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Abstract

One of the most distinct climate fluctuations during the Holocene is the short and rapid

event centred around 8200 years ago, the 8.2 kyr event, which was most likely trig-

gered by glacial melt-water forcing from the receding Laurentide ice-sheet. Evidence

for this cooling has primarily been reported from sites around the North Atlantic, but an5

increasing number of observations imply a more wide-spread occurrence. Palaeocli-

mate archives from the Southern Hemisphere have hitherto failed to uncover a distinct

climatic anomaly associated with the 8.2 kyr event. Here we present a lake sediment

record from Nightingale Island in the central South Atlantic showing enhanced precip-

itation between 8275 and 8025 cal. yrs BP, most likely as a consequence of increased10

sea surface temperature (SST). We show that this is consistent with climate model pro-

jections of a warming of the South Atlantic in response to reduced north-ward energy

transport during the 8.2 kyr event.

1 Introduction

The cooling associated with the 8.2 kyr event (Alley et al., 1997) is commonly attributed15

to a weakening of the North Atlantic Deep Water (NADW) formation by rapid discharge

of melt-water from ice-dammed lakes to the North Atlantic Ocean from the margin of

the Laurentide Ice Sheet (Barber et al., 1999). Evidence for this cooling has primarily

been reported from sites around the North Atlantic, but an increasing number of obser-

vations imply a more wide-spread occurrence (Alley and Ágústsdóttir, 2005; Rohling20

and Pälike, 2005; Wiersma and Renssen, 2006). Coupled atmosphere-ocean model

results (Bauer et al., 2004; LeGrande et al., 2006; Renssen et al., 2002; Renssen et

al., 2001) indicate that such freshening of the North Atlantic caused a significant de-

crease in the north-ward heat transport, leading to a warming of the South Atlantic,

and resulting in increased SST and precipitation in the South Atlantic as a response25

to the weakened thermohaline circulation (THC). Therefore this is a key region for in-
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vestigating the climatic signature and extent of the 8.2 kyr event, for testing the climate

models, and any Holocene anti-phase behavior of north and south (Crowley, 1992;

Stocker et al., 1992), the so-called bipolar seesaw effect (Broecker, 1998; Stocker,

1998). Although a relationship between seesawing and ice-rafting (IRD) events in the

North Atlantic has been hypothesized (Broecker et al., 1999), no records with a clear5

anti-phase response to the 8.2 kyr event, or other IRD events, have been found (Morrill

and Jacobsen, 2005). Marine records from the South Atlantic (Piotrowski et al., 2004)

and Tropical Atlantic (Arz et al., 2001) imply a weakening of NADW formation around

8000 cal. yrs BP, without a seesaw effect, while other South Atlantic records show no

changes during this time (Nielsen et al., 2004).10

The Tristan da Cunha island group is located at 37
◦
S in the central South Atlantic

(Figs. 1a and b), in the path of the westerlies at the northern limit of the West Wind Drift,

and has a climate sensitive to atmospheric and oceanographic changes. Mean annual

temperature is 14
◦
C and annual precipitation close to sea level at The Settlement is ca.

1500 mm, while values three times higher have been indicated for the more elevated15

parts of the island. Abundant peat and lake deposits on the islands provide targets for

studies of past hydrological changes (Ljung et al., 2006).

We retrieved a 9.6 m long sediment sequence from the central part of an overgrown

lake on the small (3.2 km
2
) Nightingale Island (Fig. 1c, Fig. 2). This fen, situated at

ca. 180 m above sea level, is called 2nd Pond and has a size of ca. 1 ha. It is a20

distinct basin with no in- or outlets. Scirpus sp. and Sphagnum sp. dominate the

fen vegetation, while thick tussock-grass dominated by Spartina arundinaceae and

Poa flabellata cover most of the island. Trees (Phylica arborea) , tree ferns (Blechnum

palmiforme) and associated shade-tolerant species (Nertera sp., Polypodiaceae) are

restricted to slopes and higher areas.25

Here we present a palaeoclimatic reconstruction based on a multi-proxy study, in-

cluding magnetic susceptibility, pollen analysis, and determination of total carbon (TC),

nitrogen (TN) and sulphur (TS) content, of the lower part of this sequence, which cov-

ers the time period 10 700 to 7000 cal. yrs BP (Figs. 2 and 3). The emphasis is on
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the 8.2 kyr event, which is distinctly expressed in the sequence, and its coupling to the

Atlantic Ocean circulation. We compare our results with a simulation of the 8.2 kyr BP

event performed with a coupled atmosphere-ocean climate model.

2 Methods

2.1 Coring, lithological descriptions and correlations5

The sediment sequence was recovered with a 5 cm Russian chamber corer. All cores

were visually described in the field and in detail in the laboratory. Special attention

was paid to any signs of potential volcanic ash layers (tephras). Correlations between

overlapping cores were carried out visually and with the aid of magnetic susceptibility

measurements.10

2.2 Radiocarbon dating

The chronology is based on
14

C measurements performed at the Compact Carbon

AMS laboratory in Poznan, Poland, and the Single Stage AMS laboratory in Lund,

Sweden. The measurements were obtained on macroscopic plant remains and bulk

sediment samples. Radiocarbon ages were converted to calibrated ages using the15

program OxCal v3.10 (Bronk Ramsey, 1995, 2001) and the SHCal04 calibration data-

set (McCormac et al., 2004). The age model was constructed by visually fitting lines

through the calibrated radiocarbon dates, and adjusting sedimentation rate changes

according to the lithology and lithologic changes displayed in the sequence.

2.3 Total carbon, nitrogen and sulphur measurements20

Total carbon, nitrogen and sulphur were obtained on dried and homogenized samples

using a Costech Instruments ECS 4010 elemental analyzer. Measurement accuracy
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is better than ±5% of the reported values based on replicated standard samples. C/N

atomic ratios were obtained by multiplying by 1.67 (Bengtsson and Enell, 1986).

If no inorganic carbon, i.e. no carbonates, are present, TC and TN contents are

directly related to organic matter content, and the C/N ratio can be used to asses the

proportion of terrestrial versus aquatic organic matter in the sediments (Meyers and5

Teranes, 2001).

2.4 Magnetic susceptibility measurements

Magnetic susceptibility was measured at 4 mm increments using a Bartington Instru-

ments MS2EI magnetic susceptibility high-resolution surface scanning sensor cou-

pled to a TAMISCAN automatic logging conveyor. Magnetic susceptibility reflects the10

minerogenic content of the sediments and provides a proxy for in-wash from the catch-

ment (Thompson and Oldfield, 1986).

2.5 Pollen analysis

Pollen samples of c. 1 cm
3

were processed following standard method A (Berglund and

Ralska-Jasiewiczowa, 1986), with added Lycopodium spores. The counting was made15

under a light microscope at magnifications of ×400 and ×1000. Pollen grains were

identified by the help of published photos (Hafsten, 1960), standard pollen keys (Moore

et al., 1991), and a small collection of type slides prepared by U. Hafsten and borrowed

from the Botanical Museum in Bergen, Norway. Zonation of the pollen diagram is based

on the variation of the major taxa and follows the result from the principal component20

analysis.

2.6 Principal component analysis

Principal component analysis (PCA) was performed in MATLAB using the function prin-

comp. Undetermined pollen grains were excluded from the analysis. The percentage
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data were normalized and standardized prior to analysis. PCA was used to extract the

major variation from the total pollen percentage dataset.

2.7 Climate model and experimental design

We have performed the simulation of the 8.2 kyr event with version 2 of the ECBilt-

CLIO coupled atmosphere-ocean model. The atmospheric component is ECBilt, an at-5

mospheric model (T21 horizontal resolution, three layers) based on quasi-geostrophic

equations (Opsteegh et al., 1998). As an extension to the quasi-geostrophic equations,

an estimate of the neglected terms in the vorticity and thermodynamic equations is in-

cluded as a temporally and spatially varying forcing. This forcing is calculated from the

diagnostically derived vertical motion field and leads to a considerable improvement10

of the simulation of the Hadley Cell circulation, resulting in a better representation of

the strength and position of the jet stream and transient eddy activity. ECBilt resolves

synoptic variability associated with weather patterns. ECBilt is coupled to CLIO, an

oceanic general circulation model (3
◦
×3

◦
latitude-longitude horizontal resolution, 19

layers in the vertical) coupled to a comprehensive dynamic-thermodynamic sea-ice15

model (Goosse and Fichefet, 1999). The ECBilt-CLIO model reproduces the modern

climate (Goosse et al., 2001; Renssen et al., 2002) reasonably well.

The simulation experiment on the 8.2 kyr event was designed as follows. First, start-

ing from a modern quasi-equilibrium state, the model was run for 550 years with forc-

ings for 8.5 kyr BP to obtain an early Holocene climate state (Renssen et al., 2002).20

These forcings are orbital parameters (Berger, 1978), greenhouse gas concentrations

(Raynaud et al., 2000), modified surface albedo in northern Africa to account for a

“green” Sahara (Adams and Fauré, 1997), and modified surface albedo and surface

elevation in North America to represent the remnant Laurentide Ice Sheet (Peltier,

1994). At the end of the 550 years, the trend in the global ocean temperature was25

only –0.007
◦
C/century. Second, this 8.5 kyr BP early Holocene quasi-equilibrium state

was perturbed by releasing a freshwater pulse in the Labrador Sea that represents the

catastrophic drainage from Lakes Agassiz and Ojibway and the collapse of the Lauren-
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tide Ice Sheet Dome over the Hudson Bay. Different freshwater volumes and release

rates were tested (Renssen et al., 2002). After the introduction of the freshwater per-

turbations, the experiments were continued for at least 500 years. Here we present

results from one particular experiment that produced a climate anomaly that was clos-

est to what is suggested by proxy data on the 8.2 kyr event, both in terms of magnitude5

and duration (Renssen et al., 2002; Wiersma and Renssen, 2006). In this experiment,

we released a constant freshwater flux of 0.75 Sv (1 Sv = 1×10
6

m
3
/s) in the Labrador

Sea during 20 years, implying a total volume of 4.67×10
14

m
3
. This freshwater volume

is close to the highest estimate for the 8.2 kyr event based on geological data (Von

Grafenstein et al., 1999).10

3 Results

3.1 Chronology and climate reconstruction

The depth-age relationship of the lowermost 2.5 m was determined by 22
14

C mea-

surements (Fig. 2, Table 1). The results from this part of the sequence, covering the

time period from 10 750 to 7000 cal. yrs BP, are presented in Figs. 2 and 3. The tem-15

poral resolution of the magnetic susceptibility data is ca. 10 years, equivalent to the

geochemical data for the period 8300–7500 cal. yrs BP. The rest of the geochemical

record has ca. 20 year resolution, although the pollen record is of lower resolution

(30–60 years at 8600–7400 cal. yrs BP and 70–150 years in the oldest part of the

sequence). We estimate that the age envelope of the age model is at least ±25 years.20

The lower part of the sediment sequence consists of bog peat with a variable de-

gree of humification (Fig. 2). The peat is overlain by lacustrine sediments (gyttja)

with low minerogenic content, with this gradual transition at 8.7–8.6 m dated to 8800–

8600 cal. yrs BP. The highly organic gyttja is interspersed with distinct units of silty

gyttja at 8.33–8.09 m and at 7.65–7.55 m. In this volcanic bedrock region the minero-25

genic content of the sediments is mirrored by the magnetic susceptibility values, and
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closely follows the lithological changes. In the lowermost peat (9.7–8.7 m) the magnetic

susceptibility is very low and remains low after the transition to gyttja. The exception

is a temporary susceptibility increase at ca. 8550 cal. yrs BP (Fig. 3), which is likely re-

lated to in-wash processes connected to the bog-to-lake transition. Within the two silty

gyttja units at 8.33–8.09 m and 7.65–7.55 m (Fig. 3), magnetic susceptibility increases5

markedly. The lower of these units was dated to 8275–8025 cal. yrs BP, making it syn-

chronous with the Northern Hemisphere 8.2 kyr event (Alley et al., 1997). The upper

silty gyttja unit is dated to 7500–7300 cal. yrs BP (Fig. 3).

Total carbon content of the peat and the overlying gyttja ranges from 40 to 45%,

which corresponds to at least 80–90% organic matter due to absence of inorganic10

carbon (Fig. 3). During the increase in minerogenic matter at 8275–8025 cal. yrs BP,

total carbon content drops to 16%, and at 7500–7300 cal. yrs BP a minimum of 15% is

reached. TC/TN ratios of the fen peat generally exceed 40 with a maximum above 80,

which indicates dominance of terrestrial organic matter (Meyers, 2003). TC/TN ratios

in the range of 20–30 characterize the lacustrine part of the sequence, with higher15

values at 8275–8025 and 7500–7300 cal. yrs BP.

The pollen data show large variations which generally follow the lithological changes

and variations in the other proxies (Fig. 4). Principal component analysis (PCA) was

used to extract the major variation in the pollen percentage data (Fig. 5). The first two

axes explain 33% and 19% of the total variance, respectively. The first axis values20

are primarily determined by Cyperaceae, having the highest scores, and Phylica ar-

borea, Acaena sp., Polypodiaceae, Empetrum rubrum, Gramineae, Chenopodiaceae

and Rumex frutescens, which have the lowest (negative) scores. The second axis val-

ues are primarily driven by the low negative scores of Callitriche christensenii and the

high positive scores of Lycopodium insulare. These two PCA axes divide the pollen25

assemblage into different habitat groups: the 1st axis separates local littoral vegetation

(Cyperaceae and Callitriche christensenii), dominating pollen zones 2, 4 and 6, from

more distal catchment taxa (Phylica arborea, Empetrum rubrum, Acaena sp., Rumex

frutescens and Polypodiaceae), dominating pollen zones 3 and 5, whilst the 2nd axis
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separates the typical bog species Lycopodium insulare , present in pollen zone 1, from

the aquatic species Callitriche christensenii, present in pollen zones 2–6. The 1st axis

sample scores are closely correlated with TC content (r=0.8, P <0.001), TN content

(r=0.6, P <0.001) and magnetic susceptibility (r=0.8, p<0.001).

3.2 Model results5

In our experiment of the 8.2 kyr event there is a clear increase in relative humidity over

the SE Atlantic as a response to the North Atlantic THC weakening, as well as higher

SST’s (Fig. 6). This is especially evident during August–October, which is the period

with the largest increases in temperature and precipitation in the model. This confirms

that in our model the precipitation increases are related to higher SST’s, following the10

principle: warmer surface ocean, more evaporation, higher air humidity, more precipi-

tation.

It should be noted that, when compared to comprehensive coupled GCMs, our model

of intermediate complexity simulates a weak response of the hydrological cycle to a

THC weakening. We have chosen to use a model of intermediate complexity for our15

study on the 8.2 kyr event because this has enabled us to perform a range of multi-

centennial runs to test different freshwater scenarios (Renssen et al., 2002). These

experiments would not have been feasible with coupled GCMs. As presented in the

recent model-intercomparison by Stouffer et al. (2006), coupled GCMs simulate a pro-

nounced southward shift in the ITCZ over the South Atlantic as a response to a THC20

perturbation, a response that is underestimated in our model. However, the GCM re-

sults show that the precipitation increase that is associated with this southward ITCZ

shift is restricted to the latitudinal band ranging from 0 to 30
◦
S, so considerably north

of Nightingale Island (at about 37
◦
S). However, the coupled GCMs show a secondary

precipitation increase over the South Atlantic between 35 and 40
◦
S as a response to25

the THC weakening. This secondary precipitation maximum is modest (about +11%

in their 1 Sv perturbation runs) compared to the primary precipitation maximum as-

sociated with the ITCZ shift (up to +100% in the 1 Sv perturbation runs). Stouffer et
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al. (2006) provide no explanation for this secondary precipitation maximum, but it is

noteworthy that in the GCMs the ocean surface is considerably warmer at this latitude

in the South Atlantic, so that it is likely that there is a link (higher precipitation due to

higher SST) as is also seen in our model results.

4 Discussion5

The pattern in most of our proxy records can be explained in terms of variations in

effective humidity and precipitation. The basal peat indicates an at least 9 m lower wa-

ter table than at present. The bog-to-lake transition must be the result of significantly

increased effective humidity. This implies that a major change of the general circu-

lation pattern took place around 8800 cal. yrs BP, likely reflecting the establishment10

of the present-day circulation regime, due to a meridional shift of the regional fronts.

In fact, marine studies in the Atlantic sector of the Southern Ocean (Nielsen et al.,

2004) and land-based studies in South America imply that the westerlies intensified

after 9000 cal. yrs BP (Mayr et al., 2007). Temperature reconstructions from Antarctic

ice cores show that the Holocene thermal optimum came to an end at about this time15

(Epica community members, 2004; Masson et al., 2000) (Fig. 3), which resulted in

expanded sea ice cover and steeper meridional temperature gradient in the Southern

Ocean. Model studies have shown that changes in sea ice extent also causes cor-

responding changes in the position of the westerlies (Hudson and Hewitson, 2001).

Thus, it is likely that the westerlies strengthened and shifted northwards in the South20

Atlantic region at the end of the Antarctic thermal optimum around 9000–8500 cal. yrs

BP, as a result of increased meridional temperature gradient and expanded sea ice.

The change from peat growth to gyttja deposition and declining bog species and the

appearance of aquatic species in the pollen diagram represented by lower values on

the 2nd PCA axis (Fig. 3), are direct effects of this precipitation increase.25

At 8275 cal. yrs BP we note enhanced influx of minerogenic and terrestrial organic

matter, and increased deposition of pollen types from more remote parts of the catch-
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ment. We believe that these simultaneous changes in lithology, minerogenic content,

TC/TN ratio and pollen content (Fig. 3) could only have been caused by increased sur-

face run-off in response to increased precipitation. This led to increased catchment

erosion and higher input of terrestrial detritus to the basin. This also explains the si-

multaneous increase in pollen from taxa favoured by open ground, such as Rumex5

frutescens , and closed forest species, such as Phylica arborea. It is unlikely that this

pollen assemblage change represents a true vegetation change since an expansion of

forest would limit open ground taxa and vice versa. Therefore we conclude that the

stratigraphic changes at 8275–8025 cal. yrs BP reflect a period of increased precipita-

tion on Nightingale Island.10

At present, stronger westerlies or higher SSTs, the latter generating increased air hu-

midity, are the main agents behind enhanced precipitation in the study area. So, which

of these possible mechanisms triggered the changes we see? Intensified westerlies

are connected to higher wind speeds, resulting in increased concentrations of sea

spray, with sea salt sulphates as one important marine aerosol component in coastal15

areas. We note the low TS values (Fig. 3) at this time, which can be explained as

both an effect of lower organic carbon content and lower sulphur concentrations in the

aerosols. Furthermore, the higher TC/TS values show that the relative decline in TS

content was larger than that of TC. This is a strong indication that concentrations of sea

salt sulphates in the aerosols of Nightingale Island were not higher, but rather lower,20

during the stratigraphic changes at 8275–8025 cal. yrs BP. We therefore hypothesize

that the increase in evaporation was caused by higher SST’s.

The age of 8275–8025 cal. yrs BP for the inferred precipitation increase at 8.33–

8.09 m is firmly established by the radiocarbon dates and allows for detailed correlation

with other climate archives. The onset of changes is coeval with the onset of the25

8.2 kyr event in the new NGRIP ice core, where it is dated to 8260 cal. yrs BP (Ras-

mussen et al., 2006), as well as with the shift in the Cariaco Basin grey scale record

(Hughen et al., 2000), dated to 8290 cal. yrs BP (Fig. 3), and with the inferred decline

in North Atlantic meridional overturning circulation at 8290 cal. yrs BP (Ellison et al.,
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2006). The inferred increase in precipitation at 8275–8025 cal. yrs BP is consistent

with different model simulations of the 8.2 kyr event (Bauer et al., 2004; LeGrande et

al., 2006; Renssen et al., 2002; Renssen et al., 2001). Our coupled atmosphere-ocean

model simulations show statistically significant (at 95% level) increases in SST (by 0.2

to 0.5
◦
C in annual mean) and precipitation (by 10 to 60 mm/yr in annual mean) over the5

South Atlantic in response to a freshwater-induced weakening of the THC (Wiersma

and Renssen, 2006) (Fig. 6). In the model, the warming is related to reduced north-

ward heat transport in the Atlantic Ocean, causing heat to accumulate in the South

Atlantic, the so-called bipolar seesaw effect, and the warmer surface waters in turn

stimulate precipitation in the study region. These model results support our hypothesis10

that higher SSTs triggered the increased precipitation at our site. Furthermore, the

increase in precipitation over Nightingale Island as a response of a warmer ocean was

probably stronger than suggested by the model (Fig. 6), as the local topography of the

>300 m high island causes forced lifting of passing air masses, resulting in distinctly

higher precipitation than modeled. The model also shows that the westerlies were not15

strengthened over the South Atlantic during the 8.2 kyr event. Thus the increase in

precipitation at 8275–8025 cal. yrs BP is not only coeval with the 8.2 ka event but also

shows the response predicted by our climate model (Fig. 6). We therefore conclude

that this change is the South Atlantic expression of the 8.2 ka event.

Our data do not show any indication of a supposed general climate anomaly starting20

at 8500 cal. yrs BP and lasting 500–700 years (Keigwin et al., 2005; Rohling and Pälike,

2005), but only register the more restricted 8.2 kyr event. The duration of the event

in our record is approximately 250 years, which is longer than the 160–180 years of

the 8.2 kyr event in the NGRIP (Rasmussen et al., 2006) and Cariaco Basin records

(Hughen et al., 2000). If this anomaly is correct it may possibly be explained by the25

thermal inertia of the ocean.

The very similar changes in proxy data at 7500–7300 cal. yrs BP compared to those

at 8275–8025 kyr BP (Fig. 3) indicate that this period was also characterized by in-

creased precipitation. This implies that these periods of increased precipitation were
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not unique, but are part of a pattern of recurring Holocene events. It is therefore note-

worthy that our event at 7500-7300 kyr BP coincides with one of the most distinct

Holocene North Atlantic IRD peaks/
14

C production maxima (Bond et al., 2001). Fur-

thermore, in spite of a different hydrological regime before 8800 cal. yrs BP, with peat

accumulation instead of lake sedimentation, we note that our pollen data display two5

peaks in the 2nd axis P C values (Fig. 3), which are caused by high frequencies of the

bog species Lycopodium insulare . The uppermost of these peaks also coincides with

a period of lower humified peat. Thus, these two periods represents wetter conditions

at the bog. The two periods are separated by high Phylica arborea and Polypdiaceae

frequencies, and high content of Blechnum palmiforme remains, which indicates a10

drier tree covered bog surface. The two wetter periods are dated to 10 300–10 500

and 9600–9700 cal. yrs BP, respectively, and thus coincides with two cold phases in

the Atlantic region (Björck et al., 2001; Bond et al., 2001). We also note that several

lithological changes similar to the ones at 8275–8025 and 7500–7300 cal. yrs BP oc-

cur throughout the rest of the core. This implies that the 8.2 kyr event was not the15

only period of increased precipitation on Nightingale Island during the Holocene, and

it may suggest that changes in the meridional overturning circulation was a recurring

phenomenon throughout the Holocene. This is in agreement with the variable Atlantic

circulation inferred from marine sediment cores (Bond et al., 2001).

It has been shown that NADW formation and the strength of THC have varied20

throughout the Holocene and that a weakened THC during the 8.2 kyr event was only

one of several similar events (Hall et al., 2004; Oppo et al., 2003). This scenario is sup-

ported by our data, although it may be difficult to comprehend why large-scale glacial

lake drainage did not perturb the THC significantly more than at other periods of weak

THC. One explanation may be that the 8.2 kyr event is an anomaly with a different trig-25

gering mechanism, as compared to most of the other Holocene events, where solar

forcing and related feedbacks have been invoked as major players (Bond et al., 2001).
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5 Conclusions

The results show that our island paleoclimate record from the central South Atlantic

responded to the North Atlantic 8.2 kyr BP cooling with an increase in precipitation.

This was most likely caused by increased SSTs in the surrounding ocean, which is

also demonstrated by modelling the coupled atmosphere-ocean response to an 8.2 kyr5

BP freshwater pulse into the North Atlantic. This is the first clear demonstration of a

climatic response in the South Atlantic to the 8.2 kyr BP event, and it shows that the

disruption of NADW formation caused by the drainage of the Laurentide ice-dammed

lakes also affected the central South Atlantic.
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Rohling, E. J. and Pälike, H.: Centennial-scale climate cooling with a sudden cold event around

8200 years ago, Nature, 434, 975–979, 2005.
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Table 1. Radiocarbon dates from the 2nd Pond sequence between 9.635 and 7.04 m below the

fen surface.

Lab. Nr Depth (cm)
14

C Age Cal. yr BP (2σ) Dated material

LuS-5799 704 6220±50 7074.5±175 Bulk sediment

LuS-6688 733 6215±60 7069.5±180 Terrestrial macrofossils

LuS-5812 747.5 6365±50 7219.5±200 Terrestrial macrofossils

LuS-5800 747.5 6560±50 7424.5±135 Bulk sediment

LuS-6231 766.5 6950±60 7769.5±160 Terrestrial macrofossils

LuS-6689 775.5 6790±50 7589.5±90 Terrestrial macrofossils

LuS-5813 802 7105±50 7859.5±120 Terrestrial macrofossils

LuS-5801 802 7115±50 7874.5±125 Bulk sediment

LuS-6230 812.5 7360±50 8139.5±160 Terrestrial macrofossils

LuS-6229 822.5 7410±50 8169.5±150 Terrestrial macrofossils

LuS-6406 829 7350±60 8129.5±170 Terrestrial macrofossils

LuS-6228 833 7665±50 8444.5±105 Terrestrial macrofossils

LuS-6407 835.5 7620±60 8354.5±165 Terrestrial macrofossils

LuS-5814 844 7310±50 8074.5±105 Terrestrial macrofossils

LuS-5802 844 7605±100 8359.5±200 Bulk sediment

LuS-6690 863.5 7725±50 8484.5±105 Terrestrial macrofossils

LuS-5815 875.5 8080±50 8834.5±195 Terrestrial macrofossils

Lus-5803 875.5 8185±60 9024.5±275 Bulk sediment

Poz-4444 912 8720±50 9654.5±135 Terrestrial macrofossils

Poz-4488 945.25 9120±190 10149.5±600 Terrestrial macrofossils

Poz-4941 962.25 9460±50 10634.5±145 Terrestrial macrofossils

Poz-4489 963.5 8760±310 9799.5±850 Terrestrial macrofossils
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Fig. 1. (A) The position of the Tristan da Cunha island group in the South Atlantic. (B) The

three main islands of the group. (C) Nightingale Island and the position of the coring site, 2nd

Pond.
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Fig. 2. Graph of lithology and susceptibility of the full 2nd Pond sediment sequence (to the

left), with lithology, radiocarbon dates and magnetic susceptibility of the lowermost 2.68 m to

the right. The assumed age-depth relationship is shown by the line through most of the dates

and horizontal error bars denote the double standard deviation. Calendar ages are related to

AD 1950.
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Fig. 3. Graph showing the magnetic susceptibility, content of total carbon (TC) (blue), total

nitrogen (TN) (red), total sulphur content (TS), TC/TN ratios, TC/TS ratios (black), cumulative

pollen percentages of Phylica arborea (green), grasses and herbs (yellow), sedges (orange),

and Callitriche christensenii (red), and the values of the first two PCA axes of the pollen data

set accounting for 42% of the total variance. All data are related to the age model shown

in Fig. 2. The 8.2 kyr event is marked by blue color, while the other two events discussed in

the text are shown by grey shading. In addition to the 2nd Pond data, the updated grayscale

record from the Cariaco Basin (Haug et al., 2001), the
18

O values from the NGRIP ice core

(Rasmussen et al., 2006), and deuterium from the EPICA ice core (Epica community members,

2004; Röthlisberger et al., 2002). The latter three have independent chronologies based on

varve years and ice years BP.
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Fig. 4. Graph showing pollen percentages. Pollen percentages were calculated using all pollen

types, while Pteridophyte frequencies were calculated with a combined pollen and spore sum.

Pollen zonation is based on the major variation in the full pollen percentage dataset which is

clearly expressed in the 1st and 2nd PCA axes. The zonation concurs with major lithological

changes shown to the left.
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Fig. 5. Biplot of PCA variables (red diamonds), and sample scores (blue crosses). Note that

the scores are scaled. Dashed lines indicate the three major sample score groupings. The

variable scores show that, the upper central group is influenced by Lycopodium insulare and

Umbeliferae, which represent the bog vegetation assemblages. The two other groups repre-

sent the period of gyttja deposition and separate between deposition of pollen from the local

vegetation, samples in the lower right corner mainly influenced by Cyperaceae and Callitriche

christensenii , and deposition of pollen from more distal parts of the catchment during periods

of increased erosion, samples in the lower left corner mainly influenced by Phylica arborea ,

Polypodiaceae, Acaena sp., Rumex frutescens and Empetrum rubrum.
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Fig. 6. Simulation of the 8.2 kyr event over the Southeast Atlantic (20
◦

W–10
◦

E, 40
◦

S–20
◦

S),

shown by the response in annual mean sea surface temperature (left axis) and precipitation

(right axis) to a freshwater pulse (fw pulse) in the Labrador Sea (Alley and Ágústsdóttir, 2005).

Presented are the 30 year running mean anomalies relative to a reference climate in quasi-

equilibrium with 8.5 kyr BP forcings (represented by the first 100 years). In the experiment, the

THC of this 8.5 kyr state was perturbed by a 20 year long freshwater flux with a 0.75 Sv rate in

the Labrador Sea, starting at year 100 (Alley and Ágústsdóttir, 2005; Rohling and Pälike, 2005).

The THC weakening ends at year 420, followed by a ∼100-year long “overshoot” during which

the accumulated heat is released in the North Atlantic.
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