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Abstract

El Niño-Southern Oscillation (ENSO) is an important element of earth’s ocean-climate

system. To further understand its past variability, proxy records from climate archives

need to be studied. Ice cores from high alpine glaciers may contain high resolution

ENSO proxy information, given the glacier site is climatologically sensitive to ENSO.5

We investigated signals of ENSO in the climate of the subtropical Andes in the prox-

imity of Cerro Tapado glacier (30
◦

08
′

S, 69
◦

55
′

W, 5550 m a.s.l.), where a 36 m long

ice core was drilled in 1999 (Ginot, 2001). We used annual and semi-annual precipita-

tion and temperature time series from regional meteorological stations and interpolated

grids for correlation analyses with ENSO indices and ice core-derived proxies (net ac-10

cumulation, stable isotope ratio δ
18

O, major ion concentrations). The total time period

investigated here comprises 1900 to 2000, but varies with data sets. Only in the west-

ern, i.e. Mediterranean Andes precipitation is higher (lower) during El Niño (La Niña)

events, especially at higher altitudes, due to the latitudinal shift of frontal activity dur-

ing austral winters. However, the temperature response to ENSO is more stable in15

space and time, being higher (lower) during El Niño (La Niña) events in most of the

subtropical Andes all year long. From a northwest to southeast teleconnection gradi-

ent, we suggest a regional water vapour feedback triggers temperature anomalies as

a function of ENSO-related changes in regional pressure systems, Pacific sea surface

temperature and tropical moisture input. Tapado glacier ice proxies are found to be20

predominantly connected to eastern Andean summer rain climate, which contradicts

previous studies and the modern mean spatial boundary between subtropical summer

and winter rain climate derived from the grid data. The only ice core proxy showing

a response to ENSO is the major ion concentrations, via local temperature indicating

reduced sublimation and mineral dust input during El Niño years.25

174

http://www.clim-past-discuss.net
http://www.clim-past-discuss.net/4/173/2008/cpd-4-173-2008-print.pdf
http://www.clim-past-discuss.net/4/173/2008/cpd-4-173-2008-discussion.html
http://creativecommons.org/licenses/by/3.0/


CPD

4, 173–211, 2008

Climate and glacier

response to ENSO in

subtropical Andes

E. Dietze et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

◭ ◮

◭ ◮

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

1 Introduction

El Niño-Southern Oscillation (ENSO) is a quasi-regular and highly variable ocean-

atmosphere oscillation with a periodicity of two to seven years, which plays an im-

portant role in the natural interannual climate variability on earth (Allan, 2006; Labeyrie

et al., 2003; Sheinbaum, 2003). El Niño (La Niña) events are defined as positive5

(negative) sea surface temperatures anomalies (SSTA) in the central equatorial Pa-

cific, which change regional precipitation and temperature worldwide by altering global

oceanic and atmospheric circulation (Ropelewski and Halpert, 1987; Kiladis and Diaz,

1989; Rasmusson and Arkin, 1993; Trenberth et al., 2005). As strong events may re-

sult in high social and economic costs (Glantz, 1996; Pfaff et al., 1999; Cavazos and10

Rivas, 2004), it is an exigency to study ENSO’s past variability in order to understand

its future response to global climate change.

Ice cores from high-alpine glaciers are potential natural archives for the reconstruc-

tion of paleoclimatic variability. They may preserve high resolution proxy records pro-

vided these glaciers are not disturbed by post-depositional processes such as melting,15

sublimation and wind erosion (Eichler et al., 2001; Stichler et al., 2001; Hardy et al.,

2003). Located in an ENSO-sensitive region ice-core derived proxies may be used to

reconstruct regional and local climate including information about past ENSO variability

(Knüsel et al., 2005; Hoffmann et al., 2003; Bradley et al., 2003). One of those regions

is Mediterranean Chile (Kiladis and Diaz, 1989; Rasmusson and Arkin, 1993), i.e. the20

western part of the subtropical Andes, located at about 29
◦

to 35
◦

S and 68
◦

to 72
◦

W

in the semi-arid transition area between low and mid latitude atmospheric circulation

in southern South America (Fig. 1). Along the Pacific coast, precipitation ranges from

less than 400 mm/a at 30
◦

S to 4000 mm/a at 40
◦

S (Veit, 1992; Schmidt, 1999).

One of the northernmost cold glaciers in the high cordillera south of the hyperarid25

Atacama Desert suitable as climate archive is located on the Chilean Cerro Tapado

(30
◦

08
′

S, 69
◦

55
′

W) in the border region of Mediterranean Chile and north-western

Argentina (Fig. 1). In its accumulation area at 5550 m a.s.l., a 36 m long ice core
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(27.9 m water equivalent [m weq]) was drilled to bedrock in 1999 (Ginot, 2001). It has

already been used for studying post-depositional processes such as sublimation and

dust accumulation as well as for the reconstruction of the glacier‘s past mass balance

(Ginot et al., 2001, 2002, 2006; Stichler et al., 2001).

As Cerro Tapado is located in a climatic transition area between austral winter and5

summer precipitation regimes, moisture may be provided from both the western and

the eastern part of southern South America (Schotterer et al., 2003). Occurrence and

amount of precipitation strongly fluctuate on interannual time scales as typical for a

(semi-) arid climate (Weischet, 1995; Schmidt, 1999). Nevertheless, the main source

of precipitation is supposed to be the Pacific Ocean and west wind frontal circulation10

during the austral winter months similar to Chilean coastal Mediterranean areas (Ginot

et al., 2006). In austral summer, the extension of the South Eastern Pacific Anticyclone

(SEPA) causing dry and stable weather conditions with southerly winds over the cold

Humboldt Current off the Chilean coast impedes the jet stream and, thus, frontal activ-

ities from advancing to the north (Gallego et al., 2005). However, some moisture may15

be provided from tropical South America in connection with the northwest Argentinean

low pressure system at around 25
◦

S and 65
◦

W (i.e. Chaco Low; Seluchi and Marengo,

2000), as already known from the adjacent Atacama Desert and the eastern Andean

forelands (Vuille and Ammann, 1997; Grimm et al., 2000). Supporting this, an auto-

matic weather station installed at Cerro Tapado from March 1998 to February 199920

registered greater relative humidity in December and January 1998/99 compared to

the austral winter months August to October 1998 (Begert, 1999). Additionally, mete-

orological data from along the Chilean Elquı́ Valley and a classification of precipitation

events in the higher altitudes aided by satellite images from 1995 to 1997 (Begert,

1999) suggested an increasing share of convective summer precipitation in total pre-25

cipitation with increasing elevation. Nevertheless, due to the limited duration of this

investigation and to the altogether sparse local meteorological information neither the

dominant climatic influence on the Tapado glacier could be ascertained, nor the local

ENSO response.
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The ENSO-influence on regional climate in southern South America is highly vari-

able depending on the timing and intensity of the development of a particular event

(ENSO’s “different flavours”, Trenberth and Stepaniak, 2001) as shown by Grimm

et al. (2000). Nevertheless, some general characteristics illustrate the sensitivity of

Mediterranean Chile with regard to ENSO: The influence of ENSO on regional precip-5

itation is well known for lower Chilean altitudes (approx. 0–1000 m a.s.l.) around 33
◦

to 35
◦

S (Aceituno, 1988; Rutllant and Fuenzalida, 1991; Aceituno and Montecinos,

1993; Grimm et al., 2000; Montecinos et al., 2000; Montecinos and Aceituno, 2003).

In this area higher (lower) than normal winter precipitation was observed in El Niño (La

Niña) years due to a northward (southward) shift of the subtropical jet stream and a less10

(more) intense SEPA, which is part of the positive (negative) phase of the Pacific-South

American (PSA) pattern (Mo and Higgins, 1998; Carleton, 2003). The same mecha-

nisms cause higher snow accumulation and a positive mass balance of some glaciers

between 32
◦

and 34
◦

S in the higher altitudes of the subtropical Andes (>1000 m a.s.l.)

during El Niño events (Cerverny et al., 1987; Escobar et al., 1995; Leiva and Cabrera,15

1996; Escobar and Aceituno, 1998; Leiva et al., 2007; Gallego et al., 2007).

ENSO also alters regional air pressure and temperature at the eastern slopes of the

subtropical Andes, i.e. in north-western Argentina, where negative and positive anoma-

lies in El Niño winters were found, respectively (Barros and Scasso, 1994; Grimm et

al., 2000). This seems to be due to an intensification of the convective Chaco Low and20

to the advance of warm tropical air masses from the Amazon Basin and the Atlantic

Ocean (Barros and Scasso, 1994; Grimm et al., 2000; Seluchi and Marengo, 2000)

as Hadley and Ferrel Cells are weaker in El Niño years over the South Atlantic Ocean

compared to the South Pacific Ocean (Yuan, 2004).

However, the relation between ENSO and air temperature in the investigation area25

as well as the ENSO-link to precipitation in north-western Argentina have not been

studied in sufficient detail for adequately interpreting natural climate archives. Most

studies on ENSO in southern South America are based on meteorological station data

which have a poor coverage and short records in the remote and high-alpine border
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region of Chile and Argentina (Barros and Scasso, 1994; Gallego et al., 2007), where

there are potential glacier archives.

The aim of this study is to investigate the regional ENSO response in the area of

Cerro Tapado using grid and point meteorological data in order to establish a relation

between ENSO and climate proxies conserved in the Tapado ice core.5

2 Material and methods

2.1 Data sets

Different ENSO indices were chosen to study the particular influence of ENSO’s

oceanic and atmospheric manifestation on the subtropical Andean climate. As a rep-

resentation of the SSTA in the equatorial Pacific we selected the Niño 3.4 index of10

Trenberth and Stepaniak (2001), which showed the closest relation to Central Chilean

climate in a comparison of different oceanic indices (Ziessler, 2007). Furthermore,

we used the Southern Oscillation Index (SOI) of Ropelewski and Jones (1987) and

Allan et al. (1991), which indicates anomalies in atmospheric sea level pressure dif-

ference between Papete, Tahiti and Darwin, Australia. As a third ENSO index, we15

selected the Coupled ENSO Index (CEI) of Gergis and Fowler (2005), which contains

both the oceanic (Niño 3.4) and the atmospheric (SOI) signal of ENSO. This has the

advantage that times of strongly and loosely coupled ocean-atmosphere variability are

represented showing negative (positive) values during El Niño (La Niña) events like the

SOI (Gergis and Fowler, 2005).20

To decipher the ENSO impact on the climate of the subtropical Andes, we tested

two different grid data types. The spatially interpolated precipitation and temperature

data of Willmott and Matsuura (2001) have a grid resolution of 0.5
◦

longitude to latitude

and are interpolated monthly from all available meteorological stations data worldwide,

covering the time span from 1950 to 1999. This “Willmott data” set was obtained for the25

area 29
◦

S to 35
◦

S and 71.5
◦

W to 67
◦

W, including the western and eastern forelands
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of the subtropical Andes (Fig. 1). The second grid type was the vertically differentiated

NCEP/NCAR-reanalysis data (Kalnay et al., 1996) with a resolution of 2.5
◦

longitude to

latitude covering the period 1960 to 2004. Here, monthly climatological data such as air

temperature, precipitable water content, relative and specific humidity were considered.

Monthly temperature and precipitation data sets of the four meteorological stations5

La Serena, Santiago (Chile) and San Juan, Mendoza (Argentina) obtained from the

Global Climate Perspectives System (Baker et al., 1995) and the Global Historical Cli-

mate Network (Vose et al., 1992) were also used in the correlation analysis. Table 1

summarises their varying qualities and time periods.

As potential ENSO ice core proxies we selected net accumulation, the stable iso-10

tope ratio δ
18

O and a bulk parameter of major ion concentration. Net accumulation as

derived from annual layer thickness represents either annual or seasonal precipitation,

depending on the precipitation distribution around the year. Net accumulation is sensi-

tive to post-depositional effects such as wind drift of snow or sublimation (Hardy et al.,

2003; Ginot et al., 2006).15

δ
18

O [‰ SMOW] of ice cores has been used as an integrated proxy either for tem-

perature or for precipitation, depending on latitude and the dominant isotope fraction-

ation processes (Rozanski et al., 1993). In the tropics, precipitation amount and re-

evaporation processes in the course of air mass trajectories seem to be the main fac-

tors controlling the isotopic composition in ice cores (Rozanski et al., 1993; Vimeux20

et al., 2005). At higher latitudes, air temperature during precipitation dominates the

isotopic fractionation of snow (Dansgaard, 1964, 1985). In the transition area of sub-

tropical Chile the importance of air temperature in fractionation processes was shown

by Rozanski and Araguas-Araguas (1995) for low altitudes. δ
18

O signals may also be

altered post-depositionally, e.g. by diffusive mixing between firn and snow (Johnson et25

al., 1977) or removed by mass loss (Schotterer et al., 2003).

The major ion concentrations of the Tapado ice core are assumed to reflect intense

post-depositional effects during dry periods. High values represent high input of min-

eral dust by dry deposition (especially Na
+

, Ca
2+

and Mg
2+

) and/or an enrichment of
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some major ions (K
+

, SO
2−
4

and Cl
−

) due to strong sublimation processes (Ginot et

al., 2001), whereas low values are characteristic of precipitation during extended wet

periods.

Major ion concentrations of the Tapado ice core were analysed using ion chromatog-

raphy (Ginot et al., 2001) and δ
18

O with stable isotope ratio mass spectrometry (Stich-5

ler et al., 2001). From these records only the upper 23.5 m weq and 20.1 m weq depth

were used because of a hiatus at 23.5 m weq (Ginot et al., 2002) and a too low resolu-

tion of the δ
18

O-record beyond 20.1 m weq, respectively (Ginot, 2001).

2.2 Data preparation and statistical methods

Missing values in the meteorological data sets were replaced by the appropriate long10

term monthly mean. Missing data in the Mendoza Observatory time series was substi-

tuted using data from Mendoza Airport (Table 1); this composite and enlarged record is

referred to as “Mendoza”. The data of the four Willmott-grids closest to Cerro Tapado

were averaged and are referred to as Willmott glacier data.

To determine how well regional climatic variability was represented by Willmott- and15

NCEP/NCAR-grids, a correlation analysis was conducted with available instrumental

data from meteorological stations (Table 2).

In order to investigate the connection between regional climate and ENSO in a tem-

poral way, annual and semi-annual time series were used. A year is defined from May

to April and the austral winter (summer) term from May to October (November to April).20

Time periods used in linear correlation analyses depended on the maximum length of

the available data set overlap. This was 1900 to 2000 for precipitation data (La Serena

to 1992), whereas for temperature time periods varied (Table 1). Finally, correlation

coefficients (r) and their respective explained variance (r
2
×100) were tested for signifi-

cance using a standard Student’s t-test. Results are only discussed when they reached25

significance at a certain level as stated below.

Furthermore, correlation analyses were performed using non-moving three-year av-
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erages of instrumental precipitation and temperature time series starting at 1901 to see

whether ENSO-teleconnections differed with time scale.

To retrieve an integrated record of the ionic composition of the Tapado ice core, we

calculated the first principal component (PC1) of the standardised concentrations of

sulphate, calcium, nitrate, chloride, natrium, ammonium, potassium and magnesium5

(ordered from high to low average concentrations in the ice core) which accounts for

66.8% of their variability. The ice core was dated by annual layer counting of PC1 and

the δ
18

O record with maxima assumed to occur in January. Dating was supported by

a comparison of tritium activity in the ice core with the tritium activity in precipitation at

Kaitoke meteorological station, New Zealand, resulting from the nuclear testing in the10

1960s (U. Morgenstern, GNS NZ, personal communication). No correction for layer

thinning was needed as the glacier was too shallow (Ginot, 2001).

The estimated dating error is +/− 2 years for the time period of 1921 (1937) to 1998

of dated PC1 (δ
18

O), in accordance to Ginot et al. (2005). After dating, the annual net

accumulation [mm/a] was calculated using layer thickness between the annual maxima15

in PC1. However, this approach is more sensitive to errors than annual averages of

other proxies in attributing summer horizons (Henderson et al., 2006). In order to

account for the dating uncertainty non-moving three-year averages of ice core proxies

were used for correlation analyses (Fig. 2). The averaging process is supposed not to

dampen the ENSO-signal which has an interannual periodicity of 2.5 to 7 years (Allan,20

2006).

3 Results

3.1 Representation of regional climate in grid data

Precipitable water content, relative and specific humidity as well as air temperature

time series of the NCEP/NCAR-model were either negative or uncorrelated with the25

respective instrumental precipitation and temperature data (not shown). Thus, they
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could not reflect the regional climatic variability. Reasons for this might be the too

low spatial resolution and/or a too simple approximation of global-scale climate models

to adequately represent the small-scale climate gradients of the subtropical Andean

mountains, reaching altitudes of 6000 m within east-west distances of around 100 to

200 km in this area (Fig. 1). They were not further used.5

In contrast, the variability of the instrumental time series was in good agreement with

the respective Willmott grid interpolation (Appendix A, Table A1). In addition, Willmott

data clearly represented the climatological transitions with altitude in temperature and

with latitude in precipitation patterns (Fig. 3). Another feature, the “Arid Diagonal” from

northwest to the southeast of the region as caused by the SEPA and the Andean lee10

was reflected in smaller precipitation quantity (Fig. 3). This suggests a high suitability

of the Willmott data to represent the climatic variability of the subtropical Andes.

3.2 Regional climate and ENSO

3.2.1 ENSO-related climate patterns: grid data

Correlation analyses of annual Willmott data and ENSO in the time period 1950 to15

1999 at the 95% significance level showed clear seasonal and spatial teleconnection

patterns consistent for all ENSO indices. Correlation results with the Niño 3.4 index

were principally positive, when SOI and CEI were negative. However, there were differ-

ences in the strength of teleconnection depending which ENSO index was used, e.g.

lowest r
2

were typically yielded with the Niño 3.4 index. To avoid redundancy, patterns20

are only presented with the CEI (Fig. 4), whereas those with the Niño 3.4 index and the

SOI are shown in Appendix B (Figs. B1, B2).

In accordance to Aceituno (1988), Grimm et al. (2000) and Montecinos et al. (2000),

among others, there was a strong connection between ENSO and precipitation in the

Mediterranean part of the subtropical Andes especially during winter terms. At around25

31.5
◦

S to 33.5
◦

S and 70
◦

W to 71
◦

W the highest variance of annual and winter precip-

itation could be explained by ENSO variability (Fig. 4a). The maximal r of −0.59 and
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−0.65, respectively, were much higher than the correlation coefficient of r=−0.45 ob-

tained by Aceituno (1988) for the July–August averages of precipitation in Santiago with

the SOI. Apparently, higher altitudes receive more precipitation during El Niño events,

while there are no effects at the coast. The cordillera east of Santiago did not show

a connection between precipitation and ENSO suggesting that the ENSO influence on5

annual precipitation weakens at around 33.5
◦

S in a narrow corridor (Fig. 4a). Fur-

thermore, annual precipitation in the eastern forelands was connected to ENSO only

south of 33.5
◦

S, explaining up to 15% of its variance in the considered time period.

However, this appears to be the result of a connection between summer precipitation

and ENSO in this area, though it was visible only in the correlation analysis with the10

CEI and not with the SOI or Niño 3.4 index (Fig. 4a, Figs. B1, B2). No further relation

existed between precipitation and ENSO in the summer term.

Concerning ENSO-related temperature patterns, we found similarly strong correla-

tions as for precipitation, but in contrast they covered almost the entire subtropical

Andes (Fig. 4b). Air temperature was higher (lower) in El Niño (La Niña) years. The15

temperature teleconnection pattern consisted of a decreasing gradient in correlation

strengths from northwest to southeast of the region (Fig. 4b). Thus, ENSO explained

up to 42% of winter temperature variance in the north-westernmost grids. This pattern

also persists in summer in the northwest with still up to 34% of explained variance, indi-

cating a seasonally more stable linkage of ENSO to temperature than to precipitation.20

Only by using CEI, among all ENSO indices, this summer pattern was found to extend

further south along the highest cordillera.

At Cerro Tapado, both precipitation and temperature could partially be explained by

ENSO variability. Local temperature was all year long and in average over all Will-

mott glacier grids more closely connected to ENSO than local precipitation (Fig. 4a,25

b). Correlation analysis using three-year averaged time series yielded similar but less

significant results mainly due to reduced time series.
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3.2.2 ENSO-related climate patterns: point data

Correlation analyses for point data from meteorological stations and ENSO indices

principally yielded the same results at the 95% significance level as the corresponding

Willmott data, with some variations due to longer and different time periods (Fig. 5).

In accordance to the results using Willmott data the linkage of ENSO teleconnection5

to the winter season persisted at the Chilean stations. Precipitation of Santiago corre-

lated with slightly higher r
2

than the one of La Serena unlike their temperature series

(Fig. 5). In Argentina, station’s precipitation and temperature did not show any corre-

lation to ENSO contrary to the Willmott-data with the exception of San Juan’s winter

temperatures. Differences depending on the type of ENSO index used were only small10

(Fig. 5).

Correlation analyses using three-year averaged meteorological data mainly resulted

in similar teleconnection patterns. However, higher correlations to ENSO were ob-

served at the Chilean stations even though time series were reduced due to averaging

(Fig. 6). Whether the changes in signal strength are part of different ENSO “flavours”15

described by Trenberth and Stepaniak (2001) and, therefore, an actual change in tele-

connection processes or simply an artefact may not be stated from this study.

3.3 The Tapado ice-core derived proxies, regional climate and ENSO

3.3.1 General climatic situation at Cerro Tapado

The climatic divide between subtropical winter and summer rain climate generally fol-20

lows the continental watershed and is situated east of Cerro Tapado (Fig. 7). As a first

estimate obtained from the Willmott glacier grids, winter precipitation accounts for 69

to 88% of the mean annual precipitation around Cerro Tapado (Fig. 7), in accordance

to the suggested winter rain regime of the region (Ginot et al., 2006). As a proxy for

mean annual precipitation, the mean annual total accumulation was calculated to be25

515 mm/a for the time period of 1921 to 1998 (in accordance to Ginot et al., 2006),
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corrected for sublimation as estimated after Ginot (2001). This is approximately 2.5

times the mean annual precipitation of 202 mm/a at La Laguna, a Chilean meteoro-

logical station around 3 km southwest of Cerro Tapado at 3100 m a.s.l. (time period:

1964–1997; Begert, 1999).

The discrepancy may be explained by an altitudinal effect as well as by the particular5

geomorphic setting of the Tapado glacier located in a southerly exposed cirque. There,

lower insolation reduces sublimation compared to glacier‘s vicinity, thus preserving

precipitation at the glacier. However, also a higher influence of summer precipitation

via convection of tropical moisture may be possible.

3.3.2 Climate signals in the Tapado ice-core proxies10

The Tapado ice-core proxies net accumulation, major ion concentration and δ
18

O are

independent from each other, suggesting that they are triggered by different clima-

tological processes during proxy record genesis. None of the proxies is correlated

neither with climate data of the western Andean stations, winter precipitation or annual

temperature at the eastern Andean stations, nor with winter climate of local Willmott15

glacier data at the 90% significance level as would be expected in a dominant winter

precipitation regime (Fig. 8).

Nevertheless, net accumulation is weakly positively correlated with annual and sum-

mer precipitation of San Juan and Mendoza and negatively correlated with Argentinean

summer temperature time series (Fig. 8). Additionally, high local summer precipitation20

of Willmott glacier data was associated with high net accumulation in the ice core

(Fig. 8). However, no correlation was found between net accumulation and ENSO in-

dices (Table 3), in contrast to Piloto glacier (32
◦

S, Leiva et al., 1999) and Echaurren

glacier (33
◦

S, Escobar et al., 1995) located south of Cerro Tapado.

Though fractionation processes may differ from low Mediterranean altitudes support-25

ing the role of temperature as a controlling factor (Rozanski and Araguas-Araguas,

1995), the Tapado δ
18

O-record correlated with local summer temperature (Fig. 8),

whereas no significant correlation was found with precipitation or ENSO (Table 3).
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PC1 of major ion concentrations was low when annual and summer precipitation in

San Juan were high (Fig. 8). Additionally, PC1 is anticorrelated with annual and sum-

mer temperatures of the local Willmott data. There are further positive connections

between PC1 and winter (summer) temperature in Mendoza (San Juan). The ionic

composition of the Tapado ice core is the only proxy to correlate with annual and sea-5

sonal ENSO time series, with low ion concentrations during El Niño years (Table 3).

Highest connections were found in the summer term and with the SOI, whereas lowest

linkage existed to the Niño 3.4 index and in winter (Fig. 8). Up to 25% of major ion

variability in the ice core could be explained by ENSO variability.

4 Discussion10

4.1 ENSO-related regional climate patterns

Annual and semi-annual precipitation and temperature behave differently in ENSO-

teleconnection patterns. This allows us to discuss the kind of influence ENSO has on

climatic parameters in this region and finally on the Tapado ice core. High correlation

is interpreted as a high sensitivity to ENSO during all events, whereas low correlations15

suggest a response to strong events at most.

ENSO-related precipitation is mainly driven by the northward shift of the subtropical

jet stream, which results in higher wind velocities, more intense frontal activity and

above average precipitation in El Niño years (Rutllant and Fuenzalida, 1991; Grimm

et al., 2000; Gallego et al., 2005). In this study, we found the most sensitive region to20

these change around 32.5
◦

S. The effect appears more pronounced at higher altitudes,

for example in the coastal cordillera at and south of Santiago, than at the coast due to

advective processes. Farther north only shifts of the westerlies during strong El Niño

events result in anomalously high precipitation at the western slopes of the Andes,

as may be concluded from slightly lower correlations between precipitation and ENSO25

north of Cerro Tapado (Fig. 4a) and from comparing the results of La Serena and
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Santiago (Fig. 5a). South of 35
◦

S a more persistent influence of the subtropical jet

is to be expected (Gallego et al., 2005) which reduces the sensitivity to an ENSO-

related shift of the westerlies, as shown by Escobar and Aceituno (1995) for winter

snow accumulation. In our study, we noticed this effect only in the small corridor of

the cordillera east of Santiago (Fig. 4a). However, our study reveals a region south5

of Mendoza responding to El Niño with higher precipitation in summers when ocean

and atmosphere anomalies are strongly coupled, whereas in the study of Grimm et

al. (2000) precipitation anomalies in this region were observed in winter at most. This

could be due to a change in moisture advection from the south in association to polar

outbreaks (Seluchi and Marengo, 2000), though their connection to ENSO has not10

been studied yet.

Temperature is strongly influenced by ENSO in most of the region as well. Until now,

this has been shown only for the eastern part of the region (Barros and Scasso, 1994)

and the Atacama Desert (Garreaud et al., 2003; Rutllant et al., 2004), but it appears

even more consistent and seasonally stable in the (north-) western part of the studied15

area. This might be explained by stronger Hadley and Ferrel Cell activity transporting

more latent heat from the tropics to high latitudes over the Pacific in El Niño years (op-

posite in La Niña years; Yuan, 2004). However, due to the teleconnection gradient from

northwest to southeast, which is consistent with higher r
2

for La Serena compared to

Santiago, we suggest a dominant influence of the SEPA via a regional water vapour20

feedback (Manabe and Wetherald, 1967; Soden et al., 2002; Philipona et al., 2005).

During El Niño events the SEPA weakens horizontally and vertically. Then, a reduced

upwelling of the Humboldt current, which gets warmer and releases latent heat (Rut-

llant et al., 2004), balances a decreased air mass warming due to less air descent

(Holton, 2004). As the heat flux between ocean and atmosphere is altered mainly by25

vertical and horizontal temperature advection (Holton, 2004), the water vapour con-

tent in the boundary layer rises over the ocean and can be transported overland due

to zonal wind anomalies. Increased water vapour in the unsaturated subtropical air

reduces the emittance of long wave radiation and, thus, raises temperature (Hall and
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Manabe, 1999; Soden et al., 2002), maybe independent from changes in cloud cover

(Philipona et al., 2005). However, latent heat is also released during cloud formation,

but the effect is more efficient if water vapour is not removed by precipitation as indi-

cated by the discrepancy between regions with highest correlation patterns of ENSO

and precipitation versus temperature in our study. Furthermore, reduced meridional5

wind lowers the adduction of cold air from mid latitudes (opposite processes during La

Niña events). As this regional water vapour feedback seems to be primarily driven by

the extension of the SEPA as indicated by the northwest to southeast teleconnection

gradient, it will be denoted as “SEPA-feedback” further on.

Evidences for further precipitation and temperature teleconnection patterns revealed10

in this study provide additional clues on this feedback. In El Niño winters, moisture from

the Pacific may favour ENSO-related temperature anomalies via the SEPA-feedback

not only at the sensitive western Andean slopes, but also in regions where no correla-

tion with precipitation could be found, e.g. at the coast.

At the eastern Andean slopes, San Juan’s temperatures correlate stronger than Men-15

doza’s with ENSO suggesting a similar regional water vapour feedback with a humidity

advection from Amazonia. The Chaco Low generally interacts with the SEPA gen-

erating a dipole separated by the Andean range (Grimm et al., 2000; Seluchi and

Marengo, 2000). During El Niño winters, Barros and Scasso (1994) observed low

pressure anomalies, i.e. an enhancement of the Chaco Low. Resulting northerly winds20

transport more water vapour to the eastern subtropical Andean forelands fostering a

temperature increase during convection without precipitation anomalies. However, the

major part of annual precipitation and water vapour input at the eastern slopes is in

summer, which prevents an ENSO-related moisture feedback to significantly change

temperatures. In contrast, SEPA and Pacific SSTA would remain in their anomalous25

state during the maturation of an ENSO event around December and still influence the

regional water vapour content and temperature at the (north-)western subtropical An-

dean slopes in ENSO-summers. At the same time, the wave shift of the subtropical jet

had already swung back to the south, reflected by normal precipitation patterns. Fur-
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thermore, we find a lower temperature teleconnection in the south of the subtropical

Andes closer to the persistent frontal activity with generally higher water vapour in the

atmosphere. Here, the SEPA-feedback might not change water vapour content signifi-

cantly. Indirectly, this supports a lower ENSO sensitivity south of 34.5
◦

S (see above),

which then is more expressed in temperature than in precipitation patterns.5

4.2 Ice core proxy genesis and regional climate

We observed a strong connection of all ice-core derived proxies to summer tempera-

ture and precipitation in the northwest Argentinean region. Net accumulation is high

when eastern Andean summer temperatures are low suggesting a better preserva-

tion of winter precipitation on the glacier when sublimation is reduced. Furthermore,10

a main humidity input at Cerro Tapado from the east and from tropical circulation may

be reflected in the dependence of net accumulation on summer precipitation. This is

supported by PC1 which is low during wet summers suggesting a reduced sublimation

and mineral dust input.

The δ
18

O-record appears to conserve mainly local fractionation processes domi-15

nated by summer temperatures. How far this shows a post-depositional alteration

during summer and/or an influence of summer precipitation cannot be stated from this

study. This shows, first, a general problem of glaciers located at climatic divides, where

the dominating climate regime is difficult to predict and second, the necessity to eval-

uate the actual importance of winter and summer precipitation as well as seasonal20

processes of post-depositional alteration at a given site.

Finally, we only found a significant relation between Tapado’s major ion concen-

trations and ENSO. Their connection might be caused by changes in local summer

temperature, which themselves may be influenced by the SEPA-feedback. Thus, there

would be a high input of mineral dust and an enrichment of some major ions due to in-25

tense sublimation processes under cold conditions driven by an intensified SEPA and a

high water vapour gradient between snow and air during La Niña years (opposite in El

Niño years). This is in accordance to the high sublimation rates suggested for La Niña
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years by Ginot et al. (2006). Furthermore, high PC1 is associated with low summer

precipitation in San Juan indicating reduced moisture advection from the northeast.

Hence, high local temperatures can drive intense sublimation and alter net accu-

mulation in non-ENSO-years, whereas in El Niño years they are associated with de-

creased sublimation due to increased moisture in the air. Therefore, we suggest inde-5

pendent atmospherical processes trigger local temperature and alter post-depositional

processes in dependence on ENSO and the regional water vapour feedbacks dis-

cussed above.

5 Conclusion

In this study we showed the subtropical Andes to be an ENSO-sensitive region based10

upon grid and point meteorological data. Precipitation anomalies along the western

and central Andes differ with altitude and respond to a latitudinal shift of the subtropical

jet and frontal activity. However, the ENSO influence on temperature is geographi-

cally dispersed due to changes in regional water vapour advection and gradients in

association to the ENSO-related variability of the SEPA, Humboldt-current’s SSTA and15

the Chaco Low. This specifies the teleconnection processes proposed by Grimm et

al. (2000) for precipitation patterns in southern South America, but further studies on

regional water vapour transport should follow. Then, these mechanisms might be in-

teresting also for studying other regions in the subtropics and in the context of more

frequent El Niño events in times of global warming (Timmermann et al., 1999; Vecchi et20

al., 2006). Further analyses of ENSO teleconnections should apply the CEI by Gergis

and Fowler (2005), which may reveal climatic regions which are influenced only during

ENSO related in-phases change of ocean and atmosphere.

At Cerro Tapado, both temperature and precipitation respond to ENSO. However,

major ion concentrations are the only Tapado ice core records to represent these re-25

sponses, with low (high) ion concentrations during El Niño (La Niña) years. There

are many possible reasons, why other Tapado ice core-derived proxies do not corre-
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late with ENSO. The correlation analyses with gridded local and meteorological station

data suggest a dominant influence of summer precipitation in this region, which itself

is independent of ENSO. How far data from lower altitudes actually represent local

climate at 5500 m a.s.l. cannot be answered from this study, though the influence of

summer climate seems to be a consistent feature.5

However, ice-core derived proxies may intensively be altered by secondary pro-

cesses, whose influence on the Tapado glacier is not totally determinable. Especially

the mass loss due to sublimation plays an important role at Cerro Tapado. The intensity

of those processes is best recorded in major ion concentrations, whereas the δ
18

O-

record tends to be smoothened making annual layer counting complicated (Fig. 2).10

The most sensitive proxy towards dating errors is net accumulation (Henderson et al.,

2006), which may additionally be altered by wind erosion. This indicates the limits of

the Tapado ice core in representing regional climate and ENSO.

Further south and with much less intense post-depositional effects compared to the

Tapado glacier, a new, 104 m long ice core from Cerro Mercedario (Bolius et al., 2006)15

may offer a better chance for reconstructing ENSO variability in general and further

in the past. In the Mercedario ice core the first ENSO response may be expected

from major ion concentrations, though a less disturbed δ
18

O-record seems also quite

promising to learn more about ENSO variability.

Appendix A20

Validation of gridded data

Table A1 shows the results of the correlation analyses comparing Willmott data and

the instrumental time series for precipitation and temperature. They are highly and

positively correlated suggesting a good representation of regional climate variability.25
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Appendix B

Further correlation analysis

Figures B1 and B2 show the results of the correlation analyses of Willmott data with

the SOI and Niño 3.4 index.5
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Table 1. Time period and quality of meteorological temperature and precipitation time series

used in this study.

Meteorological
Location

Height Time period Missing data [%]

station [m a.s.l.] Precipitation Temperature Precipitation Temperature

La Serena (Chile) 29.9
◦

S, 71.2
◦

W 146 1869–1993
1

1901–1948
1

1.3 0.5

Mendoza Obs 32.9
◦

S, 68.9
◦

W 827 1892–1989
1

1905–1988
1

1.9 0.01

Mendoza Aero 32.8
◦

S, 68.8
◦

W 704 1951–2003
2

– 4.6 –

San Juan Aero 31.6
◦

S, 68.7
◦

W 630 1876–2003
2

1901–1985
1

5.0 0.0

Santiago 33.5
◦

S, 70.7
◦

W 520 1867–2003
2

1945–1998
3

2.6 0.0

Time period refers to the longest overlap of meteorological and ENSO indices time series.

Sources:
1

Baker et al. (1995),
2

Vose et al. (1992),
3

Jorge Carrasco, DGA (personal commu-

nication).
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Table 2. Meteorological stations used for validation of the gridded climate data from Willmott

and Matsuura (2001) and NCEP/NCAR-reanalysis.

Meteorological station Willmott-Data
1

NCEP/NCAR-Data
2

Meteorological variable

to be compared

Name Height Southern Western Grid GPH

[m a.s.l.] Latitude [
◦

] Longitude [
◦

] [hPa]

Cristo Redentor 3832 33.25 70.25 7172 700 Temperature

Hd. San Agustin 1020 31.75 70.75 7028 925 Temperature

Mendoza (Aero) 704 32.75 68.75 7173 925 Temperature, Precipitation

San Juan 630 31.75 68.75 7029 925 Precipitation

Santiago 520 33.75 70.75 7172 1000 Precipitation

GPH...Geopotential Height. Sources:
1

Willmott and Matsuura (2001),
2
Kalnay et al. (1996).
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Table 3. Results of correlation analyses of the ice-core derived proxies net accumulation (Net

Acc), first principal component of major ion concentrations (PC1) and δ
18

O-records with ENSO

indices.

Annual Winter Summer

Net Acc PC1 δ
18

O Net Acc PC1 δ
18

O Net Acc PC1 δ
18

O

CEI −0.16 0.43
∗∗

0.05 −0.19 0.38
∗

0.05 −0.13 0.47
∗∗

0.05

SOI −0.33 0.48
∗∗

−0.01 −0.29 0.41
∗∗

0.02 −0.33 0.51
∗∗

−0.05

Niño 3.4 0.00 −0.34
∗

−0.12 −0.03 −0.37
∗

−0.10 0.03 −0.29 −0.14

Given are r at the
∗∗

. . . 95%,
∗

. . . 90% significance levels. Calculation on basis of Gergis and

Fowler (2005), Allan et al. (2006), Trenberth and Stepaniak (2001).
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Table A1. Results of the correlation analyses of monthly, semi-annual (i.e. composite of winter

and summer term averages) and annual time series between point and gridded meteorological

data at different stations for validation purposes.

Meteorological station Variable Time series

monthly semi-annual annual

Cristo Redentor Temperature 0.94
∗∗

0.98
∗∗

0.34
∗

Hd. San Agustin Temperature 0.88
∗∗

0.91
∗∗

0.27

Mendoza-Aero Temperature 0.99
∗∗

1.00
∗∗

0.91
∗∗

Mendoza-Aero Precipitation 0.95
∗∗

0.97
∗∗

1.00
∗∗

Santiago Precipitation 0.94
∗∗

0.97
∗∗

0.89
∗∗

San Juan Precipitation 0.50
∗∗

0.64
∗∗

0.17

Given are r at the
∗∗

. . . 95%,
∗

. . . 90% significance levels. Calculation on basis of Vose et

al. (1992), Baker et al. (1995), Willmott and Matsuura (2001).

201

http://www.clim-past-discuss.net
http://www.clim-past-discuss.net/4/173/2008/cpd-4-173-2008-print.pdf
http://www.clim-past-discuss.net/4/173/2008/cpd-4-173-2008-discussion.html
http://creativecommons.org/licenses/by/3.0/


CPD

4, 173–211, 2008

Climate and glacier

response to ENSO in

subtropical Andes

E. Dietze et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

◭ ◮

◭ ◮

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

Fig. 1. Image of South America with the region of interest and geographical location of the

meteorological stations used in this study (LS. . . La Serena, SA. . . Santiago de Chile, SJ. . . San

Juan, ME. . . Mendoza). The drilling site on Cerro Tapado (CT, 5500 m a.s.l.) is located close

to the border between Chile and Argentina at 30
◦

08
′

S and 69
◦

55
′

W. DEM and Blue Marble

Image were provided by NASA Earth Observatory.
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Fig. 2. Records of Cerro Tapado ice core proxies net accumulation, first PC of major ion

concentrations and the δ
18

O-record (from top to bottom). Original data sets in black and three-

year non-moving averages ending 1995 in red.
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Fig. 3. Mean regional annual as well as winter and summer (a) precipitation amounts (mm)

and (b) averaged temperatures (
◦

C) in the subtropical Andes. Data after Willmott and Matsuura

(2001) for the time period 1950 to 1999.
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Fig. 4. Coefficients of the correlation analyses between annual as well as winter and summer

(a) precipitation and (b) temperature time series after Willmott and Matsuura (2001) and the

CEI of Gergis and Fowler (2005) for the time period 1950 to 1999.
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Fig. 5. Coefficients of annual correlation analyses between all ENSO indices (inner to outer

ring: SOI, Niño 3.4 index and CEI) and meteorological station data of (a) precipitation and

(b) temperature. Results are inversed for SOI and CEI. Abbreviations as in Fig. 4.
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Fig. 6. Coefficients of three-year averaged correlation analyses between all ENSO indices

(inner to outer ring: SOI, Niño 3.4 index and CEI) and meteorological station data of (a) precip-

itation and (b) temperature. Results are inversed for SOI and CEI. Abbreviations as in Fig. 4.
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Fig. 7. Percentage winter precipitation of total annual precipitation in the subtropical Andes

indicate the boundary between Mediterranean climate at the western and summer rain climate

at the eastern Andean slopes (data: Willmott and Matsuura, 2001). Abbreviations as in Fig. 4.
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Fig. 8. Coefficients of correlation analyses between Tapado ice core proxies (inner to outer

ring: PC1 of the major ion concentrations, δ
18

O and net accumulation) and meteorological

data of (a) precipitation and (b) temperature. WM: glacier grids after Willmott and Matsuura

(2001, see text), other abbreviations as in Fig. 4.
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Fig. B1. Coefficients of the correlation analyses between annual as well as winter and summer

(a) precipitation and (b) temperature after Willmott and Matsuura (2001) and the SOI of Allan

et al. (1991) for the time period 1950 to 1999.

210

http://www.clim-past-discuss.net
http://www.clim-past-discuss.net/4/173/2008/cpd-4-173-2008-print.pdf
http://www.clim-past-discuss.net/4/173/2008/cpd-4-173-2008-discussion.html
http://creativecommons.org/licenses/by/3.0/


CPD

4, 173–211, 2008

Climate and glacier

response to ENSO in

subtropical Andes

E. Dietze et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

◭ ◮

◭ ◮

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

Fig. B2. Coefficients of the correlation analyses between annual as well as winter and summer

(a) precipitation and (b) temperature after Willmott and Matsuura (2001) and the Niño 3.4 index

of Trenberth and Stepaniak (2001) for the time period 1950 to 1999.
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