses were10

taken at noon (12:00 p.m.), after gently swirling the flasks.

Cell abundances were estimated using a Sedgewick-Rafter or a sedimentation

chamber (depending on the cell density of the sample), after fixation with Lugol’s io-

dine solution (Utermöhl, 1958). Net exponential growth rates, µ (day
−1

), as defined

by Guillard (1973), were calculated as the slope of the regression line of ln(N) versus15

time (t), where N is the estimated cell concentration. Cyst identification was based

both on the external morphology and subsequent staining of a subsample with Cal-

cofluor White M2R (Fritz and Triemer, 1985). For PSP-toxin analysis, algae in samples

(100 to 300 ml) were concentrated by vacuum filtration (–25 Kpa) onto 25 mm GF/F

filters (Whatman, Kent, UK). Filters were subsequently blotted on filtration paper until20

no humidity was observed (Latasa et al., 2001), wrapped in aluminium foil and stored

frozen (–25
◦
C) until extraction. The filters were extracted in 2.0 mL 0.05 M analytical-

grade acetic acid, using an ice-cooled cell-homogenizer (Edmund-Bühler Vibrogen,

Tübingen, Germany). Extracts were subsequently centrifuged (2355 g, 15 min at 5
◦
C)

to remove cell debris and filter fragments. Particle-free aliquots (1.0 mL) were trans-25

ferred to amber injection vials and stored at 5
◦
C in the HPLC auto-sampler until injec-

tion. Extracts of toxins were analyzed with the HPLC procedures described by Oshima

(1995), based on post-column oxidation with periodic acid and fluorescence detection.

Toxins were separated on an Agilent Technologies Zorbax-SB C8 (250×4.6 mm i.d.)
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column fitted with a BetaBasic C8 Javelin precolumn. The HPLC equipment (Thermo

Separation Products, San José, CA, USA) was tested and calibrated with toxin stan-

dards obtained from the National Research Council of Canada (Hallifax, NS), including

GTX1&4-b, GTX2&3-b, STX-d, dcSTX, STXdiAc and Neo-b. Due to the lack of stan-

dards for N-sulfocarbamoyl-11-hydroxysulfate toxins (C1 to C4) these compounds were5

converted to their carbomate analogues with a hydrolization step (1 mL acetic acid ex-

tract plus 1 mL HCl 0.4 N and boiled at 100
◦
C for 15 min), which were subsequently

quantified during a second HPLC run.

Comparison of treatments over time for the different parameters was done using the

non-parametric Kruskal-Wallis test (Motulsky, 2003). Growth rates were compared by10

testing for the heterogeneity of the slopes (analysis of covariance). Statistical analyses

were conducted with Systat 5.1.2 for MacIntosh.

3 Results

Table 1 summarizes the results of net growth rate and final biomass yield estimated

in the turbulence treatments for the 5 experiments. Note that the estimation of growth15

rates under still conditions include 4 replicates, corresponding to the 2 Control flasks

and to the 2 vessels that were kept unshaken during the exponential period and sub-

sequently stirred during the stationary one (i.e. Stationary treatment).

Exposure to the low turbulence intensity generated by the vertically oscillating grids

favoured population development of the two species (Table 1) but had no significant20

effect on toxin or cyst dynamics (not shown).

Alexandrium minutum cultures exposed to the high ε intensities of the orbital shaker

for more than 4 days (Always treatment), had a significantly (p<0.0001) lower exponen-

tial growth rate compared to that of the unshaken ones (Table 1, Fig. 1a). In contrast,

the growth rate of A. catenella (Table 1, Fig. 2a) was not significantly affected by shak-25

ing for 4 days (p=0.375) or longer (p=0.392 and p=0.105, in the first and second exper-

iment, respectively). Besides this differential response in the net growth rate, the two

898

http://www.biogeosciences-discuss.net
http://www.biogeosciences-discuss.net/4/893/2007/bgd-4-893-2007-print.pdf
http://www.biogeosciences-discuss.net/4/893/2007/bgd-4-893-2007-discussion.html
http://www.copernicus.org/EGU/EGU.html


BGD

4, 893–908, 2007

Alexandrium spp.

and turbulence

L. Bolli et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

◭ ◮

◭ ◮

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

EGU

species showed the lowest final biomass (in terms of cell abundance) when shaken for

more than 4 days, namely, 55.4% of the abundances obtained in the Control cultures

of A. minutum and 24.7% or 21.6% in the two experiments with A. catenella (Table 1).

Cyst abundances (expressed as % of total cell numbers) tended to progressively in-

crease in the A. minutum Control cultures from the exponential to the stationary phase5

(Fig. 1b). A sudden decrease in the cyst number was observed when the cells were

shaken for 4 days either during the exponential (Fig. 1c) or stationary (Fig. 1d) phases.

Immediate restoration of cyst abundances occurred at the cessation of shaking in the

two treatments. Minimum cyst proportions remained during the whole agitation period

in the Always flasks (Fig. 1e). The same general trend was observed in A. catenella10

(not shown).

The toxin content of this A. catenella strain consisted mainly of the isomer pair GTX1

and GTX4, plus minor amounts of C1 and C2. As illustrated in Figs. 2b and 2c, the

Always treatments of A. catenella had significantly lower C(1+2) (Mann-Whitney U test

statistics 253.5, p=0.004) and GTX(1+4) (U=255.0, p=0.003) toxin content per cell.15

The same trend was observed in the Always treatments of the A. minutum experiment,

while the toxin content in the cultures shaken during either the exponential or the sta-

tionary phase had no significant differences with that of the Control flasks (not shown).

4 Discusion

The experiments using the vertically oscillating grids were performed at ε intensities20

(ca. 0.4 cm
2

s
−3

) considered to naturally occur in the upper 10 m of the ocean under

storm events (MacKenzie and Leggett, 1993; Kiørboe and Saiz, 1995; Petersen et al.,

1998). The much higher ε generated in the orbital shaker (27 cm
2

s
−3

) would be even

higher than those associated with intense wind conditions (>20 m s
−1

, Granata and

Dickey, 1991; MacKenzie and Leggett, 1993; Kiørboe and Saiz, 1995). Although our25

experimental values of ε are very high, both in intensity and persistence (Guadayol

and Peters, 2006), these conditions may help to ascertain the underlying mechanisms
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of cell adaptations.

Interestingly, the highest net growth rates were estimated for the two species shaken

at the lowest ε intensity with the vertically oscillating grids. Under similar experi-

mental and turbulence intensity conditions, the net growth rates of Oxyrrhis marina

(Havskum, 2003) and of Ceratium tripos decreased (Havskum et al., 2005). In con-5

trast, Fragilidium globosum was not affected (Havskum et al., 2005) and the growth of

Heterocapsa triquetra was favoured (Havskum and Hansen, 2006). This last obser-

vation suggested that turbulence facilitated gas exchange in the experimental vessels

where high biomass developed. Note that in our experiments both A. minutum and

A. catenella reached higher growth rates and biomass yields in the Control Plexiglass10

cylindric vessels than in the Control Pyrex sphaerical ones (Table 1). These differences

in population development could be related to differences in shape or light wavelength

transmission of the experimental vessels.

Considering the experiments in the orbital shakers, the trends observed in the

biomass yields and growth rates are similar to those observed in previous studies15

with A. minutum under similar experimental conditions (Berdalet et al., 2007) and

A. catenella conducted at ε of ca. 10
−4

and ca. 1 cm
2

s
−3

generated by horizontal

rods oscillating in 20-L tanks (Sullivan and Swift, 2003). Regarding toxins, the results

are opposite to those for A. fundyense that increased its cellular toxin content when

exposed to 0.1 cm
2

s
−3

in Couette devices (Juhl et al., 2001). Likely, differences in the20

physiological state of the cultures and/or the experimental setup used in each study

have conditioned these opposite responses. In consequence, it is too soon to draw

general conclusions and the question about the possible effect of turbulence on toxin

production is an open one for future research.

In contrast, the immediate decay of ecdysal cyst abundances when the cultures were25

intensively shaken and the subsequent and fast recovery once turbulence stopped

agree with previous studies (Anderson and Lindquist, 1985; Smith and Persson,

2004, 2005). Magnetic stirring for up to one month of Scrippsiella lachrymosa and

Alexandrium fundyense cultures prevented their sexual encystment. Once stirring was
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stopped, dinoflagellates resumed their regular mating behaviour. Turbulence would

have denied them the stability for this process, without alteration of their physiological

capacity to encyst. Smith and Persson (2004) suggested that sexual cyst formation

would require a surface or boundary layer to facilitate the gamete meeting and initi-

ation of mating. Subsequently, during the cyst formation, the cell wall gets stickier5

and zygotes sink to the bottom (of the container) or to the sediment. Although we

are dealing here with asexual ecdysal cysts of A. minutum and A. catenella, a similar

mechanism of interference by turbulence could also be acting. In nature, a certain

degree of stability is usually associated with the outbreak, development and main-

tenance of dinoflagellate blooms (e.g. Margalef et al., 1979; Berman and Shteiman,10

1998; Smayda and Reynolds, 2001) and dinoflagellates selectively accumulate in thin

layers (e.g. A. catenella as observed by Sullivan et al., 2003). In our present study,

the inhibition of the net population development observed in A. catenella and A. minu-

tum during the long exposure to high turbulence intensities could be a combination of

a direct alteration of the vegetative cell division and the interference with the ecdysal15

cyst formation. Our observation also indicates that the asexual encystment of these

two species did not occur as a response to an environmental stress such as high tur-

bulence. On the contrary, ecdysal cysts must be essential phases of the life cycles

of these organisms playing a major role in population dynamics of certain dinoflagel-

lates and requiring stability of the water column to proceed. Certainly, careful studies20

focussing on the link between small-scale turbulence and the different aspects of the

life cycle of dinoflagellates will shed further light to understand the dynamics of this

phytoplankton group in nature.
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Table 1. Net exponential growth rates (µ, day
−1

) and final biomass yield (cells mL
−1

) in each

treatment of the 5 experiments performed in this study. “n” indicates the number of replicates

considered for every calculation. For the estimations of µ we indicate the duration of the expo-

nential growth phase (Expon. duration, days) considered for the calculations of the regression

line and its associated standard error and adjusted multiple r
2
; “p” indicates the degree of sig-

nificance of the heterogeneity of the slopes tests (analysis of covariance) run to compare the

growth rate during the shaking period with that of the Control (unshaken) ones. A comparison

between the final yield obtained at the end of each experiment under turbulent conditions and

the still ones is indicated as the %T/S percentage.

Effect on growth rate Effect on biomass yield

Experiment Treatment Turbulent

duration

(days)

n Expon.

duration

(days)

µ

(day
−1

)

err r
2

p n cells mL
−1

err %T/S

A. minutum Orbital Control none 4 5–13 0.250 0.011 0.983 2 8458 825

Exponential 5–9 2 5–13 0.226 0.008 0.988 0.704 2 8142 258 96.3

Stationary 11–15 2 2 7317 333 86.5

Always 5–21 2 5–13 0.186 0.015 0.945 0.000 2 4690 130 55.4

A. minutum. Grids Control none 2 0–10 0.261 0.007 0.994 2 7725 158

Always 4–14 2 0–10 0.282 0.011 0.986 0.077 2 9813 263 127.0

A. catenella. Orbital shaker I Control none 4 5–13 0.213 0.011 0.934 2 2228 597

Exponential 4–8 2 5–9 0.214 0.008 0.899 0.375 2 2066 161 92.7

Stationary 12–16 2 2 2047 522 91.9

Always 4–21 2 5–9 0.228 0.065 0.620 0.392 2 549 49 24.7

A. catenella. Orbital shaker II Control none 2 0–10 0.227 0.015 0.954 2 3425 700

Always 4–21 2 0–10 0.204 0.013 0.959 0.105 2 739 61 21.6

A. catenella. Grids Control none 4 0–11 0.312 0.011 0.970 2 4820 330

Exponential 3–7 2 0–11 0.330 0.013 0.983 0.096 2 5016 4 104.1

Stationary 11–15 2 2 5625 1350 116.7

Always 3–20 2 0-11 0.348 0.010 0.991 0.001 2 7233 133 150.1
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Fig. 1. (A): Temporal changes in A. minutum cell abundance in the unshaken Control (white

symbols) and the turbulence Always treatment (black symbols). The turbulence treatment was

done with an orbital shaker between days 5 to 21 (Table 1). The temporal changes of the other

two shaken treatments (Exponential and Stationary, Table 1) were not significantly different

from those of the Control ones and are not shown for clarity. (B) to (E): Temporal changes in

ecdysal cysts abundances (expressed as percentage of the total cell numbers) in each treat-

ment of the experiment. Vertical bars indicate the standard error of the mean, and the shaken

period of each treatment is marked by the double arrow horizontal line.
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Fig. 2. Temporal changes in the cell abundances (A) and the toxin content (B and C) of the

second experiment performed with A. catenella in the orbital shaker (Table 1), with only two

treatments (Control and Always). Vertical bars indicate the standard error of the mean, and the

shaken period of each treatment is marked by the double arrow horizontal line.
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