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Abstract. We present an extension to the Data INterpolating
Empirical Orthogonal Functions (DINEOF) technique which
allows not only to fill in clouded images but also to provide
an estimation of the error covariance of the reconstruction.
This additional information is obtained by an analogy with
optimal interpolation. It is shown that the error fields can be
obtained with a clever rearrangement of calculations at a cost
comparable to that of the interpolation itself. The method is
presented on the reconstruction of sea-surface temperature
in the Ligurian Sea and around the Corsican Island (Mediter-
ranean Sea), including the calculation of inter-annual vari-
ability of average surface values and their expected errors.
The application shows that the error fields are not only able
to reflect the data-coverage structure but also the covariances
of the physical fields.

1 Introduction

When dealing with a data set containing missing or unreli-
able data, a general approach to fill in the missing data is the
use of objective-analysis methods, in particular optimal in-
terpolation (OI), (e.g.,von Storch and Zwiers, 1999; Gomis
and Pedder, 2005). The latter leads to an interpolated field
with minimal expected error variance, certainly a desirable
property. The optimality of the approach relies however on
the assumption that correlation functions and the signal/noise
ratio of the data are perfectly known (e.g.,Rixen et al., 2000;
Gomis et al., 2001). In practise ad hoc parametric correlation
functions are often used and parameters in the best case are
only calibrated for the specific data set, so that optimality in
the statistical sense is rapidly lost.

When a series of clouded images is to be filled in, the re-
peated observation on a single grid can be exploited to im-
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prove the specification of the covariance functions. This was
done in the development of the Data INterpolating Empiri-
cal Orthogonal Functions method (DINEOF) (Beckers and
Rixen, 2003; Alvera-Azćarate et al., 2005; Alvera-Azćarate
et al., 2006, where the time series of images provided a
mean to calculate principal components of incomplete data
as eigenvectors of a covariance matrix, and simultaneously
filling in the missing data. The extension to an EOF decom-
position version known as Singular Spectrum Analysis (e.g.,
Vautard et al., 1992) was also used to reconstruct time-series
of river discharges (Kondrashov et al., 2005) and tidal gauge
data (Bergant et al., 2005). The DINEOF interpolation was
shown to provide similar results than optimal interpolation,
being however incomparably faster. Also, DINEOF does
not need any a priori information, contrary to OI in its most
widely used form with prescribed covariance functions. The
DINEOF method has also been compared to kriging meth-
ods in the framework of computational fluid dynamics and
was found to be more accurate than the latter for high tem-
poral resolution and not too large (i.e. typically 50%) data
gaps (Gunes et al., 2006). DINEOF is however up to now
hampered by the fact that contrary to OI, no local error esti-
mates at each grid point can be provided. Only a global error
can be calculated by DINEOF exploiting a cross-validation
technique, while OI allows to draw spatial error maps (e.g.,
Shen et al., 1998). The present paper aims at closing the gap,
providing local error maps for DINEOF. As a byproduct, it
will be shown how OI can be combined with DINEOF cal-
culations so that when using covariance matrix estimations
from DINEOF it reduces drastically the calculations needed
by standard OI.

Since the validation of the DINEOF analysis itself has al-
ready been performed thorougly in previous papers, we will
focus here on the error fields instead. The paper is organized
as follows. In Sects.2 and3 we formulate OI and DINEOF.
We then show in Sect.4 that a very efficient least-square fit of
EOF amplitudes to an observed subset of data is equivalent to
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184 J.-M. Beckers et al.: Cloud filling and error calculations

an OI if the filtered covariance matrix of DINEOF is used as
the ad hoc covariance matrix of OI. This result is then used in
Sect.5 to use the statistically derived error estimates of OI as
error fields for DINEOF. The method is then tested on a data
set consisting of AVHRR Sea-Surface Temperature (SST) in
the Mediterranean Sea around Corsica (Sect.6). This section
proves the efficiency of the method and the relevance of the
error fields. The conclusions finish with some suggestions
of additional improvements that could be included in the DI-
NEOF tool.

2 Optimal interpolation

Optimal Interpolation (e.g.,Daley, 1991) aims at minimising
the expected error varianceε2 at a given positionr of the
interpolated fieldϕ compared to the true fieldϕt

ε2(r) = [ϕ(r) − ϕt (r)]2, (1)

with ϕ̄ being the average ofϕ in a statistical sense, i.e., for
repeated realisations. All fields are considered anomalies
so that their averages are zero, and if considered adequate,
trends or cycles can be removed prior to any treatment. The
linear combination of theNd available datadi located inri ,
i=1, . . . , Nd and grouped into a column vectord that min-
imises the expected error variance in locationr is given by

ϕ(r) =

Nd∑
i=1

wi(r) di = wTd = cTD−1d, (2)

whereT indicates a transposed matrix or vector and where
we define a covariance matrixD between data points

D = d dT (3)

and the covariancec of all data points with the target field at
the pointr in which the interpolation is calculated:

c = ϕt (r) d. (4)

The expected error variance itself is minimal and has the fol-
lowing value

minε2(r) = ϕt (r)2 − cTD−1c, (5)

directly providing the error estimates in any desired location
r after analysis by Eq. (2). In order for the method to be ap-
plicable, there remains to determine the covariances involved
in the formulation.

In standard OI, decomposing the datadi=εi+ϕt (ri) as the
sum of observational (or representativity) errors and the true
field, the covariance matrixD is the sum of the observational
error-covariance matrixR and the target field-covariance ma-
trix B assuming observational errors and the target field to
be uncorrelated. An elementi, j of B is then given by

ϕt (ri)ϕt (rj ) and similarly for the observational error. Intro-
ducing decompositionD=R+B into Eq. (2) leads to the clas-
sical optimal interpolation formula

ϕ = cT (B + R)−1 d, (6)

with c being the covariance between data points and the point
of interpolation andB the field-covariance matrix also called
background error covariance matrix containing covariances
between data locations. The latter is generally calculated
from predefined correlation functions depending on the dis-
tance between data points (e.g.,Emery and Thomson, 1997).
For uncorrelated and homogeneous data errors of variance
µ2, the corresponding error-covariance matrix has the sim-
plified diagonal form

R = µ2 I, (7)

which is used in most applications and whereI is the identity
matrix. In the following, the signal variance is

σ 2
=

〈
ϕt (r)2

〉
, (8)

where<> stands for a spatial average andσ 2/µ2 is the sig-
nal/noise ratio.

Now suppose we look at a single image and would like
to interpolate the missing data under clouds. The classical
approach would be to define a covariance function, estimate
a signal to noise ratio and then apply the OI algorithm. In
its original and statistically optimal form, this would require
the inversion of a matrix of sizeNd=mp, mp being the num-
ber of unclouded or present pixels. This inversion can be
quite time-consuming: a SeaWiFS scene of 1000×2000 pix-
els with 50% cloud coverage would require the inversion of
a system of 106 equations with 106 unknowns. This is a ma-
jor challenge since the matrix to be inversed is not banded.
Therefore, optimal interpolation is in most cases downgraded
by using only data points within a given distance from the
point in which to interpolate, neglecting teleconnections.

3 DINEOF

DINEOF, instead of using the direct minimisation of ex-
pected error covariance as the objective of the interpolation,
uses data-based principal components (called EOFs here-
after) to infer the missing data. To do so, we realise that
EOFs can be obtained from a Singular Value Decomposition
(SVD) representation of the data matrixX. Each column ofX
contains a satellite image stored as a column vector ofm pix-
els, and a pixel of such an image is the dataxi,j . We suppose
we haven images (j=1, ..., n). Then the SVD decomposi-
tion reads

X = U6VT, (9)
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whereU contains on each of its columns one of the spatial
patterns of the EOFs, the pseudo-diagonal matrix6 the sin-
gular values andV the temporal components. The SVD de-
composition is then truncated to the firstN EOFs and pro-
vides a filtered version of the data, also at the missing data
points. This provides therefore the interpolated values. To
calculate EOFs via an SVD, the data matrix needs however
to be complete; but to infer the missing data we must know
the EOFs, a circular dependence which of course results in
an iterative method described in more details inBeckers and
Rixen(2003) andAlvera-Azćarate et al.(2005). The number
of EOFs to retain in the truncation is obtained by a cross-
validation technique, adding artificial clouds in some loca-
tions and using as a global error estimate the RMS (root mean
square) distance between the known values and the recon-
structed ones under the artificial clouds. The optimal num-
ber of EOFs is then the one that minimises this error estimate.
This method was thorougly tested inAlvera-Azćarate et al.
(2005), where a set of 105 images on the Adriatic Sea was
reconstructed and compared to in situ data. The method was
numerically optimised using a Lanczos solver for the SVD
decomposition (Toumazou and Cretaux, 2001), which allows
to apply the technique to large sets of data. The accuracy of
the method was checked against a classical OI reconstruc-
tion. The error obtained by DINEOF was smaller than with
OI (0.95◦C vs. 2.4◦C using 452 independent in situ obser-
vations for validation) and DINEOF was able to make the
reconstruction of the data set nearly 30 times faster than with
OI.

Completely blank images cannot be reconstructed by the
original DINEOF approach because no statistical measure
can be derived from it. If time-correlation is know, similarly
to OI, this can however be exploited to reconstruct images
at any time by time-interpolating the EOF amplitudes, us-
ing time-correlation functions similar to OI correlation func-
tions.

DINEOF provides as result a Singular Value Decomposi-
tion of the data matrixX=U6VT where6 contains the sin-
gular valuesρi (ordered as usual with decreasing amplitude)
on the diagonal and whereU andV are normalized according
to

UTU = I, (10)

VTV = I. (11)

We do however only consider theN first EOFs to be signif-
icant so that the truncated SVD is our best estimate of the
field:

XN
= UN6NVN T

, (12)

whereUN is am×N matrix with N columns containing the
first N spatial EOFs,VN is an×N matrix with N columns
containing the firstN temporal EOFs and6N a diagonal ma-
trix of size N×N containing the firstN singular valuesρ.

The truncated SVD expansion defines the reconstructionxr
i,j

of the field.
Hence we consider that theN retained modes contain the

signal and that the remaining modes contain noise. This
noise is not necessarily the noise in the sense of OI, because
it might still contain some components of the signal. The
method is simply not able to distinguish those from noise
during the cross-validation. Because the spectrum of the re-
jected modes is flat, we can however be relatively confident
in the separation process. Note that this rejection of higher
EOFs is also coherent with the fact that to accurately esti-
mate higher EOFs, very large sample sizes are needed (e.g.,
North et al., 1982).

If the initial matrix was complete and contained homoge-
neous noise, we would have
n∑

i=1

ρ2
i =mn (σ 2

+µ2) (13)

N∑
i=1

ρ2
i = mn σ 2. (14)

This first equality simply expresses the SVD property which
states that the sum of all singular values squared equals the
total variability of the data (e.g.,von Storch and Zwiers,
1999). The second one states that the firstN modes account
for the variability of the signal if we call the firstN modes
the signal.

For the matrix withM missing data, we cannot base the
calculation of the noise value on the singular values, because
the reconstruction is only valid for the firstN EOFs. How-
ever Eq. (14) remains valid because the firstN EOFs are sup-
posed to be correctly specified, otherwise the whole DINEOF
reconstruction is at doubt.

To estimate the noise (or variability that is not recon-
structed by the EOF expansion), we have a series of points
for which data are available before reconstruction (where
there are no clouds). The noise can thus be evaluated as the
difference between the original valuesx and the filtered ones
xr

µ2
=

1

mn − M

∑
xij not missing

(
x2
ij − xr

ij
2
)

(15)

using only the original data valuesxij and the reconstruction
xr
ij in thenm−M not missing data points.

4 Least-square fits and Optimal Interpolation

We will now use the covariance matrix from the DINEOF de-
composition in an Optimal Interpolation approach. Instead of
using a prescribed covariance matrix for OI, we can invoke
the ergodic theorem and replace statistical averages by time
averages if a sufficiently large amount of images are avail-
able. Hence the covariance matrix can be based on our SVD
decomposition and the covariance between each couple of
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grid points is now calculated as an average over then images
instead of an infinite statistical ensemble1:

D =
1

n
XXT. (16)

This is, however, not a very good estimate of the covariance
matrix because we only trust the firstN EOFs. If we define
scaled spatial EOFs

L =
1

√
n

UN6N , (17)

whereL is a matrix withN columns, each of which is the
spatial EOF scaled by the singular values and (for conve-
nience) by 1/

√
n. The N retained significant EOFs lead

therefore, exploiting the truncated SVD decomposition and

VN T
VN

=I, to the field covariance

B =
1

n
XNXN T

= LLT, (18)

since we assumed that the firstN EOFs contain signals and
the remaining EOFs some noise.

As already mentioned, the observation error covariance
cannot be determined by our DINEOF expansion because the
higher EOFs are not significant. But if the explained variance
is well captured byB, we can try to model the observational
errors as being uncorrelated. Knowing the total variance of
the data and the reconstructed field variance, we can estimate
the noise. In other words, the observational error varianceµ2

is taken to be the variance not retained within the EOF ex-
pansion. Assuming the observational error uncorrelated we
therefore would model

R = µ2 I, (19)

whereµ2 is given by Eq. (15). The assumption that the errors
are uncorrelated might be questioned for satellite data, where
atmospheric corrections and associated errors are likely to
contain spatial correlations. In this case a non-diagonal ma-
trix should be used, exactly as in the original OI method. We
then face however a) the problem of specifying the correla-
tion functions and b) the problem of inverting the covariance
matrices. In some cases (e.g.,Barth et al., 2006), when er-
rors are correlated at a prescribed scaleL, an intermediate
complexity approach can be implemented: first, OI is per-
formed with the full error-covariance matrix to serve as a
reference solution; then the analysis is repeated with a diago-
nal error-covariance matrix where the diagonal is, compared
to the non-diagonal version, inflated by a factorr . It turns
out numerically that when the inflation factorL2/1x/1y is
used, the analysis is closest to the reference solution. This is
readily understood in terms of number of “independent data”

1Having removed the data mean, the denominator should be
n−1 for the estimation of the covariance matrix, but the final in-
terpolation result is independent of this scaling.

used during the analysis step. For the present paper, we there-
fore assume that we can take into account correlated noise by
inflating the diagonal form of the error-covariance matrix, the
calibration of which will be performed in Sect.6.3. Should
there be better information on the error-covariance structures,
a full matrixR should be used, exactly as in OI.

Having nowR, the covariance matrix of the noise unex-
plained by the firstN EOFs and the field covariance matrix
B, we can use standard OI on a single image to interpolate ev-
erywhere, including missing points and data covered points.
Here we assume the points are ordered2 and the firstmp grid
points are present and the remainingm−mp=mm are miss-
ing. We partition the covariance matrix correspondingly

B =

(
Lp

Lm

)(
LT

p LT
m

)
=

(
LpLT

p LpLT
m

LmLT
p LmLT

m

)
, (20)

whereLp contains for example the firstmp rows of L, i.e.,
the EOF values at points for which data are available.

The covariance matrix between data points is then simply

Bp = LpLT
p. (21)

The rowi of(
LpLT

p

LmLT
p

)
(22)

can be written asiTLT
p, wherei is column array of dimension

N×1 containing the values of the N scaled EOFs at grid point
i (irrespectively if whether or not the data are missing). We
can easily interpretiTLT

p as the covariancecT(ri) used in OI.
The analysis in pointi then provides

ϕi = iTLT
p

(
Bp + R

)−1
d. (23)

In particular for all points with data, we can construct the
vector of the analyzed fieldxp:

xp = LpLT
p

(
Bp + R

)−1
d. (24)

Similarly, for all missing data points, according to Eq. (2),
we must use the covariance between data and missing points
applied to the

(
Bp+R

)−1
d to calculate

xm = LmLT
p

(
Bp + R

)−1
d. (25)

We see that we can calculate the analyzed field in all points
written in a compact form3:

x =

(
Lp

Lm

)
LT

p

(
LpLT

p + µ2 Ip
)−1

d

= L LT
p

(
LpLT

p + µ2 Ip
)−1

d. (26)

2This is not a restrictive hypothesis, in practise it amounts to use
indirect indexing in matrices rather than to perform a sorting before
application of the method.

3The reader used to data assimilation can recognise the analysis

x=BHT
(
HBHT

+R
)−1

d whereH is the observation matrix, here

containing only a mask of zeros and ones.

Ocean Sci., 2, 183–199, 2006 www.ocean-sci.net/2/183/2006/



J.-M. Beckers et al.: Cloud filling and error calculations 187

Now, assuming the inverse matrix involved in the calculation
exists and because of Eq. (A2) from the appendix, this is
equivalent to

x = L
(
LT

pLp + µ2 IN
)−1

LT
pd. (27)

We will now show that this is nothing else than a regularised
least-square fit to the firstN EOFs trying to find theN com-
ponents of amplitude column vectora so thatx=La. Indeed,
minimizing the distance of the data points to the linear com-
bination of scaled EOFs by solving the (in general overdeter-
mined) problem

Lpa = d (28)

is a classical problem (e.g.,Lawson and Hanson, 1974) and
its regularised solution is

a =

(
LT

pLp + µ2 IN
)−1

LT
pd. (29)

This leads directly to Eq. (27) when the reconstruction uses
the weightsa to combine EOFs everywhere. Hence this
is equivalent to OI. The major advantage of Eq. (27) com-
pared to OI is its reduced calculation cost. The matrix inver-
sion asks forN3 operations in the least-square fit andm3

p in

standard OI (typicallyN=20 whilemp=106 for satellite im-
ages). The construction of the matrix to invert is proportional
to mpN2 for the least-square fit and the remaining matrix
multiplications ask formN operations. Sincem, mp�N the
dominant cost ismpN2, several orders of magnitude smaller
thanm3

p for a standard OI.
The gain is due to the fact that we can factorize the data-

based covariance matrix because of the SVD decomposition
found by DINEOF. Using covariance matrices based only
on available data (Boyd et al., 1994; Kaplan et al., 1997; von
Storch and Zwiers, 1999; Eslinger et al., 1989) or prescribed
covariance functions leads to a full matrixB and the need to
invert themp×mp matrix.

Error subspace based Kalman filters such as the Re-
duced Rank Square Root Filter (Verlaan and Heemink,
1997), the Singular Evolutive Extended Kalman filter (Pham
et al., 1998) and the Ensemble Square Root Kalman Fil-
ter (Evensen, 2004) use an equivalent approach. Since the
model error covariance can be decomposed in a similar way
as Eq. (18), the analyses in those filters are performed in the
low-dimensional error subspace instead of the space contain-
ing the observation space. The special structure of the error
covariance matrix in DINEOF seems to indicate that it is less
general than OI. This is true insofar as the specification of
covariance matrices is left open for choice. In reality these
covariance matrices should be the real ones, and DINEOF
estimatesB from the data themselves.

In practise, in order to construct the matrix to invert, there
is no need to partition the matrices into missing and non-
missing data points: it is sufficient to use the EOF values

only where data are present. The productLT
pLp is for ex-

ample simply obtained by creating anN×N matrix usingL
with a mask of zeros in missing data points. Even simpler, in
the loops which perform the productLTL, the use of a sim-
ple flag indicating missing data allows to disregard the cor-
responding contributions and a direct calculation ofLT

pLp.

5 Error fields

In Alvera-Azćarate et al.(2005) we observed that the least-
square fit approach and DINEOF are very close in terms of
results. Hence we can use the error-estimates of OI as a
proxy for the error-fields of DINEOF, with a subsequent a
posteriori verification that the difference between OI and DI-
NEOF reconstruction is smaller than those error fields. To
calculate the error field, we would rather like to apply a
method similar to the least-square fit instead of an equivalent
standard OI error calculation because of the dramatically dif-
ferent problem size. In OI, the error in a given point can be
assessed by the analysis of the covariance between this point
and data points, see Eq. (5). For a grid pointi (located inri),
this is normally performed as

ε2
= ϕt (r i)

2 − iTLT
p

(
LpLT

p + µ2Ip
)−1

Lp i, (30)

but we prefer the mathematically equivalent form (see Ap-
pendixA),

ε2
= ϕt (r i)

2 − iT
(
LT

pLp + µ2IN
)−1

LT
pLp i, (31)

leading to a much smaller matrix to be inverted. The local
field variance can be estimated as the diagonal componenti

of B which is nothing else than

ϕt (r i)
2 = iTi. (32)

Then, all we have to do is to calculate once and for all for a
given image

C = I −

(
LT

pLp + µ2IN
)−1

LT
pLp

= µ2
(
LT

pLp + µ2IN
)−1

. (33)

To calculateC, we need to invert a matrix of the rather small
sizeN×N and from there we calculate the error variance in
each grid point as the quadratic form

ε2
= iTCi, (34)

demandingmN2 operations to form the matrix products inC
andN3 operations to invert as before.

One could also calculate the error-covariance matrixE
of the analysis, from which the local error field is retrieved
along the diagonal:

E = LCLT
= µ2L

(
LT

pLp + µ2IN
)−1

LT
= SST

, (35)

www.ocean-sci.net/2/183/2006/ Ocean Sci., 2, 183–199, 2006
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whereS=LC1/2 has onlyN columns and allows therefore
an efficient storage and manipulation of the information con-
tained inE. The square root ofC can be calculated efficiently
and be re-evaluated almost at no cost for different values of
µ if required (see AppendixB).

For very weak or very strong noise we can show (see Ap-
pendixC) that the relative error behaves as follows:

– For smallµ

ε̄2

σ 2
∼

µ2

σ 2

N

mp

. (36)

– For largeµ

ε̄2

σ 2
∼ 1 −

σ 2

µ2

mp

N
. (37)

In both situations the factorµ2N/(mpσ 2) appears, which
can be interpreted as the ratio of observational errors (µ2IN )
versus the background error captured by the EOFs (Lp

TLp)
and hence the relative weights in the analysis step.

In any case, we are now in a position to calculate error es-
timates in each grid point according to Eq. (34), with a total
cost that is proportional tomN2, both for the construction of
C and the error calculation. As before, in practise, the calcu-
lation ofC can be done by an adequate flagging of operations
during matrix multiplications instead of preliminary parti-
tioning. In summary, we calculate first the DINEOF decom-
position, then an extremely fast objective analysis of each
image based on a reformulation into a small least-square fit
problem using the DINEOF based covariance matrices, and
finally we can generate the OI error map of each image at
almost no additional cost compared to the analysis itself.

In addition to the error fields, the error-covariance ma-
trix can also be calculated, particularly efficiently when the
square root ofC is calculated. The SST error covariance is
for example a necessary information for the calculation of
the uncertainty of spatial averages, such as the estimation of
the ocean surface heat content. This application can benefit
of the DINEOF cloud free SST to integrate over the entire
domain. But the estimation of the error variance of the total
heat content not only necessitates the error variance but also
the error covariance since the error tends to be correlated in
space. Ifφ̄=

1
m

∑
i xi is the spatial average value of the anal-

ysed field, the associated error-variancee2 is indeed

e2
=

1

m2

∑
ij

Ei,j (38)

whereEi,j are the covariances found in the error-covariance
matrix E of the analysis. Note that when the errors are ho-
mogeneous and uncorrelated, the error-variance of the mean
is the local error divided by the number of data points.

We have however still to prove that the use of covariance
matrices based on DINEOF leads to physically acceptable
results. To do so, we will now test the method on a large data
set of SST.

6 Application to Sea-Surface Temperature around the
Corsican Island

The method will now be tested in the Mediterranean Sea
around Corsica. The circulation in the Ligurian Sea describes
a permanent cyclonic gyre, which is more intense in winter
(Larnicol et al., 1995). This intensification and the increased
transport through the straits can be explained in terms of
steric sea level slope and is mainly due to net sea-surface
heat flux (Vignudelli et al., 2000).

Two northward currents surrounding the coast of Corsica,
the West Corsican Current (WCC) and the East Corsican
Current (ECC), join in the Ligurian Sea and form the North-
ern Current (NC). The NC seasonal cycle is modulated by
variations in volume and heat content of the ECC and WCC,
and presents its highest transport values in winter (Vignudelli
et al., 2003). It has been shown (Orfila et al., 2005) that the
SST seasonal cycle in the Ligurian Sea is linked to the North
Atlantic Oscillation, which can affect the strength of the win-
ter season. The NC is mainly formed by warm modified At-
lantic water, which is separated from the colder central basin
by the Liguro-Provençal front. On average, the waters in the
central Ligurian Sea are colder than those nearer the coast,
the two being separated by the front (see Medar climatology
for example,Rixen et al., 2005).

The NC flows south-westward following the French and
the Spanish coasts along the continental slope, completing
the cyclonic loop. The signal of the NC extends from the
north of Corsica to as far as the Catalan Sea (e.g.,Astraldi
et al., 1999; Millot , 1999). The main currents contributing
to the circulation in the Ligurian Sea can be seen in Fig.1.
In the Tyrrhenian Sea, east of Corsica and Sardinia, the oro-
graphic effect of the two islands induces a windstress that is
responsible for a general cooling east of the Bonifacio strait
between the Islands (e.g.,Millot and Taupier-Letage, 2005)
and a dipole (anticyclonic/cyclonic) structure of the circula-
tion (e.g.,Astraldi et al., 1994).

6.1 Description of the data set

AVHRR Pathfinder version 5 SST data from 1 January 1995
to 31 December 2004 have been taken from the Jet Propul-
sion Laboratory web site (ftp://podaac.jpl.nasa.gov). The
data are daily averaged SST maps, and only nighttime passes
are used in this study, to avoid daytime surface heating. A
region covering the waters around the Corsican Island, in the
northwestern Mediterranean Sea has been chosen because of
available data and research projects going on in the region
(see Fig.1). Only images containing at least 5% of valid
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data are retained, with a maximum ofm=5995 data points
for a cloud-free image, each data point representing a grid
box of 4 km×4 km. From the initial 3653 images,n=2640
are retained using this criteria (about 72% of the initial data).
The mean cloud coverage of this data set is 55.2%.

The time and space average of the SST data has been
substracted from the observations. With this definition of
anomalies, the first EOF will represent the seasonal cycle.
The benefit of including the seasonal cycle is that the recon-
struction will be able to represent the modulation of the sea-
sonal cycle (like the 2003 heatwave or 2004, the year “with-
out summer” in Europe). But we recognize that there are also
drawbacks. If only a few data points are present, the method
could produce a winter SST distribution in summer. This is
one of the reasons why we do not attempt to reconstruct SST
fields with less than 5% data. After taking this precaution,
we did not observe such problems.

6.2 SST estimation

This 10-year record of SST data has been reconstructed us-
ing DINEOF. We chose such a long SST time series in order
to be able to represent some (recurrent) mesoscale features.
For the cross-validation, a set of initially present points is set
aside and considered as missing. The reconstruction of these
points is then compared to their initial value, to establish
the error of the reconstruction. Usually, the cross-validation
points are chosen randomly from the whole data set, but in
this work we used clusters of points with the shape of real
clouds extracted from the initial cloudy data set. These points
represent more realistically the missing data, so the error of
their reconstruction reflects more accurately the actual error
of the reconstruction. We randomly chose clouds from the
data set and add them to the 50 cleanest images, to be sure
that the data masked were initially present. About 4.4% of
the initially present data were masked in this way, and this
4.4% of data were used in the cross-validation to find the
number of optimal EOFs minimising the error of the recon-
struction.

The lowest error, 0.42◦C, was obtained by using theN=11
leading EOFs. We found that the optimal number of EOFs
for the reconstruction is sensitive to the distribution of the
chosen cross-validation points. The larger the region ob-
scured by the clouds is, the fewer EOFs are used for the re-
construction. This indicated that only certain EOF modes
with sufficiently large scale features can be reliably recon-
structed, while high-order EOF (representing small scales)
cannot be estimated given the typical cloud size in the Lig-
urian Sea. In other words, mesoscale features covered by
clouds are under-sampled from the start and cannot be reli-
ably reconstructed and the optimal number of EOFs included
only the 11 most dominant EOFs, discarding most of the
mesoscale signal.
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Fig. 1. Zone of interest around the Corsican Island in the North-
western Mediterranean Sea. The Northern Current (NC), flowing
southwestward is formed by the Western Corsican Current (WCC)
and the Eastern Corsican Current (ECC). Strong frontal regions
are associated with these currents, as the Liguro-Provençal Front,
which follows the path of the NC. BS stands for Bonifacio Strait.

6.3 Error estimation

Equation (15) allows us to estimate the error variance from
the variance filtered by the EOF reconstruction. First exper-
iments revealed that the spatial error correlation of the SST
observations could not be neglected and should be translated
into a non-diagonal matrixR. However, such a non-diagonal
error-covariance matrixR would require the inversion of a
mp×mp matrix. This matrix tends also to be more and more
ill-conditioned if the correlation length is large. Computa-
tions with non-diagonal error covarianceR are thus numer-
ically prohibitive. In addition, it is not always clear how
to specify off-diagonal terms. One straightforward way to
circumvent this problem is to sub-sample the data such that
the observations can be considered as independent. Another
method is to retain the full observations data set, but to de-
crease the “weight” (i.e. increase the error variance) of the
observations. It can be shown (e.g.,Barth et al., 2006), that
the error variance must be multiplied by the numberr of
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Fig. 2. Spatial SST correlation as a function of distance.

redundant (or strongly correlated) observations:

R = rµ2 I. (39)

For a two-dimensional dataset, the factorr can be estimated
by:

r ∼
L2

1x1y
(40)

whereL is the correlation length of the observational error
and1x and1y are the zonal and meridional resolution, re-
spectively.

If we replaceµ2 by rµ2 in the asymptotic case for low
noise we have

ε̄2 ∼ µ2 NL2

mp1x1y
∼ µ2NL2

S
(41)

where the surfaceS represents the observed area of the do-
main. S divided byL2 is the number of really independent
data used and it can be interpreted as the observed degrees
of freedom or the number of EOF modes constrained by the
observations at a particular time instant. The ratioN/(S/L2)

is thus a measure on how well theN EOFs could be captured
by theS/L2 independent scalars present in the data set. Con-
sequently, the more EOF modes are constrained, the smaller
the average error will be.

It remains to determine the adequate value ofr. Two meth-
ods were tested.

1 From the DINEOF cross-validation we already know
that the error of the reconstruction of initially-missing
points is 0.42◦C. We used this information to calibrate
the correlation lengthL (or equivalently the parameter
r). Different length scalesL were used until the er-
ror fields from the analysis gave on average a value of
0.42◦C under the clouded regions. Here we see how the
square root matrix ofC could be of interest. Indeed, a
change ofµ2 during the calibration process solely mod-
ifies the diagonal matrix, all other parts remaining un-
changed. Hence the calculation of the error fields for

anotherµ is extremely fast. From this procedure we
obtained a correlation length for the observational error
of 66 km and a parameterr=276.

2 In the second approach, a method similar to the cross-
validation in DINEOF is used: using the same artifi-
cial clouds as for the cross-validation in DINEOF, the
parameterr is calibrated until the difference between
the optimally interpolated values under these artificial
clouds is as close as possible to the observed ones.
Note that for this approach we use a covariance matrix
of DINEOF calculated also disregarding the same data
points in order to be consistent with the DINEOF cross-
validation. With this second approach, a value of 29 km
is found for the correlation length of the observational
error.

The question arises which of the two approaches is the
more realistic one. Method 1 should provide the most co-
herent error estimates (because of the criteria for method 1)
while method 2 should provide the best analysis (because of
the minimisation of the error itself). A possible criteria to
choose a method is a comparison with the correlation length
of the SST anomalies. For in situ data, we would expect
the correlation length of the observational error to be smaller
than the correlation length of the SST anomalies. For satellite
images, notably because of the atmospheric corrections, this
might be questionable and scales might become comparable.
In this case, DINEOF, without any information on these large
scale errors, will interpret them as signal. Hence we expect
that what we consider noise must have a correlation length
smaller than the signal we reconstructed.

Independently from the cross-validation error, we esti-
mated therefore the correlation function of the SST anoma-
lies directly from the available data, where their spatial mean
has been subtracted. This correlation function is shown in
Fig. 2. The correlation length scale of the SST defined by
the correlation threshold ofe−1

∼0.37 is 80 km (the cho-
sen threshold is based on a correlation function of the type
e−d/La whered is the distance. This simple approach can be
justified since the correlation curve appears not to be affected
by much noise and resembles an exponential. Even if the ex-
act value ofLa depends on the different correlation functions
that could be fitted, since the inflation approach itself is an
approximation, we contented ourselves with an approximate
value ofLa to which we can compareL).

The value we obtain is in agreement with both error length
scales, and it seems that the SST length scale is larger (but of
the same magnitude) than the SST error length scale. Both
calibration methods for the correlation length of the observa-
tional error are thus not incoherent with the correlation length
of the signal. Since in addition the analysed fields are very
similar for both values and the error fields are not fundamen-
taly different (compare panels c and d of Fig.3 with panels a
and b of Fig.4), no further optimisation seems necessary for
the moment. Hence we present the results from the second
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(a) satellite SST
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Fig. 3. Panel(a) is the observed SST on 15 November 1998. Panels(b) and (c) show the reconstruction by DINEOF and by optimal
interpolation based on the same EOFs and a correlation length of 29 km. The estimated error standard deviation for the reconstruction is
shown in panel(d).

approach, based on the analysis error minimisation and lead-
ing to a clearer separation of the scales of noise (29 km) and
signals (80 km). Note that the internal radius of deformation
has a value of 4–7 km during winter in this region (e.g.,Barth
et al., 2005) leading to an associated wavelength of unstable
motions of the order of 6 times the deformation radius (e.g.,
Cushman-Roisin, 1996), i.e. 25–44 km. The meanders of
the Northern Current exhibit a typical length scale of 30 km
to 60 km (e.g.,Sammari et al., 1995).

Because the error estimates for method 2 are generally
lower than for method 1, we will also be more severe us-
ing method 2 when deciding whether the difference between
the OI and DINEOF reconstructions fall within the error bars
or not. In order to confirm the validity of our approach con-
sisting in taking the error fields from OI as error fields for
DINEOF, the RMS difference between SST estimations from

OI and DINEOF should indeed be smaller than this error es-
timation. The RMS difference between both fields is 0.17◦C
and indeed smaller than the average error:√√√√ 1

mn

m∑
i=1

n∑
j=1

ε2
ij = 0.24◦C. (42)

We also computed the difference between DINEOF SST (xr )
and the OI SST (xr,(OI)) scaled by the error estimation:

yij =

(
xr
ij − x

r,(OI)
ij

)2

ε2
ij

. (43)

In 93% of the data points the scaled difference is lower than
1. This means that for the vast majority of the data points, the
difference between both reconstructions is smaller than the
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(a) SST reconstructed by EOF−based OI
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Fig. 4. Panel(a) SST on 15 November 1998 reconstructed by optimal interpolation using the same EOFs than DINEOF and a correlation
length of 66 km. The estimated error standard deviation for this reconstruction is shown in panel(b).

error estimation. However, this analysis takes only the error
variance into account. The error estimation method also pro-
vides the error covariance. This enables us to establish the
significance of the difference between reconstructions know-
ing the spatial correlation of the error. We assume that both
reconstructions are a realisation of the Gaussian distributed
random variable with possibly different means but the same
covariances, i.e. the error covarianceE given in Eq. (35):

xr
j ∼ N (mr

j , Ej ), (44)

xOI
j ∼ N (mOI

j , Ej ), (45)

wherej is the temporal index for the image under consider-
ation. The difference also follows a Gaussian distribution:

dj = xr
j − xOI

j ∼ N (mr
j − mOI

j , 2Ej ). (46)

In order to transform this distribution into a normal one, we
introduce the matrix̃S:

S̃ =

√
n

2
C−1/26N−1

UN T
, (47)

which transforms the covariance matrix of the differencedj

into the identity matrix:

S̃Ej S̃
T

=
1

2
IN . (48)

The transformed variable follows therefore:

zj = S̃dj ∼ N (S̃(mr
j − mOI

j ), IN ). (49)

We will examine if the difference between both reconstruc-
tions is significant to reject the null-hypothesis (H0):

mr
j = mOI

j . (50)

In this case we would accept the alternative hypothesis H1:

mr
j 6= mOI

j . (51)

Under the null-hypothesis, the transformed variablez follows
a normal distribution.

zj ∼ N (0, IN ). (52)

Now we can test if our samplezj has a mean significantly
different from zero. We compute the average ofzj over all
EOF modes and over time,z. This mean is smaller than the
critical zα/2 value used in a two-sided z-test forα=0.05.

|z|
√

Nn = 0.93 < zα/2 = 1.96. (53)

This statistical test shows that the averaged difference be-
tween the OI reconstruction and the DINEOF reconstruction
are not sufficiently large to be statistically significant.

The previous test measured the magnitude of the bias. We
can also perform a test based on the L2-norm. Under the
null-hypothesis the sum of the squaredzij follows a χ2-
distribution withNn=29 040 degrees of freedom. If this sum
exceeds the critical value of 28 644, then the null-hypothesis
must be rejected. But in our case, this value is again below
this threshold:∑
i,j

z2
ij = 3703< 28 644. (54)

where thez-values are summed over time and over the EOF
modes. Both tests show that the null-hypothesis cannot be re-
jected. This does not prove, however, that the hypothesis H0
is true. If there is any difference in the reconstructionsmr

j
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andmOI
j , then the difference is so small that it could not be

detected by the current sample. But the fact that we are using
a large sample of 2640 images (corresponding to 10 years of
data) gives us confidence that if there is any difference be-
tween both reconstructions, it must be small. Therefore we
conclude that the OI reconstruction and the DINEOF recon-
struction are sufficiently close for the OI-derived estimation
to be also a valid error estimation for the DINEOF recon-
struction.

6.4 Validation

The validation of the DINEOF analysis itself against in situ
data has been already presented in previous papers. The ver-
ification of error fields is much more delicate and in reality
it amounts at validating the error-covariance matrix which
needs a large amount of data. Nevertheless, we can attempt to
validate the error estimates by using in situ observations and
the data set aside during the cross-validation. We calculated
the difference of the reconstructionxr with the original data
x at the cross-validation points. In principle, this distance
should be scaled by the error-covariance matrix (Eq. (49))
as we did when we compared OI and DINEOF. In order to
simplify the analysis, we can just calculate, neglecting the
correlations of the errors,

z = diag(ε)−1(xr
− x) (55)

where diag(ε) is a diagonal matrix whose elements are the
local standard deviations of the errors predicted by Eq. (34)
at the data locations. For method 1, we get, using all avail-
able cross-validation points, an RMS value of 1.07, close to
the expected value of 1. The difference might be due to the
correlations we neglected. Hence we repeated the calcula-
tion not using all cross-validation points, but 200 randomly
chosen points. We can expect these data to be independent
and when calculating the RMS value of Eq. (55), we obtain
0.996, which is a nearly perfect match. For method 1, the
error fields are therefore perfectly coherent with the actual
distribution of differences between the reconstruction and the
data set aside under the artificial clouds. Since method 1 was
designed to provide the most coherent error fields, this is the
best we can expect.

For method 2, the RMS value is now 1.88, suggesting that
with the smaller value of the error-correlation length, we gen-
erally underestimate the errors. Looking into the details of
the distribution, it appears that mostly the small errors are
underestimated. This can be explained by observing that the
error correlation length basically controls the base error in re-
gions with large data coverage and low errors as in Eq. (41).
The variance scales asL2, so that standard deviation scales
asL at low noise. This is confirmed by comparing the error
fields of Figs.3 and4 in the cloud-free regions. Hence for
method 2, which has an error-correlation length roughly half
of that of method 1, we underestimate the small errors by

a factor 2, hence the RMS value of 1.88 for the normalized
error.

In view of the previous analysis, method 1 should be pre-
ferred for coherent error maps. The question that now comes
into mind is how the error estimates compare to in situ data.
For this exercise, 845 near-surface (1 m depth) temperature
observations have been extracted from the MFSTEP database
(http://www.ifremer.fr/mfstep/), 122 data points correspond-
ing to unclouded points and the rest to clouded regions. For
the validation of the error fields, we have to be conscious that
we are now comparing different temperature measurements.
Up to now we have only dealt with satellite data, and when
speaking about errors, we only took into account the noise
on the actual information at the satellite sensor and subse-
quent interpolation errors under the clouds. In this sense,
the error maps are error maps for pure satellite information.
When comparing with in situ data, we have to keep in mind
that the latter represent a different thing and compared to the
satellite we will add representativity errors and possibly bias.
Also, correlated errors, due to atmospheric correction that
DINEOF has interpreted as signal, will now show up as ac-
tual errors. Hence the error maps provided up to now are not
a direct measure of the errors compared to the in situ data.

To make them comparable, we can first note that the dif-
ference between analysed and original satellite data at cloud-
free points where we have in situ data gives us an estimate of
the noise in the satellite data (0.22◦C) that we cannot inter-
pret as signal with the interpolation method. A comparison of
original satellite SST and in situ data then provides a measure
of error now including representativity and bias compared to
the previous one. This yields an RMS value of 0.687◦C.

The difference between the two previous values provides
therefore the minimal errorεmin we are going to make for a
cloudless image, now compared to the in situ values. The
value of 0.45◦C we obtain is clearly typical of the expected
precision or incompressible base error, similar to those ob-
tained inMarullo et al (2006) for the same region.

Now, when comparing the error mapε calculated with
DINEOF with the actual differences between reconstructed
satellite data and in situ dataxis, we have to scale by the
sum of the interpolation error and incompressible base error,
instead of the sole interpolation error:

z = diag(ε + εmin)
−1(xr

− xis) (56)

Here, in situ data can be considered independent so that the
components ofz should have a gaussian distribution with
unit standard deviation. The RMS value calculated is 0.96
and the distribution is shown in Fig.5, confirming our con-
clusions that the calculated error fields are meaningful.

6.5 Results

As an example of the reconstruction, Fig.3 shows a SST
snapshot on 15 November 1998 (panel a). The central part
of the Ligurian Sea and a fraction of the Tyrrhenian Sea are
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Fig. 5. The histogram shows the distribution of the difference
between reconstructed SST and near surface in situ temperature,
scaled by the error estimation including representativity errors. The
solid line represents the theoretical normal distribution.
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Fig. 6. Standard deviation of SST over the studied time period
including the seasonal cycle.

present in the observed SST. As one would expect, the esti-
mated error standard deviation is the lowest in those regions.
The error increases gradually and is highest far away from
the existing observations. Although the background error co-
variance is defined by global EOF modes and does therefore

not include an explicit correlation length scale, the presented
error estimation method was able to quantify the local effect
of clouds on the error variance.

East of Corsica (approximatively at 42◦ N and 9◦30′ E) the
error estimation is relatively high despite the presence of ob-
servations nearby. The SST standard deviation over the stud-
ied time period (Fig.6) is particularly high in this region.
During summer this zone is warmer than e.g. the west coast
of Corsica. The shallower depth of the east coast of Corsica
shields this zone from the large-scale ocean current. This
example shows that the error estimation takes also the vari-
ability of the field into account.

Although the Northern Current is covered by clouds in
this snapshot, its SST signature has been reconstructed by
DINEOF (panel b) and the OI method (panel c) using the
error covariance the EOFs computed by DINEOF. It is un-
likely that an OI method using an isotropic and homoge-
neous error covariance would be capable of reconstructing
the Northern Current in a situation where very few data are
available. To test this possibility, we have made a compar-
ison between the DINEOF reconstruction and an isotropic
OI reconstruction on 30 December 2003. The cloudiness
at and around this date is especially high, with some days
with no data at all, which makes it appropriate for our pur-
poses. Using a time window of 5 days, observations from the
26 December 2003, 27 December 2003, 30 December 2003
and 4 January 2004 are available for the OI reconstruction,
shown in Fig.7. These four days present a mean cloud cover-
age of 76.7%. For the OI reconstruction, a spatial correlation
length of 80 km (consistent with the correlation length for the
Ligurian Sea found in Sect.6.3) and a temporal correlation
length of 3 days are used.

The OI reconstruction (Fig.8) is degraded by the data on
26 December 2003, mostly in the western part of the Ligurian
Sea. This image is the only one that presents a good data
coverage, but the time difference between this image and the
analysed image is 5 days, and the SST on 30 December is
notably colder than on 26 December. This trend is clearly
visible in the unclouded pixels, in particular east of the Strait
of Bonifacio.

The DINEOF reconstruction on 30 December 2003
(Fig. 9) presents smoother values and a more realistic SST
distribution on the western and northern Ligurian Sea. Both
analyses are similar east of the Corsican Island, in the Tyrrhe-
nian Sea, where most data are available. This example shows
the ability of the global DINEOF analysis to produce bet-
ter results than a standard isotropic OI reconstruction when
only a few SST observations are present. The EOF-based OI
reconstruction on this date (image not shown) is similar to
the reconstruction of Fig.9. This shows that OI for satel-
lite data should use point-to-point (i.e., non-homogeneous,
non-isotropic) correlation functions. DINEOF provides such
point-to-point correlation, but with the added possibility of
efficient inversion. We note that the correlation function of
DINEOF do however eliminate some structures such as the
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Fig. 7. Data used in the OI reconstruction of 30 December 2003. The colorbar is the same as in Fig.8.
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Fig. 8. Reconstruction of the SST on 30 December 2003 by Optimal
Interpolation.

one near 43◦ N and 7.5◦ E, but OI also would filter out some
of the signal.

6.6 Inter-annual variability

As an example of DINEOF application we assess if the ac-
curacy of the reconstructed SST is sufficient to study inter-
annual variability of the spatial averaged sea-surface temper-
ature.

The average seasonal cycle has been computed from the
reconstructed SST using all data from 1995 to 2005 filtered
with 15-day cut-off low pass filter (Fig.10). The seasonal
cycle shows an asymmetric behaviour: while the mean tem-
perature remains almost constant at the minimum tempera-
ture during January to March, the maximum temperature is
only reached during a short period of time during August.
The deviations from this seasonal cycle are shown in Fig.11.
The heatwave of 2003 affecting south Europe, in particular
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Fig. 9. Reconstruction of the SST on 30 December 2003 by DI-
NEOF.

France, can be clearly seen from this time series. The error
of the spatial mean SST (Fig.12) has been computed from
Eq. (38) using the error estimates of method 1. Since we
can assume that the error of the seasonal cycle is negligible,
the error estimate represents also the expected error of the
temperature anomaly of Fig.11. The expected error of the
mean SST based on DINEOF is thus more than two orders of
magnitude smaller than the inter-annual signal in SST of our
studied domain. The reconstructed SST is therefore suitable
to study inter-annual SST variability.

The expected error is highly variable in time, but the low-
passed error estimate (cut-off frequency of 15 days) reveals
a seasonal cycle in the error estimation. The reconstruction
has the highest error in winter and is about 25% more accu-
rate during summer. The seasonality of the error estimation
is due to the cloud coverage. The unfiltered error estimation
correlates to 0.85 with the fraction of missing data. The cor-
relation between the filtered error estimation and the filtered

www.ocean-sci.net/2/183/2006/ Ocean Sci., 2, 183–199, 2006



196 J.-M. Beckers et al.: Cloud filling and error calculations

0 100 200 300 400
12

14

16

18

20

22

24

26

time (day)

m
ea

n 
S

S
T

 (
de

gr
ee

 C
)

Fig. 10. Seasonal cycle of the spatially averaged SST using recon-
structed SST from 1995 and 2005 and filtered with 15-days cut-off
low pass filter.
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Fig. 11. Mean SST anomalies and filtered mean SST anomalies
(15-days cut-off frequencies).

fraction of missing data is 0.92. It is rather the fact that for
each image, there are more clouds in winter than in summer,
that explains therefore the higher errors in winter.

If we had taken the simple approach to calculate the
mean temperature using only available data, we would have
obtained another time-series. The difference between the
anomaly of the latter (compared to the same seasonal cycle)
and our estimate of Fig.11 has an RMS value of 0.22◦C,
much higher than the error estimate found in Fig.12. Note
that if we had also taken only the available data to calcu-
late the confidence interval for the mean obtained by the sim-
ple approach, we would have found an expected error on the
mean of 0.012◦C. This is much lower than the actual error
of the simple estimate and yet higher than the error we get
on the DINEOF analysis of the mean. Clearly, the DINEOF
approach provides better estimates of the mean and narrower
associated error bars. Graphically, the time series is not very
different, specially if the filtered time series are compared.
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Fig. 12. Error estimate of mean SST and filtered error estimate
(15-days cut-off frequencies).

filter is used. This is why we chose not to show them. The
error estimates are however very different and in reality the
brute force approach leads to a field that is outside the error
bar of the DINEOF analysis. Stated differently: the brute
force approach with its error bar for the mean around the
signal has no intersection with the DINEOF version and its
error bars (independently of the way we estimate this error:
from the standard deviation of the data or from the typical
error of sensors, 0.3◦C , divided by the square root of the
number of data). Even applying an inflation factor to this,
which amounts to use only the number of independent data
in the estimation of the error on the mean, the same conclu-
sion holds. Hence we must admit that both time series are
significantly different.

7 Conclusions

We presented a method that allows to complement the cloud
filling method DINEOF with local error estimates. The ap-
proach uses the error estimates from optimal interpolation
(OI), itself exploiting the covariance fields provided by DI-
NEOF. Because of the factorisation of the covariance ma-
trix also provided by DINEOF, OI can be performed as a
least-square fit of EOF amplitudes, which drastically reduces
computational requirements. The same approach can be ex-
ploited during the error calculations.

In the present paper we applied the method to the recon-
struction of SST fields in the region around Corsican Island,
including the calculation of the inter-annual variability of
the spatial means. It was shown that this approach allowed
the isolation of inter-annual variability with very small error
bars.

In the present case, the difference between the analysis
provided by OI and DINEOF was shown to be smaller than
the error fields, justifying the use of the error field for both
analyses.
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Should the difference be too large in some applications,
the present method still allows to provide error estimates, but
only for the OI. The latter, however, still benefits from the
covariance factorization of DINEOF.

Another possibility would be to adapt DINEOF so as to
include OI in the iterations, using the covariance from the
EOFs under calculation, as the method of estimating missing
values. Such a hybrid approach would lead to a coherent set
of EOFs, covariance matrix and error fields. This approach
was not yet implemented because in the cases we tested, the
difference between OI and DINEOF were too small to justify
the additional complexification. Probably a more important
point to analyse for further improvement is the inherent hy-
pothesis of the method that cloud coverage is uncorrelated
with the interpolated field. This can probably be justified
for SST when clouds are not persistent but it is already more
questionable for Chlorophyll which reacts rapidly to changes
in insolation or storms associated with clouds. In this case,
additional information from scatterometers and in situ could
probably help improve the detection of patterns of variability
in a multivariate approach.

We finish by mentioning that the definition of the region
covered by the data imposes an a priori constraint on the
scales that are analysed. Global EOFs on the chosen region
do not honour the multi-scale nature of the ocean. While a
global truncated EOF series is unable to represent small-scale
variation, local EOFs ignore large-scale correlation (induced
by processes such as ENSO, NAO,...). If the data coverage is
uniformly dense, as it is the case for satellite data, long-range
correlation can be neglected since the large-scale processes
are well present in the data and “oversampled”. For in situ
data where coverage is highly non-uniform, one needs to in-
clude long and small-range correlations but we think that this
is desirable even for satellite data.

One possibility to tackle a larger-scale problem would be
to reconstruct global SST, e.g., at 1 degree resolution, then
reconstruct the SST anomaly at 1/4 degree (observed SST
minus reconstructed global SST) for each ocean basin inde-
pendently, and then reconstruct the SST anomaly at 1/20 (ob-
served SST minus basin-wide SST) for each sub-basin inde-
pendently, and so on.... At each level one would introduce
more and more small scale features.

Appendix A

Useful matrix identities

–

(
A + UVT

)-1
= A-1

− A-1U
(
I + VTA-1U

)-1
VTA-1 (A1)

–

LT
(
LLT

+ µ2I
)-1

=

(
LTL + µ2I

)-1
LT (A2)

provided the inverse matrix exists andI is an identity matrix
(with 1 on the diagonal) of appropriate dimension.

Appendix B

Square root calculations

If for some reason, the square root of the covariance matrix is
needed, we can use the eigenvector (or SVD) decomposition,

LT
pLp = WT

p3pWp, (B1)

with WT
pWp=IN and 3p a N×N diagonal matrix, which

leads to the following expression ofC:

C = µ2WT
p

(
3p + µ2IN

)−1
Wp. (B2)

The square root matrixC1/2 defined as

C = C1/2
(
C1/2

)T
(B3)

is therefore:

C1/2
= µWT

p

(
3p + µ2IN

)−1/2
. (B4)

Note that the matrix expression in brackets is a diagonal ma-
trix and its square root involves only the square root of its
diagonal elements. BecauseLT

pLp is of sizeN×N , the SVD
decomposition and subsequent calculation of the square root
of C is essentially an inexpensive operation compared to the
analysis.

Appendix C

Error behavior

To have an idea of the amplitude of the analysis error, we can
scale the involved matrices on the following ground: the in-
ner matrix to invert in Eq. (35) involves the grid points with
data and is in fact a covariance matrix between EOF modes
(on average over the points with data). Since on statistical av-
erage the EOFs are independent if allm points are available,
the matrix behaves as a diagonal matrix of sizeN depend-
ing on the singular valuesρi . If only mp points are present,
instead of having a vector product of full EOFs (that would
have a unit norm by construction), the product Eq. (10) over
mp points scales asmp/m . Therefore using Eq. (17) we
have

LT
pLp ∼

mp

m

1

n
6N6N . (C1)

Two extreme situations are worth analysing
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– If the noise is relatively small (compared to the variance
of the data) we have

C ∼ µ2
(
LT

pLp

)−1
, (C2)

so that the error covariance matrix after the objective
analysis with low noise behaves as

E ∼ µ2L
(
LT

pLp

)−1
LT. (C3)

Formally we use a pseudo-inverse should the inversion
become singular. Using the definition (17), this leads to

E = µ2 1

n
UN6N

(
LT

pLp

)−1
6NUN T

∼ µ2 m

mp

UNUN T
. (C4)

The average error over the grid is the trace tr(E) of the
covariance matrix divided by the number of grid points
m. Using the orthormality of the EOFs, this leads to

ε̄2 ∼ µ2 N

mp

. (C5)

In other words, the average expected error is the noise
reduced by the factor depending on the EOF expansion
and data points used. This is probably an overoptimistic
finding, because in reality errors on the data are not in-
dependent and instead ofmp, there should appear the
number of data with uncorrelated errors (see Sect.6.3).
From this analysis, we found that in the case of low ob-
servational errors, the expected error of the reconstruc-
tion is inversely proportional to the number of EOF cho-
sen. This number characterizes the degrees of freedom
in the system. Therefore, the fewer degrees of freedom a
system has, the easier it is to reconstruct missing points
from data in unclouded points.

– At the other extreme, for very large noise

E = L
(

I +
1

µ2
LT

pLp

)−1

LT

∼ L
(

I −
1

µ2
LT

pLp

)
LT (C6)

which using the same reasoning yields

E =
1

n
UN6N 6NUN T

−
mp

mn2

1

µ2
UN

(
6N

)4
UN T

. (C7)

Taking the trace divided bym we recover an average er-
ror. The first term contains the firstN squared singular

values, that we can immediately relate toσ 2. The sec-
ond term contains singular values to the fourth power. If
we assume that the firstN values are similar (and thus
related toσ ) we get

ε̄2 ∼ σ 2

(
1 −

σ 2

µ2

mp

N

)
. (C8)

Here, because of the large noise, the relative error is of the
order of 1, as should be expected.

In both asymptotic cases the factorµ2N/(mpσ 2) appears,
which can be interpreted as the ratio of observational errors
(µ2IN ) versus the background error captured by the EOFs
(Lp

TLp) and hence the relative weights in the analysis step:

tr
(
µ2IN

)
tr
(
LT

pLp

) ∼
µ2N

σ 2mp

(C9)

In this last equation we used Eq. (C1) and the fact that the
sum of the leadingN eigenvalues isnm σ 2.
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allowed to perform this work. The National Fund for Scientific
Research, Belgium is acknowledged for the financing of a super-
computer. D. Gomis made helpful suggestions on error estimates
in an early version of the paper and then provided, together with
M. Rixen, S. Vignudelli, P. Cipollini and two anonymous reviewers,
valuable comments on the discussion paper. The AVHRR Oceans
Pathfinder SST data were obtained from the Physical Oceanography
Distributed Active Archive Center (PO.DAAC) at the NASA Jet
Propulsion Laboratory, Pasadena, CA (http://podaac.jpl.nasa.gov).
This is MARE publication MARE097.

Edited by: P. Cipollini

References
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Orfila, A., Álvarez, A., Tintoŕe, J., Jordi, A., and Basterretxea, G.:
Climate teleconnections at monthly time scales in the Ligurian
Sea inferred from satellite data, Prog. Oceanogr., 66, 157–170,
2005.

Pham, D., Verron, J., and Roubaud, M.: A singular evolutive ex-
tended Kalman filter for data assimilation in oceanography, J.
Mar. Syst., 16, 323–340, 1998.

Rixen, M., Beckers, J.-M., Brankart, J.-M., and Brasseur, P.: A nu-
merically efficient data analysis method with error map genera-
tion, Ocean Modell., 2, 45–60, 2000.

Rixen, M., Beckers, J.-M., Levitus, S., Antonov, J., Boyer, T.,
Maillard, C., Fichaut, M., Balopoulos, E., Iona, S., Dooley,
H., Garcia, M.-J., Manca, B., Giorgetti, A., Manzella, G.,
Mikhailov, N., Pinardi, N., Zavatarelli, M., and the Medar Con-
sortium: The Western Mediterranean Deep Water: a proxy
for global climate change, Geophys. Res. Lett., 32, L12608,
doi:10.1029/2005GL022702, 2005.

Sammari, C., Millot, C., and Prieur, L.: Aspects of the seasonal
and mesoscale variabilities of the Northern Current in the West-
ern Mediterranean Sea inferred from the PROLIG-2 and PROS-6
experiments, Deep Sea Res., 42, 893–917, 1995.

Shen, S., Smith, T., Ropelewski, C., and Livezey, R.: An optimal
regional averaging method with error estimates and a test using
tropical pacific SST data, J. Climate, 11, 2340–2350, 1998.

Toumazou, V. and Cretaux, J.-F.: Using a Lanczos Eigensolver in
the Computation of Empirical Orthogonal Functions, Mon. Wea.
Rev., 129, 1243–1250, 2001.

Vautard, R., Yiou, P., and Ghil, M.: Singular spectrum analysis: a
toolkit for short, noisy chaotic signals, Physica D, 58, 95–126,
1992.

Verlaan, J. and Heemink, A.: Tidal Flow Forecasting using Reduced
Rank Square Root Filters, Stochastic Hydrology and Hydraulics,
11, 349–368, 1997.

Vignudelli, S., Cipollini, P., Astraldi, M., Gasparini, G. P., and
Manzella, G.: Integrated use of altimeter and in situ data for
understanding the water exchanges between the Tyrrhenian and
Ligurian Seas, J. Geophys. Res., 105, 19 649–19 663, 2000.

Vignudelli, S., Cipollini, P., Reseghetti, F., Fusco, G., Gasparini,
G., and Manzella, G.: Comparison between XBT data and
TOPEX/Poseidon satellite altimetry in the Ligurian-Tyrrhenian
area, Ann. Geophys., 21, 123–135, 2003,
http://www.ann-geophys.net/21/123/2003/.

von Storch, H. and Zwiers, F.: Statistical analysis in climate re-
search, Cambdridge University Press, 1999.

www.ocean-sci.net/2/183/2006/ Ocean Sci., 2, 183–199, 2006

http://www.ann-geophys.net/23/1997/2005/
http://www.ocean-sci-discuss.net/3/1191/2006/
http://www.ann-geophys.net/21/123/2003/

