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Abstract

Pleistocene benthic δ
18

O records exhibit strong spectral power at ∼41 kyr, indicating

that global ice volume has been modulated by Earth’s axial tilt. This feature, and weak

spectral power in the precessional band, has been attributed to the influence of obliq-

uity on mean-annual and seasonal insolation gradients at high latitudes. In this study,5

we use a coupled ocean-atmosphere general circulation model to quantify changes in

continental snowfall associated with mean-annual and seasonal insolation forcing due

to a change in obliquity. Our model results indicate that insolation changes associated

with a decrease in obliquity amplify continental snowfall in two ways: (1) An increase in

high-latitude winter insolation is enhanced through a low-cloud feedback, resulting in10

colder air temperatures and increased snow precipitation. (2) An increase in the sum-

mer insolation gradient enhances summer eddy activity, increasing vapor transport to

high-latitude regions. In our experiments, a decrease in obliquity leads to an annual

snowfall increase of 25.0 cm; just over one-half of this response (14.1 cm) is attributed

to seasonal changes in insolation. Our results indicate that the role of insolation gradi-15

ents is important in amplifying the relatively weak insolation forcing due to a change in

obliquity. Nonetheless, the total snowfall response to obliquity is similar to that due to

a shift in Earth’s precession, suggesting that obliquity forcing alone can not account for

the spectral characteristics of the ice-volume record.

1 Introduction20

It has long been known that the Quaternary global ice-volume record, archived in ben-

thic δ
18

O, varies at orbital frequencies (Hays et al., 1976; Imbrie, 1980, 1985, 1993).

One of the most puzzling features of this record is the prominence of variability at the

obliquity period (Raymo and Nisancioglu, 2003; Lisiecki and Raymo, 2005; Cortijo et

al., 1999; Vimeux et al., 2001). Traditionally, orbital cycles in global ice volume have25

been linked to summer insolation at 65
◦

N (Milankovitch, 1948; Berger et al., 1993).
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However, high-latitude summer insolation is influenced most strongly by Earth’s pre-

cession with a period of ∼23 kyr. It is perplexing then that spectral power in benthic

δ
18

O is greater in the obliquity band than the precessional band.

To explain this paradox, two types of hypotheses have been proposed, (i) those that

are generally consistent with Milankovitch’s original hypothesis and (ii) those that call5

upon non-linear climate feedbacks to amplify orbital, and specifically obliquity, forcing.

In the first category, Huyber (2006) suggests that obliquity primarily controlled ice vol-

ume changes through the integrated summer energy. Precession greatly influences

absolute summer insolation but the short duration of the precessional summer leads

to lower summer energy than that of obliquity. Raymo et al. (2006) proposes that the10

change in benthic δ
18

O due to the increase in the NH ice volume was offset by the

melting of the West Antarctic Ice Sheet due to the out-of-phase precessional insolation

forcing between the two hemispheres. The strong 41 kyr ice-volume signal was also

attributed to the fact that obliquity has nearly twice the period than precession, and

therefore twice the time to accumulate snow/ice (Ruddiman, 2003). In the second cat-15

egory, it has been proposed that climate feedbacks, mainly associated with meridional

heat and vapor transports, may have modulated orbital forcing (Khodri et al., 2001;

Crucifix and Loutre, 2002; Raymo and Nisancioglu, 2003; Loutre et al., 2004; Vettoretti

and Peltier, 2004; Kukla and Gavin, 2004; Risebrobakken et al., 2006).

The focus on climate feedbacks on orbital forcing arises from recognition that obliq-20

uity and precession affect Earth’s insolation in different ways. In contrast to precession,

obliquity alters the mean-annual equator-to-pole insolation gradient. A reduction in ax-

ial tilt from the Plio-Pleistocene maximum (24.5
◦

) to minimum (22.2
◦

) reduces annual

insolation by up to ∼16 Wm
−2

(∼8%) at high latitudes and increases it by ∼3 Wm
−2

(<0.5%) at the equator (calculated from Berger and Loutre, 1991). In a climate model-25

ing study, Crucifix and Loutre (2002) demonstrate that mean-annual insolation changes

due to obliquity could account for most of the high-latitude temperature changes during

the last interglacial. In addition, Loutre et al. (2004) show that mean-annual insolation

has significant spectral power at the obliquity band and hypothesize that paleo-climate
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records of sea-surface temperature and global ice volume can be interpreted as a re-

sponse to changes in mean-annual insolation and insolation gradients.

Obliquity also has a substantial influence on seasonal insolation. A reduction in

Earth’s obliquity from the Plio-Pleistocene maximum to minimum reduces solar heat-

ing in summer and fall by up to 48 Wm
−2

at high latitude and increases it by 7 Wm
−2

5

near the equator, enhancing the equator-to-pole insolation gradient by 55 Wm
−2

. A

number of studies have suggested that an increase in the seasonal equator-to-pole

insolation gradient might have enhanced snowfall over ice sheets due to greater la-

tent heat transport and internal climate oscillation (Johnson, 1991; Khodri et al., 2001;

Vettoretti and Peltier, 2003, 2004; Kukla and Gavin, 2004). In support of these ideas,10

Raymo and Nisancioglu (2003) show that summer equator-to-pole insolation gradient

is strongly correlated to glacial-interglacial ice-volume variations from 3.0 to 0.8 Ma.

Although insolation gradient changes have been frequently linked to ice volume

variability, this mechanism has not been explicitly tested. The goal of this study is

to systematically quantify the influence of both mean-annual and seasonal insolation15

changes resulting from Earth’s obliquity on continental snowfall, and to determine the

climate mechanisms that respond to these insolation variations. To do this, we have

developed coupled ocean-atmosphere model experiments that represent: (1) mean-

annual and seasonal insolation changes due to a reduction in Earth’s axial tilt; and

(2) mean-annual only insolation changes due to a reduction in Earth’s axial tilt. By20

comparing results from these two scenarios, we distinguish the climate responses to

mean-annual and seasonal forcings.

Our model results indicate that seasonal and mean-annual insolation forcings asso-

ciated with a decrease in axial tilt generate comparable changes in annual continental

snowfall. In Sect. 3, we describe the snowfall differences and explain the physical25

mechanisms that account for these changes. In Sect. 5, we compare the snowfall

response due to changes in Earth’s obliquity and precession, and discuss the implica-

tions of these results for global ice volume variability.
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2 Experimental design

This study was completed using the Fast Ocean Atmosphere Model (FOAM) version

1.5, a fully coupled mixed-resolution ocean and atmosphere general circulation model

(GCM) (Jacob, 1997). The atmospheric model is a parallelized version of the Commu-

nity Climate Model 2 (CCM2) with the upgraded radiative and hydrological physics in-5

corporated in CCM3.6 (Kiehl, 1996). The atmospheric component of FOAM was run at

a spectral resolution of R15 (4.5
◦

×7.5
◦

) with 18 vertical levels. The oceanic component

(OM3) is a z-coordinate ocean model with 128×128 point Mercator grid (1.4
◦

×2.8
◦

), 24

vertical levels, and an explicit free surface. FOAM was designed for long century-scale

integrations and exhibits minimal ocean drift with no flux corrections (Wu et al., 2003).10

FOAM’s simulation of modern climate shows reasonable agreement with present-day

observations and NCAR CSM (Harrison et al., 2003). FOAM has been widely used

to study climate change through geological time (e.g. Liu et al., 2000; Poulsen et al.,

2001; Lee and Poulsen, 2006).

A change in Earth’s axial tilt alters the distribution of insolation, significantly influ-15

encing both mean-annual and seasonal meridional insolation gradients. A decrease in

Earth’s obliquity from 24.5 to 22.2
◦

, for instance, increases the mean-annual gradient

by ∼30 Wm
−2

, the summer gradient by ∼55 Wm
−2

, and reduces the winter gradient

by ∼10 Wm
−2

. We have designed two sets of experiments to estimate the climate

response to each of these components. The first experimental set is straightforward20

and includes experiments with high (24.5
◦

; hobl) and low (22.2
◦

; lobl) axial tilt (Ta-

ble 1). We have used Earth’s maximum and minimum obliquities over the last five

million years (Berger and Loutre, 1991). The difference between hobl and lobl ex-

periments yields the climate response resulting from both mean-annual and seasonal

insolation changes, which we refer to as ∆TOTAL.25

A second set of experiments was designed to estimate the climate response to just

mean-annual insolation forcing caused by a change in axial tilt. In this case, we first

computed the difference in mean-annual insolation between our high (hobl) and low
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(lobl) obliquity experiments, and a present day experiment. We then added these

mean-annual, zonal insolation anomalies to two present-day experiments. These in-

solation adjustments increase the annual equator-to-pole insolation in one experiment

(higrad) and decrease it in the second (lograd) (Table 1), but seasonal insolation and in-

solation gradients are identical between experiments and unchanged from the present5

day. The difference between higrad and lograd experiments yields the climate re-

sponse to obliquity’s mean-annual forcing, which we refer to as ∆MA.

It is important to note that mean annual insolation in the higrad and lograd exper-

iments are identical to those in the hobl and lobl experiments, respectively, and that

only seasonal insolation differs between these experiments (Fig. 1). As a result, the10

mean-annual insolation difference in ∆TOTAL and ∆MA are also the same. Thus, to

estimate the climate response to seasonal insolation only (∆SEA), we difference our

two sets of experiments. In summary:

– ∆TOTAL = lobl – hobl ; represents total insolation difference due to a reduction in

axial tilt15

– ∆MA = higrad – lograd ; represents the mean-annual insolation difference due to

a reduction in axial tilt

– ∆SEA = ∆TOTAL – ∆MA; represents the seasonal insolation difference due to a

reduction in axial tilt.

Because our ultimate objective is to explain variability in the ice-volume record, we20

focus on the climate response comparison between ∆TOTAL and ∆MA here.

Other than insolation, all model boundary conditions were set to modern values in-

cluding trace gas concentrations and geography. The experiments were each inte-

grated for 200 yr, bringing the surface ocean into quasi-equilibrium. The model results

presented here were averaged over the last 50 model years.25
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3 Result

3.1 Snowfall response

To quantify the possible contribution made by mean-annual and seasonal forcing to ice-

sheet mass balance, we examine the high-latitude snowfall responses to both ∆TOTAL

and ∆MA. In ∆TOTAL, zonal continental snowfall increases by 25.0 cm (sum of upper5

and lower panel of Fig. 2a). In contrast, in ∆MA, annual snowfall increases by 10.9 cm

(sum of upper and lower panel of Fig. 2b). The seasonal snowfall response (∆SEA)

is 14.1 cm, indicating that mean-annual and seasonal insolation changes contribute

almost equally to the total continental snowfall response. In both ∆TOTAL and ∆MA,

the snowfall response occurs mainly during the summer. In the northern hemisphere,10

for example, a reduction in obliquity (∆TOTAL) enhances summer half-year snowfall by

78% and winter half-year snowball by 22% (Fig. 2b).

Differences in snowfall are mainly due to differences in non-convective stable snow-

fall which are closely related to temperature and moisture transport. Non-convective

precipitation in the model forms when an air parcel exceeds vapor saturation, and be-15

comes snow when the lowest level of the atmosphere and the land surface are below

the freezing point of water. Obliquity alters insolation in two ways that might enhance

the total snow formation in ∆TOTAL relative to ∆MA: (1) by decreasing insolation and

temperature at high latitudes; and/or (2) by enhancing the seasonal meridional insola-

tion gradient and moisture transport. We examine each of these factors below.20

3.2 Winter snowfall response

From an energy balance perspective, mean-annual surface-air temperatures (SATs)

might be expected to be similar in ∆TOTAL and ∆MA since both sets have the same

mean-annual insolation difference (Fig. 1; right column). Over most latitudes this is

the case, and SATs are similar between the experimental sets. However, poleward of25

60
◦

N, zonal SATs differ by up to 4
◦

C in the mean annual, 6
◦

C in winter and 2
◦

C in
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summer (Fig. 3b). Most of the zonal SAT difference between ∆TOTAL and ∆MA can

be attributed to a wintertime low-cloud feedback.

In the modern climate, low clouds form when the low-level atmosphere reaches va-

por saturation. The extent of low clouds strongly influences the local radiation budget,

generally decreasing the downward shortwave flux and increasing the upward long-5

wave flux (Hartmann et al., 1992). In FOAM, low-cloud coverage is the fraction of

cloud-covered sky between the surface and 700 mb pressure level. Low-cloud for-

mation is favorable when relative humidity is high and convection is weak or absent

(Klein et al., 1994). In ∆TOTAL, the greater NH winter solar heating and evaporation

(Fig. 1a) increases the relative humidity leading to an increase in low-cloud coverage.10

In the absence of this winter heating in ∆MA, the relative humidity and low-cloud frac-

tion does not change (Figs. 1b and 3c). The difference in winter low cloud-coverage

is nearly 40% between the two experimental sets (Fig. 3c). The increase in low-cloud

coverage reduces surface radiative heating that cools the NH high-latitude winter SAT

in ∆TOTAL, and dominates the mean-annual SAT signal (Fig. 3a and b). The cold SAT15

is the primary reason for the snowfall difference in boreal winter but can not account for

the summer snowfall differences (Fig. 2a and b). In the SH, the relationship between

SATs and insolation changes is different than the NH. SATs of the southern high lati-

tudes are not particularly sensitive to insolation forcings in either experimental set. This

result is likely due to the presence of Antarctic ice sheets, with their high elevation and20

albedo, dominate the regional climate maintaining very cold air temperature (Fig. 3a)

3.3 Summer snowfall response

In summer, snowfall increases due to both (1) a decrease in air temperature due to a

reduction in NH insolation and (2) an increase in seasonal poleward moisture transport.

Summer (June) insolation at 80
◦

N decreases by 48 and 25 Wm
−2

in ∆TOTAL and25

∆MA, leading to decreases in zonal-averaged SATs by 2.5 and 0.5
◦

C, respectively.

The larger reduction in SAT in ∆TOTAL is mainly due to a greater summer sea-ice

extent in the lobl experiment, which increases local albedo. A decrease in high-latitude
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SATs might increase the snowfall response by reducing local saturation vapor pressure.

The saturation vapor pressure decreases exponentially with air temperature. However,

condensation due to SAT change does not change the local relative humidity. The

increase in relative humidity in both experimental sets (Fig. 4c and d) indicates moisture

transport into most of the northern mid- and high-latitude.5

In addition to absolute insolation, the summer equator-to-pole gradient also changes

in ∆TOTAL and ∆MA. A reduction in the axial tilt (∆TOTAL) enhances the summer

equator-to-pole insolation gradient by up to 55 Wm
−2

(Fig. 1a) leading to a 3
◦

C in-

crease in summer meridional temperature gradient. In contrast, in ∆MA, the summer

equator-to-pole gradient is enhanced by only 30 Wm
−2

(Fig. 1b) leading to a 0.5
◦

C in-10

crease in summer meridional temperature gradient. As a result of differential heat-

ing between low- and high-latitudes, the baroclinicity increases in both cases. In the

modern climate, transient eddies increase with baroclinicity and are responsible for

transporting heat and moisture between the subtropics and mid-latitude (Trenberth and

Stepaniak, 2003). FOAM responds in a similar manner; summer mid-latitude baroclin-15

icity is greater in ∆TOTAL than ∆MA. The high baroclinicity in ∆TOTAL enhances the

transient eddy activity leading to a 200% increase in summer poleward transient eddy

vapor transport at 40
◦

N and an enhancement in the total vapor transport (Fig. 4a).

The increase in summer vapor transport provides the moisture for additional boreal

continental snowfall.20

4 Summary and caveats

Changes in obliquity cause variations in both mean-annual and seasonal insolation.

We have designed numerical experiments to evaluate the relative importance of these

insolation changes on continental snowfall. Our model results indicate that the in-

fluence of mean-annual and seasonal obliquity forcing are approximately equal and25

account for 44% and 56% of annual snowfall, respectively. We show in Sect. 3 that

the response to insolation forcing through obliquity is amplified in FOAM through winter
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cloud and summer transient eddy feedbacks (Figs. 3 and 4). Our results highlight the

importance of equator-to-pole insolation gradients, and demonstrate that changes in

insolation gradients can generate dynamical changes that influence moisture transport

and continental snowfall. For perspective, it is worth noting that a decrease in axial tilt

(∆TOTAL) led to zonal SAT decreases of 6 and 2
◦

C in NH winter and summer, respec-5

tively. Yet, the snowfall response was 3.5x greater in the NH summer, mainly due to

enhanced moisture transport through transient eddies.

In our experimental design and analysis, we have made several assumptions that

warrant discussion. First, throughout our analysis and interpretation, we assume that

an increase in snowfall translates into an increase in ice volume. In reality, the ice10

volume results from a combination of snowfall accumulation and summer ablation. As

a result, the inferred ice-volume changes between our ∆TOTAL and ∆MA cases are

probably too small because ∆TOTAL has a lower summer surface temperature and the

ablation decreases during cold summer episode (Fig. 1). In the absence of a dynamic

ice-sheet component in our model, it is not possible to calculate the exact ice-volume15

change that would result from the changes in insolation forcing prescribed here; con-

sequently, our results may be better viewed as continental ice accumulation potential.

In addition, since we simulate the climate response to obliquity insolation changes un-

der present-day boundary conditions (i.e. pCO2 and land surface types), the snowfall

response described here does not account for Pleistocene boundary conditions, which20

varied between glacial and interglacial. In a cold climate with low pCO2, it is unclear if

the snowfall response to insolation forcing would increase. A decrease in mid-latitude

surface temperature would likely cause an increase in summer snowfall and an en-

hanced moisture transport due to a stronger meridional thermal gradient. However,

a decrease in surface temperature might also reduce humidity due to a decrease in25

saturation vapor pressure in a cold climate. Finally, the FOAM experiments were in-

tegrated for 200 yr; the surface ocean has reached a quasi-steady state but the deep

ocean is still equilibrating. Because we focus our analysis on surface and tropospheric

condition, the deep ocean condition should have little effect on surface temperature
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and continental snowfall.

5 Implications for the ice volume record

Meridional insolation gradient changes and associated atmospheric and vapor re-

sponses have been hypothesized to cause ice-volume variability (e.g. Khodri et al.,

2001; Crucifix and Loutre, 2002; Raymo and Nisancioglu, 2003; Loutre et al., 2004;5

Vettoretti and Peltier, 2004; Kukla and Gavin, 2004; Risebrobakken et al., 2006). How-

ever, this hypothesis has not been explicitly tested in a systematic way before. In

support of both gradient hypotheses, our result shows that high-latitude continental

snowfall is enhanced with an increase in the meridional insolation gradient and that

mean-annual and seasonal insolation gradient have comparable influences on conti-10

nental snowfall, and presumably global ice volume.

To directly compare the snowfall response to obliquity and precession, we have com-

pleted two additional precessional sensitivity experiments. In these experiments, north-

ern hemisphere summer is positioned at aphelion and perihelion, respectively, in an

eccentric orbit (eccentricity=0.056, which represents the maximum value over the last15

3 Ma, Berger et al., 1993). The shift in the orbital position of NH summer leads to a

NH continental snowfall response that is 85% of that calculated for a change in axial

tilt. In comparison to a change in obliquity, a change in precession does not influence

mean-annual insolation and has only a small influence on summer insolation gradients.

However, it has a very large affect (up to ∼70 Wm
−2

) on absolute summer insolation,20

which accounts for the large snowfall response. This comparison has important impli-

cations for the insolation gradient hypothesis. While mean-annual and summer inso-

lation gradient changes associated with a decrease in obliquity may amplify relatively

weak insolation forcing, their influence may not be sufficiently large to account for the

spectral nature of the ice volume record.25

Several other ideas have been proposed to explain the link between obliquity and ice

ages. To explain the 41 kyr period of ice ages, Huyber (2006) suggests that obliquity
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primarily controlled ice volume changes through the integrated summer energy. Sum-

mer energy is a function of both insolation duration and intensity. When total summer

energy rather than summer insolation is considered, obliquity becomes the dominant

component of the power spectra. However, our orbital sensitivity experiments account

for changes in seasonal durations and yet the snowfall response is not substantially5

greater in our obliquity than precession experiments. Raymo et al. (2006) suggest that

because Earth’s orbital precession induces insolation changes that are out of phase

between hemispheres, the global ice volume change recorded by benthic δ
18

O or sea

level is small due to the global integration. Our model results show an increase of NH

snowfall and a reduction of SH snowfall in response to a shift in precessional phase.10

It is possible that the cancelling between NH and SH snowfall might play a role; how-

ever, the cancelling effect depends on the mass-balance between the δ
18

O of snow

and ice in Antarctic and that in the NH over every precessional cycle. The product of

hemispheric snow accumulation and its oxygen isotopic concentration has to be ap-

proximately equal. On the basis of this cancelling hypothesis, the ice-volume record15

should exhibit a strong precessional signal prior to the development of major NH ice

sheets. The ice-volume record does not appear to support this expectation. Alterna-

tively, the expression of 41 kyr signal may simply be due to the fact that the obliquity

period is longer than that of precession, allowing for longer ice accumulation and a

greater ice volume change (Ruddiman, 2003). In spectral analyses, power variance is20

an exponential function of the absolute variance. Thus, if ice volume change associ-

ated with obliquity were greater than that due to precession, the power variance would

be larger in the obliquity band.

In sum, this contribution systematically identifies climate mechanisms that amplify

the climate response to obliquity forcing, and demonstrates that both mean-annual25

and seasonal changes in the meridional distribution of insolation play important roles

in amplifying this forcing. Nonetheless, our model results suggest that these climate

feedbacks can not fully explain the large spectral power of the 41-kyr cycles in the

ice-volume record, and the 41-kyr paradox remains just that.
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Table 1. Numerical climate experiments.

Experiments Obliquity Anomaly Note

lobl 22.2 ∆TOTAL=lobl–hobl

Total changes due to obliquity’s mean-annual & seasonal forcing.

hobl 24.5

higrad 23.4 Anomaly increasing the mean-annual insolation ∆MA=higrad–lograd

gradient so that it is the same in lobl Changes due to obliquity’s mean-annual forcing.

lograd 23.4 Anomaly increasing the mean-annual insolation ∆SEA=∆TOTAL–∆MA

gradient so that it is the same in hobl Changes due to obliquity’s seasonal forcing
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Fig. 1. Mean monthly and annual (right column) insolation difference (Wm

−2
) between ∆TOTAL

((a) lobl–hobl) and ∆MA ((b) higrad–lograd) experiments. The insolation difference in ∆MA

yields the climate response to obliquity’s mean-annual forcing. Contour interval is 10 Wm
−2

.

Although seasonal insolation differs between these experiments sets, mean-annual insolation

is identical between ∆TOTAL and ∆MA.
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Fig. 2. Continental snowfall response to orbital forcing. Zonally averaged half-year (December
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hobl) and (b) ∆MA (higrad–lograd).
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Fig. 3. Differences in zonally averaged (a) mean-annual surface air temperature (in degrees

Celsius), (b) winter surface air temperature (in
◦

Celsius), and (c) winter low-cloud coverage (%)

between experimental sets. Results from ∆TOTAL and ∆MA experiments are shown in solid

and dash line, respectively. 533
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Fig. 4. Response of vapor transports and tropospheric relative humidity to orbital changes.

(a–b) Difference in zonal-average June-July-August atmospheric meridional vapor transport

(g kg
−1

ms
−1

) by (a) all processes (mean meridional + stationary eddies + transient eddies)

and through (b) transient eddies between experimental sets. Results from ∆TOTAL and ∆MA

experiments are shown in red and black line, respectively. Positive values represent an in-

crease in the northward vapor transport or a reduction in the southward vapor transport. (c–d)

Difference maps in lower tropospheric (700 mb) June-July-August relative humidity (%) as a

result of a increase in vapor tranport in (c) ∆TOTAL and (d) ∆MA. The polar projection map

begins at 30
◦

N and the contour interval is 4%.
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