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Abstract. A water mass analysis method based on a con-
strained minimization technique is developed to derive wa-
ter property changes in water mass formation regions from
oceanographic station data taken at significant distance from
the formation regions. The method is tested with two syn-
thetic data sets, designed to mirror conditions in the North
Atlantic at the Bermuda BATS time series station.

The method requires careful definition of constraints be-
fore it produces reliable results. It is shown that an analysis
of the error fields under different constraint assumptions can
identify which properties vary most over the period of the
observations. The method reproduces the synthetic data sets
extremely well if all properties other than those that are iden-
tified as undergoing significant variations are held constant
during the minimization.

1 Introduction

In recent years, the general acceptance of global warming
and the importance of long-range weather forecasting for
modern agriculture have made climate change and variability
an important issue. The interactions of the atmosphere and
the ocean are of great importance for climate research, and
many countries have made these processes a primary focus of
their research programs. This has led to increased recogni-
tion of the role of the oceanic circulation for climate research
and of water masses as elements of climate stability.

Within the broader category of climate research there are
two major types of change to be investigated. Climate vari-
ability takes place over time scales of months, years or
decades and is largely affected by year to year changes in
oceanographic water mass formation. Climate change oc-
curs over longer time periods of centuries or thousands of
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years. Prior to the 1980s, most climate research largely ig-
nored both of these variations to instead focus on the mean
climate, gaining an understanding of how the ocean and at-
mosphere interact, with little consideration of temporal vari-
ability.

With increasingly powerful computers becoming available
to oceanographers a large number of climate and ocean mod-
els have been developed, often on global scales. One of the
key problems facing modellers is the accurate representation
of water mass formation (England and Maier-Reimer, 2001).
To this end, numerous tracers have been incorporated into
ocean models, either for data assimilation studies, model val-
idation or as part of studies into the oceanic carbon cycle.
Water masses integrate changes taking place in the surface
flux in ocean and climate models. This makes them attractive
tools for the detection of climate change in a climate model
(Banks et al., 2002).

Many water masses are formed in sub-polar regions, where
continuous monitoring of air and sea properties can be both
expensive and hazardous. This is especially the case dur-
ing the winter months when most of the water mass forma-
tion occurs. As a result of this, the properties of some water
masses are only poorly understood. A greater understand-
ing of the production of these water masses over long time
periods and changes in their properties is therefore of great
interest to climate researchers.

After the second world war a series of weather ships were
deployed across the Atlantic and Pacific to provide time
series of atmospheric measurements for weather forecasts.
Many of these ships also collected oceanographic data as
standard procedure, leading to some extensive time series of
temperature and salinity. With the deployment of weather
satellites for the same purpose, many of the weather ships
were phased out and the oceanographic time series were
stopped.

Increased interest in climate variability has seen a renewed
interest in time series of oceanographic data. The Bermuda
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Table 1. Source water definitions used in the data simulation model. Temperatures are in◦C, oxygen and nutrient data inµmol/L.

Water Type potential temperature salinity oxygen phosphate nitrate silicate

simWNACW 18.9 36.6 190.0 0.25 6.0 2.0
(upper)*

simWNACW 9.40 35.1 135.0 1.70 24.0 15.0
(lower)

simLSW 3.165 34.832 305.0 1.09 16.4 9.1
simISOW 3.060 34.970 280.0 1.12 17.0 14.6

* only used in data set 2.

Fig. 1. Simulated data set 1 as a function of time. Left: Salinity of the SWTs; right: salinity at five depth levels.

Atlantic Time-series Study (BATS) from the Sargasso Sea
(Michaels and Knap, 1996; Steinberg et al., 2001) and the
Hawaii Ocean Time-Series (HOTS) from Hawaii (Karl and
Lukas, 1996) are two prominent oceanographic time series,
both of which have been running for quite some time collect-
ing high quality monthly data. With the growing availability
of these and other time series, it is important to develop meth-
ods with which to analyse and utilise the increasing volume
of time dependent oceanographic data.

Many existing water mass analysis techniques, in particu-
lar Optimum Multi-Parameter (OMP) analysis and isopycnal
analysis, assume constant water mass properties and are de-
signed for looking at water mass contributions over a wide
area without any temporal variation (Hinrichsen and Tom-
czak, 1993; Karstensen and Tomczak, 1998; Tomczak and
Large, 1989). This approach is valid for analyses of individ-
ual cruises or data sets with no time dependence but is not
always appropriate when looking at an oceanographic time
series. Indeed, one of the primary principles of modern cli-
mate research is that oceanographic and atmospheric proper-
ties vary with time.

In a recent OMP analysis of the BATS data set in the Sar-
gasso Sea near Bermuda in the North Atlantic, Leffanue and
Tomczak (2004) found that the Labrador Sea Water (LSW)
signal apparently disappeared from the data set for a num-
ber of years, at the same time as an increase in analysis er-
ror values was observed. They noticed that by introducing
a time dependence of LSW salinity the error values were
reduced and the LSW signal remained present throughout
the entire time period. They concluded that changes in the
weather conditions over the Labrador Sea during water mass
formation had resulted in variations in the properties of LSW

which were then propagated throughout the North Atlantic,
and which OMP analysis was unable to resolve.

With this in mind, this paper describes the development of
a new water mass analysis tool which can be used to iden-
tify changes in source water properties as well as water mass
contributions from observations of temperature, salinity and
other parameters such as oxygen and nutrients. We gener-
ate a simple simulated data set for this purpose, in which all
source water properties as well as all relative contributions
are prescribed and thus vary in a known manner. We then
apply a technique based on OMP analysis to the data set to
test the feasibility of the analysis. We have chosen to call the
new technique Time Resolving OMP (TROMP) analysis to
indicate its derivation from the original OMP analysis tech-
nique. In a companion paper (Henry-Edwards and Tomczak,
2006) we apply the new method to the BATS data and show
that it is capable of extracting information on variations of
water mass properties in the Labrador Sea from observations
taken near Bermuda.

2 Data and method

Two simulated time series of station data were created to
test the feasibility of a TROMP analysis. Both reflect con-
ditions in the North Atlantic Ocean but with different degree
of closeness to observations. In each data set the water prop-
ertiesPi for all source water masses were predefined through
source water types SWTi , as were the relative contributions
xi at which the water masses contribute to the simulated time
series. These values were then combined using the linear
mixing equation to produce the “measured” property values
Pmeas=6xiPi to generate the time series. A time step of one
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month between each simulated time step was used to repli-
cate the monthly observations from the BATS data set. The
effects of nutrient remineralisation were not included in these
data sets, as they had no impact on the method development.

The first simulated time series used source water
properties for three simulated water masses, Western
North Atlantic Central Water (simWNACW), Labrador Sea
Water (simLSW) and Iceland-Scotland Overflow Water
(simISOW). The SWT definitions were taken from Leffanue
and Tomczak (2004), and simWNACW was represented as a
single SWT through values at the lower end of its distribu-
tion range. Time variations in the time series were produced
by varying the salinity of Labrador Sea Water to match that
of Iceland-Scotland Overflow Water for a period and letting
it return to its initial value thereafter. Table 1 gives the SWT
definitions at the start of the time series; Fig. 1 shows the
time development.

The second data set was based on more realistic variations
of simLSW temperature and salinity. It prescribed the same
time-invariable oxygen and nutrient SWTs, included an up-
per definition for simWNACW, and simulated time variations
of temperature as well as salinity, following the observations
from the Labrador Sea described by Dickson et al. (1996).

Optimum Multi-Parameter (OMP) analysis was first intro-
duced in Tomczak (1981) as an extension of the temperature-
salinity mixing triangle of Helland- Hansen (1918). We refer
the reader to available descriptions for full details of the OMP
analysis procedure (for example Karstensen and Tomczak,
1998) and restrict ourselves to a brief summary, as TROMP
analysis is based on OMP analysis. OMP analysis solves
a system of linear mixing equations to identify the relative
contributions of a number of SWTs in a given data set. In
an analysis of a data set in which four SWTs are present
and measurements for salinity (S), potential temperature (2),
oxygen (O), nitrate (N), phosphate (P) and silicate (Si) are
used as tracers, the system of equations would take the form:

21x1 + 22x2 + 23x3 + 24x4 = 2obs+ R2

S1x1 + S2x2 + S3x3 + S4x4 = Sobs+ RS

O1x1 + O2x2 + O3x3 + O4x4 − αrO = Oobs+ RO
N1x1 + N2x2 + N3x3 + N4x4 + αrN = Nobs+ RN
P1x1 + P2x2 + P3x3 + P4x4 + αrP = Pobs+ RP
Si1x1 + Si2x2 + Si3x3 + Si4x4 + αrSi = Siobs+ RSi
x1 + x2 + x3 + x4 = 1 + R6

Herexi are the relative contributions from each SWT in the
observed property distribution,α is the amount of reminer-
alised material in the water sample,rnutrient are the Redfield
ratios (Redfield et al., 1963; not used for the simulated data)
andR are the residuals that are minimised to solve the equa-
tion. The last line of the equation is the mass constraint func-
tion to ensure that the sum of water type contributions adds
up to 100%. To make water properties commensurable all
variables are non-dimensionalised by dividing through the
difference between the largest and smallest SWT in each row.

In the minimisation, a non-dimensional weighting func-
tion W is added and the equation is re-arranged to take the
form:

R = W × (Ax − b)

whereR is the residual,A is the matrix of SWTs,x is the vec-
tor of relative contributions andb is the vector of measured
water properties. A non-negativity constraint is introduced
to avoid negative water mass contributions. By ensuring the
number of water properties exceed the number of SWTs in
the analysis, the minimisation becomes an over-determined
problem and is solved in a straightforward manner.

Time Resolving Optimum Multi-Parameter (TROMP)
analysis was designed to identify changes in source water
properties from the mixing analysis of a time series of data.
TROMP analysis solves a similar system of equations to
OMP. The main difference is that a TROMP analysis varies
the source water properties as well as the relative contribu-
tions.

The inclusion of source water properties as variables in the
analysis means that the minimisation function becomes non-
linear and highly under-determined. Such systems have an
infinite set of solutions, and it is necessary to impose addi-
tional constraints upon the minimisation in order to achieve
a viable result. The main problem faced during the develop-
ment of the TROMP method was the identification of suitable
minimisation constraints and criteria to establish a procedure
that leads to physically realistic and trustworthy results.

The TROMP analysis operates in two alternating stages,
which are performed at each time step; the first defines ini-
tial values, while the second performs the actual minimisa-
tion. Stage 1 uses SWT values from the previous time step
to determine the relative contributions of each water mass at
the current time step through OMP analysis. Stage 2 takes
the relative contributions determined from stage 1 and the
SWT values from the previous time step as starting values for
a constrained minimisation. Initialisation of the procedure,
i.e. definition of SWTs for the first time step, is either based
on water type definitions from the literature or found through
recourse to data from the water mass formation regions. The
SWTs from the second stage are then carried through to the
first stage of the following time step, meaning that the SWTs
can change smoothly with time.

A sequential quadratic programming method was used in
the second stage to calculate relative contributions for each
SWT and new definitions for selected SWTs as required. The
method solves a quadratic programming sub-program at each
iteration and is implemented in the Matlab function fmin-
con.m, which was used for this project. Fixed variation limits
are defined around each SWT and relative contribution.

Sequential Quadratic Programming is generally consid-
ered the current state of the art in nonlinear programming
methods. It uses an approximation of the Hessian (the square
matrix of second partial derivatives) of the Lagrangian func-
tion, a process that is most efficiently performed by solving
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Fig. 2. Time development of the residuals for potential temperature2 (◦C), salinityS, oxygenO (µmol/L), phosphatePh (µmol/L), nitrate
Ni (µmol/L) and silicateSi (µmol/L) at the 1200 m depth level if one source water property is varied in all SWTs. Where curves cannot be
seen they are duplicated by curves of another varied property.

the Kuhn-Tucker equations, which express necessary condi-
tions for optimality for a constrained optimization problem.
This procedure leads to a quadratic programming problem.
The solution to this quadratic sub-problem is then used to
form a search direction for a line search procedure, the result
of which is used for the next iteration. The method is out-
lined in more detail in Gill et al. (1981) and Fletcher (1980).

In first attempts to use the TROMP analysis we allowed
all source water properties to vary and placed only limits on
their range of variation. This proved to be effective for very
simple data series with relatively large variations but was not
suitable for data sets with more realistic source water varia-
tions. Experimentation with a range of constraints and care-
ful evaluation of the error fields led us to define an approach
in which TROMP analysis only uses SWTs as variables that
can reasonably be expected to have undergone significant
variations, while keeping all other SWTs as constants. As
we will show, information from the error fields can be used
to identify which water type properties have to be set as vari-
ables, and which properties can be considered constants.

3 Results and discussion

An essential aspect of any application of a constraint min-
imisation is the identification of suitable constraints. In
an oceanographic context it is rarely obvious from the data
which water type variations are the most important contribu-
tors to the observed variations of water properties. The first
task of a TROMP analysis is therefore the relative ranking
of possible variables in terms of their importance to the de-

termination of a solution that comes as close as possible to
reality.

An extensive series of trials produced pointers how to pro-
ceed. It easily confirmed our expectation that analyses that
include all SWTs as variables do not produce sensible results.
Reducing the level of complexity only slightly, however, can
provide leads on how to proceed: If one source water prop-
erty is allowed to vary in all SWTs (while all other source
water properties are kept constant), the analysis produced a
distinct pattern in the error fields. This is clearly seen in the
results from our first simulated data set, in which the only
source water property that varied was salinity (and this varia-
tion was restricted to LSW). Figure 2 shows the residual error
for the six properties as functions of time. In most situations
the errors vary wildly and at times grow well beyond reason-
able bounds, but they become quite small when salinity is
allowed to vary in all SWTs (heavy curves in Fig. 2). No-
tice that this is true for all properties and not just for salinity,
although only salinity was allowed to vary. This is a strong
indication that the most important change in the source water
properties occurred in salinity.

Having identified the most important time-varying prop-
erty (or properties, ranked in order of importance) it is then
possible to proceed with a better targeted TROMP analysis
by limiting the number of variables to one or two source
water properties for a single SWT. The TROMP algorithm
allows us to set limits on the variation of all variables, and
the proposed procedure can be implemented by setting ex-
tremely narrow (or zero) variation limits for all SWT defini-
tions except the one of interest (in our case simLSW salin-
ity). The results of this approach were satisfactory for our
first simulated data set, particularly when the analysis was
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Fig. 3. Results of the analysis of data set 1 for the 1200 m depth level when simLSW salinity is allowed to vary, all other source water
properties are handled as variables with near-zero tolerance, and stages 1 and 2 go through 3 iterations at every time step. Relative water
mass contributions (%) from the results of stage 1 (OMP analysis, top left) and after three iterations through stages 1 and 2 (TROMP analysis,
top right); time development of potential temperature (◦C, bottom left) and salinity (bottom right). Thin lines indicate the target values.

implemented in two or more iterations of stages 1 and 2 for
every time step. However, the analysis produced not only the
correct time evolution of salinity but also apparent variations
in potential temperature, a property that was set to remain
constant in the simulated data set (Fig. 3).

The problem becomes more acute when the range of SWT
variations is small, as in the actual time development of
simLSW properties, on which we based our second sim-
ulated data set. With the smaller SWT variations it took
TROMP analysis longer to converge on a solution and so
more iterations were required. In this case, it took five it-
erations to converge on a result with residuals comparable
to those achieved with the first simulated data set. Figure 4
shows the results when TROMP analysis is applied to the
second data set in the manner just described. It is seen that
the analysis traces the actual evolution of simLSW potential
temperature and salinity closely but contains much unrealis-
tic noise. TROMP analysis improves on the first guesses de-
rived from OMP analysis; it reduces the departure from the
correct relative contributions and the noise, but the reduction
is rather small.

Applying a low-pass filter to the results can of course im-
prove the agreement between our simulated observations and
analysis. A better way to improve the result can be obtained
by restricting the number of variables in the analysis: When
all water type properties that are considered unimportant for

the explanation of the observed property variations are not
handled as variables with extremely narrow variation limits
but are declared constants, the TROMP analysis is forced to
concentrate on the variable of interest and produces excel-
lent agreement between the simulated data and the results
from the analysis. Figure 5 shows the result of such proce-
dure. The reduced number of variables leads to a faster and
more accurate analysis, with no need for iterations at each
time step. This improved method is used in Henry-Edwards
and Tomczak (2006).

An important aspect of TROMP analysis is the choice of
weights. In OMP analysis, the problem is over-determined
and has only one solution. Weights are introduced to take
account of the quality of the data and the relative usefulness
of the various parameters for the minimization of the residu-
als (depending on measurement error, degree of environmen-
tal variability, and difference in SWT values). In a TROMP
analysis, we are solving an under-determined problem that
has a multitude of solutions, and the choice of weights can
affect the direction of the line search procedure of the con-
strained optimization. Increasing the weighting of a selected
variable skews the minimisation function, so that gradients
with respect to that variable are steeper. This can result in a
faster analysis, but whether the resulting minimization repre-
sents the physically correct solution depends on the closeness
of the starting point to the correct solution. Slow evolution
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Fig. 4. Results of the analysis of data set 2 for the 1200 m depth level. Variation limits were set to zero for oxygen and nutrients, 3 for LSW
temperature and salinity, and 1 for temperature and salinity of all other water masses. Stages 1 and 2 went through 5 iterations at every time
step. Relative water mass contributions (%) from the results of stage 1 (OMP analysis, top left) and after five iterations through stages 1 and
2 (TROMP analysis, top right); time development of potential temperature (◦C, bottom left) and salinity (bottom right). Thin lines indicate
the target values. (At 1200 m the target value for the simulated uWNACW is zero).

of STWs is therefore critical for a successful TROMP analy-
sis. The effect is more obvious when analysing an actual data
set and is discussed further in Henry-Edwards and Tomczak
(2006).

4 Conclusion

A sequential quadratic programming method named TROMP
analysis was applied to two synthetic data sets to simulate an
analysis aimed at extracting variations of Labrador Sea Wa-
ter properties from observations near Bermuda. The results
demonstrate the potential effectiveness of the method and a
procedure how it can be applied to oceanographic time series
without a priori knowledge of time variations in the water
mass formation regions. It suggests that when TROMP anal-
ysis is applied to field data it should follow a sequence of
steps consisting of:

– a series of TROMP analyses in which one source water
property is allowed to vary across all SWTs simultane-
ously, while all other source water properties are kept
constant;

– inspection of the resulting error fields and analysis out-
put, to identify source water properties which may be
varying during the analysis period;

– a targeted TROMP analysis in which variations are re-
stricted to the source water properties and SWTs identi-
fied as likely to change.

In a companion paper (Henry-Edwards and Tomczak, 2006)
we follow the above procedure in an application of the
TROMP analysis to the BATS data set in the Sargasso Sea.

The choice of weights and the number of iterations re-
quired depends on the circumstances and requires both in-
sight into the oceanographic situation and experimentation.
Mathematically the issue is the specification of the search
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Fig. 5. Results of the analysis of data set 2 for the 1200 m depth level. Oxygen and nutrients were declared constants for all water masses,
temperature and salinity for all water masses but the simulated LSW. Temperature and salinity of the simulated LSW were allowed to vary
by up to 3% at every time step. Stages 1 and 2 went through 5 iterations at every time step. Relative water mass contributions (%) from the
results of stage 1 (OMP analysis, top left) and after five iterations through stages 1 and 2 (TROMP analysis, top right); time development of
potential temperature (◦C, bottom left) and salinity (bottom right). Red lines indicate calculated values. Dotted blue lines indicate the target
values; where the difference between calculated and target values is not resolved in the graph, the target values are indicated by heavy blue
dots. (At 1200 m the target value for the simulated uWNACW is zero). Axes are scaled to compare directly with Fig. 4.

direction for the minimization procedure. Experience with
different data sets indicates that there may not be a sin-
gle best recipe to determine the most appropriate weights
and iteration sequence. Henry-Edwards and Tomczak (2006)
found that in their particular case the weights determined by
OMP analysis gave the most physically realistic results. An
application to the Southern Ocean (Tomczak and Liefrink,
20061) gave realistic results if the source water properties
that were allowed to vary alternated between potential tem-
perature and oxygen for successive iterations. Experience
with the method in different oceanographic situations may
produce clearer guidelines for the best definition of weights
and the most appropriate iteration sequence.

1Tomczak, M. and Liefrink, S.: On Interannual Variations of
Water Mass Properties in the Southern Ocean, J. Atmos. Ocean
Sci., submitted, 2006.

Edited by: J. M. Huthnance
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