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Abstract

The mountain environments of mid-latitude Europe and Arctic Russia contain

widespread evidence of Late-Quaternary glaciers that have been prescribed to the Last

Glacial Maximum (LGM). This glacial-geological record has yet to be used to quanti-

tatively reconstruct the LGM climate of these regions. Here we describe a simple5

glacier-climate model that can be used to derive regional temperature and precipita-

tion information from a known glacier distribution. The model was tested against the

present day distribution of glaciers in Europe. The model is capable of adequately pre-

dicting the spatial distribution, snowline and equilibrium line altitude climate of glaciers

in the Alps, Scandinavia, Caucasus and Pyrenees Mountains. This verification demon-10

strated that the model can be used to investigate former climates such as the LGM.

Reconstructions of LGM climates from proxy evidence are an important method of

assessing retrospective general circulation model (GCM) simulations. LGM palaeocli-

mate reconstructions from glacial-geological evidence would be of particular benefit to

investigations in Europe and Russia, where to date only fossil pollen data have been15

used to assess continental-scale GCM simulations.

1 Introduction

To provide confidence in climate predictions made using general circulation models

(GCMs) it is important to compare their predictions of past climates with records of

past climates. GCMs require observations and measurements for model inputs and20

boundary conditions as well as information against which the model can be tested.

The Last Glacial Maximum (LGM) is the most recent prelonged cold phase in the

Earth’s history (e.g. EPICA Community Members, 2004). Owing to the different na-

ture of the climate and relative abundance of preserved evidence for climate change

the LGM is a popular time period for testing the ability of GCMs to simulate past cli-25

mates (e.g. the Palaeoclimate Modelling Intercomparison Project (PMIP) (Joussame
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and Taylor, 1995) and PMIP2 collaborative projects (Harrison et al., 2002). To date the

only continental-scale proxy LGM climate reconstructions used to assess GCM simu-

lations of Europe and Russia have been derived from fossil pollen data (Peyron et al.,

1998; Tarasov et al., 1999; Kageyama et al., 2001; Jost et al., 2005). It is important

to try and use a multi-proxy approach, such as established in the tropics (e.g. Farrera5

et al., 1999) when assessing GCM model output for the following three reasons. First,

a single proxy source may not provide a complete climate reconstruction. Individual

proxy records will primarily reflect the aspects of the climate to which they are most

sensitive; plants (and therefore pollen) will most reliably reflect “bioclimatic” variables

(e.g. temperature of coldest month, or seasonal distribution of precipitation) (Prentice10

et al., 1992), rather than “traditional” climate variables (e.g. mean annual temperature

or annual precipitation). Second, methodological limitations may create errors in the

reconstructed climate signal. The method used by Peyron et al. (1998) and Tarasov

et al. (1999) assumed that the change in vegetation distribution between the present

day and LGM reflected a change in climate alone. Modelling studies (e.g. Jolly and15

Haxeltine, 1997; Harrison and Prentice, 2003) and laboratory studies (Cowling and

Sykes, 1999) have shown that the distribution of LGM vegetation is affected by the re-

duced atmospheric CO2 concentration during the LGM (e.g. EPICA Community Mem-

bers, 2004). The omission of this factor from the Peyron et al. (1998) and Tarasov et

al. (1999) reconstructions means that the LGM precipitation anomaly is over-estimated20

(Cowling and Sykes, 1999). Third, a multi-proxy approach allows regional trends re-

constructed within a single proxy to be corroborated (e.g. Farrera et al., 1999). This is

important because the coarse resolution of GCMs prevents them from simulating local

scale factors that influence the climate signal recorded at individual proxy sites.

Consequently, there is a need for new continental-scale proxy LGM climate recon-25

structions across Europe and Russia which can contribute to the calibration of present

and future GCMs. Glaciers can be used as indicators of environmental change; the

spatial distribution of glaciers is, to a first order, a function of precipitation and temper-

ature conditions. The climate conditions required to maintain individual glacier mass
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balance have been modelled in a variety of ways (e.g. Oerlemans, 1991; Hock, 1999;

Braithwaite and Zhang, 2000; Bassford et al., 2006). In order to compare the results of

large-scale climate models with those derived from glaciers, a method is needed which

can extract regional information concerning precipitation and temperature from mass

balance models.5

In this paper, a modelling approach designed to characterise the regional-scale re-

lationship between climate and glaciated regions is presented. The model is tested by

application to the present-day distribution of glaciers forced by modern accumulation

and temperature records. The result is a model capable of determining the climate

required under a given distribution of glaciers (e.g. at the LGM and in the future). A10

glossary of all acronyms used in this paper can be found in Appendix A.

2 The glacier-climate model

2.1 The degree day model

The mass budget and extent of glaciers are determined by the climate and the char-

acteristics of ice (see Paterson, 1994 for a full review). The geological record demon-15

strates that glaciers are sensitive to changes in climate (e.g. Ehlers and Gibbard, 2004).

It is on this premise that glacial-geological evidence has been widely used to make in-

ferences about past climates (e.g. Leonard, 1989; Kull et al., 2003; Mark et al., 2005).

A degree day model (DDM) was used to calculate ablation at the glacier surface in this

study. This approach uses the sum of positive air temperatures (T+
) to calculate melt-20

ing (M) during a given time period (∆t(d)), divided into n time intervals, the factor of

proportionality is controlled by the degree day factor (DDF) expressed in mm d
−1 ◦

C
−1

(Hock, 2003):

n
∑

i=1

M = DDF

n
∑

i=1

T+
∆t (1)
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It is usual to use different degree day factors for snow and ice surfaces to reflect the

lower albedo and higher ablation rates of ice compared to snow (Hock, 2003). Surface

accumulation is calculated using a temperature threshold to divide precipitation (P*)

into rainfall or snowfall:

P ∗
= snow if T ≤ Tthold

P ∗
= rain if T > Tthold

(2)5

The mass balance model was used to simulate mass balance over a pre-defined glacier

geometry using the principles of static mass balance sensitivity. This approach as-

sumes the glacier geometry remains fixed and does not explicitly calculate glacier flow.

The response of the glacier to climate is represented by changes in the mass balance

profile from the fixed glacier geometry (e.g. van de Wal and Oerlemans, 1994; Fleming10

et al., 1997). Static sensitivity experiments on palaeo-glaciers assume steady-state

conditions. The mass balance model is tuned until cumulative surface mass balance

is zero representing equilibrium in the glacier climate system (e.g. Hostetler and Clark,

2000).

2.2 Numerical details15

It is not possible to derive melt factors for LGM glaciers, therefore the model was pa-

rameterised using melt factors measured over present day glaciers, and it is assumed

these values adequately represent the LGM climate-glacier relationship. The average

melt factors for Scandinavian and Alpine glaciers from Braithwaite and Zhang (2000)

are 4.3 mm d
−1 ◦

C
−1

and 6.5 mm d
−1 ◦

C
−1

for snow and ice, respectively; these val-20

ues were used in this study and the melting threshold was set at 0
◦
C. For mid to high

latitude glaciers the precipitation threshold is usually between 0
◦
C and 2

◦
C (e.g. Bass-

ford et al., 2006); a value of 1
◦
C was used to incorporate the occurrence of snowfall

above 0
◦
C. Rainfall and meltwater were assumed to runoff the glacier surface in the

model and make no contribution to net accumulation via refreezing or superimposed25

ice formation.
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To ensure the numerical stability of the mass balance calculations each simulation

was initiated with a default snow surface. Ablation and accumulation (Eqs. 1 and 2)

were calculated on an hourly timestep and the model was run for a one year starting

on 1 September (Julian Day 244) (assumed to be the start of the winter accumulation

season). This allowed the development and melting of the snowpack during the winter5

and spring, respectively. Once melting had started in the spring, the equivalent melt

from each time step was removed from the snowpack. If the snowpack was melted

away completely the model switched to melting the ice surface.

2.3 Applicability of the model

The simplicity and requirement for only two meteorological parameters (temperature10

and precipitation) mean that DDMs have been widely used in palaeoclimate mod-

elling studies (e.g. Hostetler and Clark, 2000; Kull and Grosjean, 2000; MacGregor

et al., 2000). The simplicity of the DDM allows an ease of application, especially in re-

gions where data are limited, the trade off is that there are limitations to what they can

achieve. Using fixed degree day factors only bulk ‘average’ conditions can be estimated15

and local-scale glacial processes will not be captured (Hock, 2003). DDMs are insen-

sitive to changes in the style of seasonality, specifically the winter season; once air

temperature drops below the melting threshold ablation will cease and the magnitude

of the negative temperature is not considered. Static-mass balance sensitivity analy-

ses have limited applicability when studying climate change in recent past because the20

dynamic response mountain glaciers is short (10 to 10
2

years), therefore an appreci-

ation of changes in hypsometry is required to fully understand the glacier response to

the climate signal. For studies investigating longer-term climate variation (10
3

to 10
4

years) it can be assumed that glacier changes are a response to longer term mean

climate forcing making the assumption of steady-state more plausible (Seltzer, 1994).25

1138

http://www.clim-past-discuss.net
http://www.clim-past-discuss.net/3/1133/2007/cpd-3-1133-2007-print.pdf
http://www.clim-past-discuss.net/3/1133/2007/cpd-3-1133-2007-discussion.html
http://www.egu.eu


CPD

3, 1133–1166, 2007

Glacier-climate model

for recosntructing

palaeoclimates

R. Allen et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

◭ ◮

◭ ◮

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

EGU

3 Model data

3.1 Input data

To calculate glacier cumulative mass balance the DDM requires a hypsometric profile

(i.e. the spatial distribution of the glacier as a function of altitude). In this study the

spatial geometry and altitudinal profiles of the present day or LGM glaciers were re-5

constructed separately and combined to produce the hypsometry used by the DDM.

The USGS “gtopo30 arcsec” DEM (USGS, 1996) was used to provide the altitudinal

component of the present day and LGM climate reconstructions. The resolution of

this DEM (∼1 km) provides a good representation of the broad scale relief and altitude

range within the upland regions glacerised now and glaciated at the LGM.10

Details of the spatial geometry used to represent the present day glaciers and LGM

glaciers are described in Sect. 3.2 of this paper and in Allen et al. (2007a), respectively.

The high resolution (10’ latitude/longitude) monthly CRU2.0 climate dataset, created

by the Climate Research Unit (CRU), University of East Anglia, was used to repre-

sent the present day climate baseline from which LGM climate anomalies would be15

derived. This data set was constructed using a thin-plate spline interpolation for the

period 1961–1990. The spline interpolation is a three-dimensional (i.e. altitude sensi-

tive) interpolation (Hutchinson, 1999). New et al. (2002) provide a full description of

the CRU2.0 climate dataset, which has three advantages of relevance to this study.

First, the dataset enables all the simulations (including those in Allen et al., 2007a and20

b) to be driven with meteorological data from the same source constructed using a

consistent methodology. Second, the dataset represents a 30-year average climate;

a single-year climate record may not necessarily be representative of a mean present

day climate. Third, the individual meteorological variables are accompanied by an un-

certainty (New et al., 2002) enabling the sensitivity and reliability of model results to be25

tested against the uncertainty of the input data.

The present day climate used to drive the model was based on the mean monthly

temperature (
◦
C), mean monthly diurnal temperature range (

◦
C) and monthly precip-
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itation totals (mm mo
−1

) from the CRU2.0 climate dataset (New et al., 2002). These

variables are presented in the dataset on a monthly resolution; they were downscaled

to the diurnal climate required by the DDM as follows: it was assumed that precipi-

tation rates were constant throughout each month and hourly precipitation (Phr ) was

calculated from the CRU2.0 monthly precipitation total as (PCRU) and days in the month5

(dpm):

Phr =

(

PCRU/dpm
)

24
, (3)

The hourly temperature (Thr ) was calculated from the mean monthly temperature (Tmo)

and diurnal temperature range (Tr ) using a cosine function similar to that used by Bass-

ford et al. (2006):10

Thr = Tmo −

(

1

2
Tr × cos

(

2π(hr − 3

24

))

(4)

Within each month the mass balance totals simulated over the diurnal cycle where

scaled up to form the monthly mass balance total. The CRU2.0 climate dataset was

downscaled to each cell in the USGS DEM (USGS, 1996) using temperature and pre-

cipitation lapse rates. Owing to the absence of field measurements that could be used15

to prescribe site specific lapse rates they were treated as unknowns in the modelling

experiments. To encompass all possibilities, a suite of 189 lapse rates were used to

represent temperature lapse rates ranging from 0
◦
C/km to 10

◦
C/km, and precipitation

lapse rates ranging from 0 mm/100 m to 80 mm/100 m (this range is similar to the range

of published precipitation lapse rates across Europe, e.g. Sevruk, 1997). The precip-20

itation lapse rate was used to adjust the annual precipitation total and the resulting

change in precipitation applied evenly across the year. It is acknowledged that the

downscaling of the CRU2.0 climate is an extrapolation of the dataset and will create

model climates at the DEM resolution that were not used in the creation of the CRU2.0

dataset. Furthermore it is accepted that the lapse rates are being used in a purely25
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pragmatic modelling context and are not attempting to simulate the physical processes

by which lapse rates occur.

3.2 Model test data

Before being applied to retrospective climate reconstructions (Allen et al., 2007a and

b) the ability of the DDM to characterise the regional scale glacier-climate signal of5

five currently glacierised regions in Europe which are characterised by a small

glacierised extent but a high number of individual discrete valley and mountain glaciers

(Table 1). The only dataset containing the level of detail to adequately describe these

regions is the World Glacier Inventory (WGI) (National Snow and Ice Data Centre,

1999). To make the ASCII formatted WGI data compatible with the DDM results it was10

necessary to convert it into a grid format. Whilst the WGI data describes the size, al-

titude range, and total area of individual glaciers, it provides no hypsometric data. As

a result it is impractical to construct individual glacier profiles at the DEM resolution,

especially for glaciers greater than 1 km
2
. The WGI data were converted to a grid with

the same resolution as the CRU2.0 climate dataset. Each glacier was prescribed to a15

grid cell using the latitude and longitude attributes. For each cell the contributing glacier

data were used to construct a total glacierised area (Fig. 1) and average snowline, max-

imum, minimum and mean altitude. It is noted that the WGI descriptive data (snowline

altitude, maximum, minimum and mean altitude, and glacier area) for the glacierised

regions of Europe are incomplete (Table 2). Therefore the cell characteristics derived20

from the combined WGI data may not wholly reflect the glacial characteristics of each

∼20 km cell.

The model was used to simulate the annual mass balance for all the DEM cell within

the model domains defined for each region (Table 3) which were scaled up to the

resolution of the WGI dataset for comparison. Cells containing DEM cells with positive25

annual mass balance were assumed to be glacierised, and conversely cells containing

only negative annual mass balance DEM cells were assumed to be non-glacierised.

Four types of result could be predicted by the DDM when compared to the WGI dataset.
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Type one, correctly predicting the location of a WGI glacierised cell. Type two, correctly

predicting the location of a WGI non-glacierised cell. Type three, predicting a WGI

glacierised cell to be non-glacierised. Type four, predicting a WGI non-glacierised cell

to be glacierised. A cost function was used to optimise the lapse rate combination

that minimised the difference between the model predictions and WGI dataset. The5

cost function (CF ) calculated the number of type one (A) and type two (B) results and

compared them to the number of glaciated (A’) and non-glaciated cells (B’) in the WGI

dataset (Eq. 5). The cost function returns a value between 0 and 1, with one indicating

a perfect prediction of the WGI dataset by the model.

CF =
A + B

A′ + B′
(5)10

A comparison of the equilibrium line altitude (ELA) and climate at the ELA predicted

by the model with the snowline data in the WGI dataset and an envelope of present

day ELA climates measured over mid-latitude glaciers (Fig. 2) were used to assess the

glaciological and climate conditions simulated by the model over the glacier surface.

The model ELA was calculated as a function of the altitude and mass balance between15

neighbouring DEM cells:

ELA=E1− (E2−E1) ×
bn1

(bn2−bn1)
, (6)

where, E1 and E2 are the elevation of neighbouring DEM cells with positive and neg-

ative mass balance, respectively, and bn1 and bn2 are the annual mass balance of

the positive and negative DEM cells, respectively (Oerlemans, 1991). This comparison20

assumed that the ELA and snowline on the modelled glaciers are at the same altitude.

This is reasonable because they are generally found at similar altitudes on temperate

mountain glaciers (Benn and Evans, 1998), although it is acknowledged that they are

different glaciological parameters. The envelope of present day ELA climates is based

on data from 32 glaciers (Kotlyakov and Krenke, 1982; Leonard, 1989).25
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4 Present day verification experiments

4.1 Experiment one: Spatial distribution of glacierised and non-glacierised regions

The aim of this experiment was to quantify the ability of the DDM to simulate the known

distribution of present day glaciers in the five model regions. Across the suite of cli-

mate lapse rates the cost function results are more sensitive to the temperature lapse5

rate than the precipitation lapse rate. Using small temperature lapse rates the DDM

simulates negative mass balance in all cells, as temperature lapse rate increases the

number of correctly predicted glacierised cells (and cost function) increases (Fig. 3). At

very high temperature lapse rates the percentage of correctly predicted non-glacierised

cells (and cost function) starts to decline. In Southern Scandinavia and Caucasus10

Mountains there are multiple cost function optima, with the same cost function value,

but different spatial predictions of glacierised and non-glacierised cells (Table 4). Un-

der optimum lapse rates the DDM predictions of regional glacierization follow the same

broad pattern in all regions; predictions of non-glacierised zones exceed 90%, and pre-

dictions of glacierised cells exceed 50% (Table 4 and Fig. 4). The accumulation area15

ratio (AAR) of a glacier describes the proportion of an accumulation zone relative to the

total glacier area. Published AAR values for mid-high latitude glaciers range from 0.5

to 0.8 (Benn and Lehmkuhl, 2000), with 0.67 being a commonly used value (Benn and

Evans, 1998). The total glacial extent within each glacierised cell was estimated using

an AAR of 0.67; assuming that DEM cells with positive mass balance represented the20

accumulation zone of the glaciers. In the five modelled regions, the within-cell glacial

coverage described by the WGI is less than 5% in the majority of glacierised cells. The

DDM predicts a similar extent of glacial coverage (Table 5) (Allen, 2006).

4.2 Experiment two: DDM simulated ELA climate

The aim of this experiment was to assess if the ELA climates simulated by the DDM25

were compatible with the measured ELA climates described in Fig. 2. In each region
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the ELA climate was derived from the simulations using the optimised lapse rate com-

bination determined in Experiment One. Model ELA climates broadly agree with field

measured ELA climates in all regions (Fig. 5). In the Caucasus Mountains the simu-

lated ELA climates straddle the left hand boundary of the measured ELA climate en-

velope, however, the modelled ELA climates lying outside of the ELA climate envelope5

are no more extreme than the outliers in the Ohmura et al. (1992) dataset.

4.3 Experiment three: DDM simulated ELA estimates

The aim of this experiment was to assess the ability of the DDM to replicate the alti-

tudinal profile of the glaciated regions described by the WGI. For each region only the

cells with the most complete WGI dataset were selected for this experiment. In this ex-10

periment the optimum lapse rate combination which minimised the difference between

the model ELA and WGI snowline data was used as the optimum result. In the Alps the

DDM could simulate the ELA to within 100 m of the mean WGI snowline in 11 of the 12

assessed cells (Fig. 6). In the Caucasus and Scandinavian regions the DDM ELA esti-

mates were lower than the maximum glaciated altitude, but systematically higher than15

the mean WGI snowline. The discrepancy between the lowest DDM ELA prediction

and the within cell mean WGI snowline ranged from 162 m to 309 m in the Caucasus

Mountains, from 82 m to 252 m in Southern Scandinavia and from 124 m to 409 m in

Northern Scandinavia.

4.4 Experiment four: Sensitivity analysis20

The aim of the sensitivity analysis was to investigate the extent to which the DDM pre-

dictions of present day European glaciers changed in response to first, uncertainty in

the input data and second, the range of potential DDM parameterisations. Such in-

vestigation is required to fully understand how representative the climate created by

the modelling approach is of the present day. The uncertainty in the CRU2.0 climate25

data, vertical error in the USGS DEM and eight different DDM parameterisations were
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combined to create a suite of sixteen sensitivity experiments (Table 6). The same

methodologies used in the first three experiments were used to determine the opti-

mum model predictions of glacier distributions, ELA and ELA climates for each model

sensitivity simulation.

In the Alps, Pyrenees, Caucasus Mountains and Southern Scandinavia the opti-5

mum model result from each model sensitivity experiment predict a distribution of

glacierised and non-glacierised cells comparable to the model control runs (Fig. 7).

The re-optimized lapse rate combinations do vary compared to the control experiment,

and reflect that, with other things being equal, the changes to the input data or model

parameters will either increase or decrease the annual mass balance simulated by10

the DDM. In simulations which increase the annual mass balance (TEMP-, RANGE-,

PPT+, ELEV+, DDF-1, DDF-2, THOLD-2, and THOLD-4) the re-optimised tempera-

ture lapse rate is decreased compared to the control. The inverse occurs in the remain-

ing experiments which decrease the annual mass balance total. Northern Scandinavia

is the most sensitive region to the uncertainty in input data and potential range of pa-15

rameterisations; this is reflected in changes to the correct prediction of glacierised cells

of up to 18% from the control. In all regions the sensitivity experiments cause only small

scale changes in the DDM predictions of within-cell glacier coverage, ELA estimates

and ELA climates. These variations are not significant enough to change the regional

trends present in the control experiments.20

5 Discussion

A key characteristic of glacierised regions is the distribution of glaciers and surrounding

non-glacierised zones. Using the optimum lapse rate combinations the model predicted

>90% of the non-glacierised cells and >50% of glacierised cells in all modelled regions.

The structure of the cost function results from experiment one and sensitivity analyses25

indicate that the model predictions were statistically the best achievable results for all

regions except Northern Scandinavia. At high lapse rates, the presence of type four
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results (WGI non-glacierised cells predicted by the DDM as glacierised) show that if

lapse rate domain had included larger lapse rate values than those used the overall

cost function would not have increased. Whilst using larger lapse rates would increase

the percentage of correctly predicted glacierised cells this positive effect on the cost

function would have been negated by the increasing presence of type four results.5

In the sensitivity analyses the different experiments changed the optimum lapse rate

combination, however the predictions of glacierised and non-glacierised cells were not

changed significantly from the control simulation. In Northern Scandinavia, the cost

function value increases significantly in sensitivity analyses where the DDM is able to

simulate more positive annual mass balance compared to the control simulation. This10

suggests that the baseline climate across Northern Scandinavia predicts a local rather

than global optimum solution.

The inability of the DDM to correctly predict higher percentages of glacierised cells

is most likely to be related to the characteristics of the DDM, USGS DEM and WGI

datasets. Despite the glacierised regions considered in this study containing nu-15

merous glaciers, the individual glaciers are relatively small. As such the majority of

glaciers are likely to be influenced by significant local topographic or climatic factors,

e.g. steep sided valleys reducing direct insolation, topographically induced precipita-

tion, or wind blown snow. These local scale processes cannot be reproduced by the

CRU2.0 and USGS DEM datasets. It is possible that some of the glaciers detailed in20

the WGI dataset are sustained by these processes in regions where the regional cli-

mate does not alone sustain glacierization. Many of the glaciers have a surface area

that is beneath the resolution of the DEM, e.g. in the Pyrenees the largest glacier is

∼1 km
2
. In such cases the DDM will return a single mass balance value to represent

the whole glacier. If this is negative the cost function would assume that the region25

is non-glacierised. Higher resolution (<100 m) DEMs (e.g. Shuttle Radar Topograhic

Mission) are now becoming available, and would provide a more detailed model rep-

resentation of the topography in mountainous regions. The application of such DEMs

is currently limited in the regional scale modelling discussed in this paper owing to
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the resolution of available climate data, which does not contain sufficient detail to be

reliably downscaled onto a DEM with a resolution <100 m. The dates of the WGI ob-

servations, used to characterise the glaciers within the modelled regions, range from

1952 to 1983. Therefore some of the WGI data predate the CRU2.0 dataset, which

represents the climatological normal 1961–1990. Global temperatures have shown a5

warming trend and the mass balance of European glaciers has been generally negative

during the 20th Century (IPCC, 2001). It is possible that some of the smallest glaciers

contained in the WGI dataset ceased to exist between 1961 and 1990. Consequently

the WGI maps used to assess the DDM predictions have to be viewed as a maximum

glacial characterisation of the period 1961 to 1990.10

Within each model region the DDM was able to simulate a style of ELA climate that

is compatible with measured ELA climates, demonstrating that the modelling approach

could consistently create plausible climatic conditions over glacier surfaces. The pos-

itively skewed distribution of ‘within-cell’ glacier coverage predicted by the DDM in all

regions is in broad agreement with the style of glacier coverage described in the WGI;15

however there are important differences between the model results and the WGI data

that must be discussed further.

In all regions except the Alps the mean, and range, of predicted ‘within-cell’ glacial

coverage are smaller than the WGI dataset. This reflected in the systematic over pre-

diction of the ELA by the DDM compared to the mean WGI snowline. As part of a20

study of LGM glaciers in the tropics Hostetler and Clark (2000) verified their DDM by

simulating modern tropical glaciers. They used the USGS DEM and climate predic-

tions from the GENESIS (v.2.01) general circulation model. Whilst their DDM could

simulate the ELA and the mass balance gradient the spatial extent of the glaciers was

over predicted by 50%. They attributed this over prediction to first, local scale topo-25

graphic features that create favourable climatic conditions required for glaciation, and

second, the size of the ablation area of tropical glaciers being beneath the resolution

of the DEM. Therefore, successful simulations of the altitudinal range of the glaciers

required the DDM to over predict the glaciated area. If this interpretation of the effect of
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the USGS DEM resolution on the DDM simulation is correct, it potentially indicates that

the modelling approach tested in these verification experiments created a climate that

was either too warm or dry, and cause the DDM to simulate annual mass balance val-

ues that are too small. This would explain the ELA over-predictions, under-predictions

of “within-cell” glacial coverage, and optimum lapse rate combinations. The optimum5

temperature lapse rates are higher than the environmental lapse rate (6.5
◦
C/km) which

can be viewed as the idealised optimum lapse rate because it is commonly measured

(Barry and Chorley, 2003) and frequently used in climate modelling studies (McGuffie

and Henderson-Sellers, 1997). A climate that is either too warm or dry will optimise at

a higher lapse rate to enable the model to exaggerate the altitudinal influence on the10

climate.

The excellent all round results in the Alps suggest that the model climate bias is

spatially variable. The Alps have a long history of both climate and glacier observa-

tions collected from a dense network of observation posts. As a result, it would be

expected that the altitudinal influence on climate and glacier measurements in the Alps15

would be well represented in the CRU2.0 and WGI datasets, respectively. This level

of detail is not available for the other modelled regions (see Figs. 1–9 in New et al.,

2002). As stated in Sect. 3.3 the downscaling of the CRU2.0 dataset used in this study

is an extrapolation, and therefore may create erroneous model climates in mountain

regions which are not fully represented in the CRU2.0 climate (Allen, 2006). It was not20

possible to compare the climate created at the DEM resolution against an alternative

calibrated dataset to first, quantify the magnitude of the bias and second, determine if

the bias was dominated by temperature being to warm, precipitation being too dry, or

a combination of both.

6 Conclusions25

A simple method by which glaciers provide climatic information at a regional scale has

been outlined. The model using modern climate as an input was tested against the
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known record of glaciers in the Alps, Pyrenees, Scandinavia and Caucasus Mountains,

and was found to be capable of predicting the distribution and characteristics of these

currently glacierised regions. In the five modelled regions the DDM correctly predicted

over 90% of the non-glacierised cells, and between 50% and 87% of the glacierised

cells (Table 4), furthermore the distribution of glacierised cells and the within cell glacial5

extents predicted by the DDM were in good agreement with the WGI data (Fig. 4 and

Table 5). The ELA climates predicted by the DDM correlate with ELA climates mea-

sured on European glaciers (Ohmura et al., 1992) (Fig. 2 and Fig. 5). In the Alps,

where the glacier data are most reliable and the meteorological network is dense, the

DDM was able to reliably simulate the average snowline altitude of the glacierised cells10

(Fig. 6). A sensitivity experiment was performed to test the impact of the uncertainty

in the input data and model parameter set on the model performance, it was found

that the results presented here were the optimum results achievable using the outlined

modelling approach (Fig. 7).

The results presented in this paper verify the model and the modelling procedure15

and have demonstrated that the approach is capable of identifying temperature and

precipitation conditions necessary for the formation of steady-state glaciers. The model

is capable of predicting climates associated with modified forms of glacierization, and

is suitable for analysing former climates, such as at the LGM, providing that suitable

records of glacier extent can be determined (Allen et al., 2007a and b). A final point20

to note is the future use of this model in establishing the glaciological implications of

future climate scenarios derived from GCM investigations.
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Appendix A

AAR Accumulation Area Ratio

CRU Climate Research Unit – University of East Anglia

DDF Degree Day Factor

DDM Degree Day Model

DEM Digital Elevation Model

ELA Equilibrium Line Altitude

EPICA European Project for Ice Coring in Antarctica

GCM General Circulation Model

LGM Last Glacial Maximum

PMIP Palaeoclimate Modelling Intercomparison Project

USGS United States Geological Service

WGI World Glacier Inventory
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Table 1. Number of glaciers, estimated glacier coverage, and range of glacier types in the

glacierised regions of Europe. Glacier types: 1 – ice sheet, 2 – ice field, 3 – ice cap, 4 – outlet

glacier, 5 – valley glacier, 6 – mountain glacier, 7 – glacieret, 8 – ice shelf, 9 – rock glacier.

Glacier classifications are from the WGI (National Snow and Ice Data Center, 1999).

Region Number of Glaciated GLACIER TYPE (Percentage of Sample Size)

Glaciers Area (km
2
) 1 2 3 4 5 6 7 8 9

Alps 5327 3050 0.1 0.1 0.2 3.6 51.1 42.4 0.0 0.0 2.6

Pyrenees 108 11 0.0 1.9 0.0 0.0 63.9 34.3 0.0 0.0 0.0

S. Scandinavia 921 1615 – – – – – – – – –

N Scandinavia 1487 1440 9.9 2.9 9.5 9.8 58.6 9.2 0.0 0.0 0.1

Caucasus 1191 1108 0.0 0.0 0.0 31.0 69.0 0.0 0.0 0.0 0.0
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Table 2. Number of observations contributing to the WGI descriptive variables across the

glacierised regions of Europe.

Region Glaciers Area Snowline Elevation Measurements

Measurements Measurements Minimum Mean Maximum

Alps 5327 5316 1986 3441 5313 5298

Pyrenees 108 108 25 108 108 108

S. Scandinavia 921 921 230 0 823 824

N Scandinavia 1487 1487 441 0 1487 1486

Caucasus 1191 1191 614 1190 1191 1191
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Table 3. Dimensions and distribution of cell types of the five model domains used in the DDM

verification experiments.

Glacierised Latitude Longitude Glacierised Non-Glacierised

Region Minimum Maximum Minimum Maximum Cells Cells

Alps 44.00
◦
N 47.80

◦
N 6.00

◦
E 14.33

◦
E 220 803

Pyrenees 42.50
◦
N 42.83

◦
N 0.35

◦
W 2.48

◦
E 12 42

Southern Scandinavia 59.67
◦
N 63.00

◦
N 4.30

◦
E 9.30

◦
E 140 375

Northern Scandinavia 65.16
◦
N 70.33

◦
N 12.96

◦
E 22.96

◦
E 250 1137

Caucasus Mountains 40.67
◦
N 45.00

◦
N 38.00

◦
E 49.00

◦
E 84 302
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Table 4. Distribution of type one (glacierised cells) and type two (non-glacierised cells) results

using the optimum lapse rate combination determined by cost function analysis.

Region Optimum Lapse Rates Correctly

Predicted

Glacierised

Cells

Correctly

Predicted Non-

Glacierised

Cells

% Glacierised

Cells

% Non-

Glacierised

Cells

Temperature

(
◦
C/100 m)

Precipitation

(mm/100 m/day)

Alps −0.009 30 192 784 87 98

Pyrenees −0.009 40 6 42 50 100

Southern

Scandinavia

−0.0085 80 92 358 66 95

−0.009 50 94 356 67 95

−0.009 60 97 353 69 94

−0.010 20 104 346 74 92

−0.010 30 110 340 79 91

Northern

Scandinavia

−0.010 80 164 1064 66 94

Caucasus

Mountains

−0.0085 80 48 292 57 97

−0.009 60 49 291 58 96

−0.0095 40 50 290 60 96
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Table 5. Within-cell glacial coverage from the WGI dataset and optimum lapse rate DDM

simulations.

Region WGI Dataset Within-Cell DDM Optimum Simulation Within-Cell

Glacial Coverage (%) Glacial Coverage (%)

Mean Minimum Maximum Mean Minimum Maximum

Alps 6 0.01 77 11 0.4 78

Southern Scandinavia 7 0.02 56 5 0.3 33

Northern Scandinavia 4 0.02 67 4 0.3 44

Caucasus Mountains 6 0.04 35 5 0.4 26
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Table 6. Organisation of the 16 sensitivity experiments, a dash indicates that the original

climate or DEM data was used in the experiment. The name of the experiments can be used

to identify the results in Fig. 11.

Experiments
CRU2.0 Climate Data USGS

DEM

Degree Day Melt

Factors (mm d
−1◦

C
−1

)

Snow Tempera-

ture Threshold

(
◦
C)

Precipitation Temperature Diurnal Tem-

perature

Range

Vertical

Error

(m)

Snow Ice

1–2 (PPT) ± / / / 4.3 6.5 1

3–4 (TEMP) / ± / / 4.3 6.5 1

5–6 (RANGE) / / ± / 4.3 6.5 1

7–8 (ELEV) / / / ± 4.3 6.5 1

9 (DDF-1) / / / / 3.5 5.3 1

10 (DDF-2) / / / / 4.0 6.0 1

11 (DDF-3) / / / / 4.5 6.8 1

12 (DDF-4) / / / / 5.0 7.6 1

13 (DDF-5) / / / / 5.5 8.3 1

14 (THOLD-0) / / / / 4.3 6.5 0

15 (THOLD-2) / / / / 4.3 6.5 2

16 (THOLD-4) / / / / 4.3 6.5 4
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Fig. 1. Distribution of present day glaciers in the Alps as described in the WGI (National

Snow and Ice Data Center, 1999). The glacier coverage represents the percentage of the cell

containing glacier ice.
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Fig. 2. ELA climates measured over mid-latitude mountain glaciers defined by Kotlyakov and

Krenke (1982) and Leonard (1989). An alternative dataset of measured ELA climates (Ohmura

et al., 1992) is plotted as a compariosn. Apart from two Alpine ELA climates measured by

Ohmura et al. (1992) the agreement between the two independently derived datasets is good

and provides confidence in the use of the ELA climate “envelope” as a method for assessing

DDM predictions of ELA climate.
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Fig. 3. Cost function results in the Alps for all lapse rate combinations used in model simula-

tions. The blue dot is the optimum temperature-precipitation lapse rate combination.
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Fig. 4. Spatial distribution of glacierised cells described in the WGI (National Snow and Ice

Data Center, 1999) and simulated by the DDM (using the optimum lapse rate combination) in

the Alps.

1163

http://www.clim-past-discuss.net
http://www.clim-past-discuss.net/3/1133/2007/cpd-3-1133-2007-print.pdf
http://www.clim-past-discuss.net/3/1133/2007/cpd-3-1133-2007-discussion.html
http://www.egu.eu


CPD

3, 1133–1166, 2007

Glacier-climate model

for recosntructing

palaeoclimates

R. Allen et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

◭ ◮

◭ ◮

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

EGU

Fig. 5. Climate at the ELA predicted by the DDM in the Alps using the optimum lapse rate

combinations derived in Experiment One compared to ELA climates measured on present day

mid-latitude mountain glaciers (Kotlyakov and Krenke, 1982; Leonard, 1989).
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Fig. 6. WGI (National Snow and Ice Data Center, 1999) within cell altitude distributions and

DDM ELA estimates in the Alps. The maximum glacerised altitude in the WGI dataset is in-

dicated by the star, the boxplot beneath the star is the altitudinal distribution of WGI snowline

measurements within the cell. For identification purposes during model simulations cells in the

∼20 km resolution model domains (see Table 3) were numbered starting from the top left hand

corner of the model grid and finished at the bottom right hand corner, each row was numbered

left to right. Cell numbers have been included in this diagram to help the reader compare WGI

data (left hand panel) and DDM results (right hand panel) from the same cell.
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Fig. 7. Percentage of correctly predicted glacierised and non-glacierised cells across the suite

of sensitivity analyses for the Alps. See Table 6 for details of individual sensitivity experiments.
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