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Abstract

Paleoceanographic evidence from the Southern Ocean reveals an apparent stark

meridional divide in biogeochemical dynamics associated with the glacial-interglacial

cycles of the late Neogene. South of the present-day position of the Antarctic Polar

Front biogenic opal is generally much more abundant in sediments during interglacials5

compared to glacials. To the north, an anti-phased relationship is observed, with max-

imum opal abundance instead occurring during glacials. This antagonistic response of

sedimentary properties is an important model validation target for testing hypotheses

of glacial-interglacial change, particularly with respect to understanding the causes

of the variability in atmospheric CO2. Here, I illustrate a time-dependent modelling10

approach to helping understand past climatic change by means of the generation of

synthetic sediment core records. I find a close match between model-predicted and

observed down-core changes in sedimentary opal content is achieved when changes

in seasonal sea-ice extent is imposed, suggesting that the cryosphere is probably the

primary driver of the striking features exhibited by the paleoceanographic record of this15

region.

1 Introduction

The Southern Ocean can be regarded as something of the Achilles Heel of the global

carbon cycle, with changes in biological productivity (Martin, 1990; Watson et al.,

2000), vertical mixing and stratification (Francois et al., 1997; Toggweiller, 1999; Togg-20

weiller et al., 2006), and sea-ice cover (Stephens and Keeling, 2000) all potentially

playing key roles in modifying atmospheric CO2 on glacial-interglacial time scales.

Changes in the surface ocean environment of this region will be manifested in inter-

linked properties of sedimentary material deposited to the ocean floor. However, the

paleoceanographic evidence from the sediments of this region has not proved possi-25

ble to interpret unambiguously (Anderson et al., 2002; Elderfield and Rickaby, 2000;
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Sigman and Boyle, 2000). The difficulty in quantitative reconstruction of the surface

environment directly from sedimentary properties is a consequence of different non-

linear processes interacting to determine a particular sediment state (i.e., the mea-

sured proxy value). A promising model methodology has recently been developed

to address this model-data divide – working forwards from an explicit description of5

the biogeochemical processes involved towards the data. By recording the properties

of biogenic material preserved in deep-sea sediments within an ocean-sediment car-

bon cycle model, synthetic sediment cores can be generated (Heinze, 2001; Ridgwell,

2001
1
). This relatively data-friendly model output can then be contrasted rather directly

with the sediment record. Here I illustrate the potential of this approach by evaluating10

the consequences of two possible drivers of glacial-interglacial environmental change

in the Southern Ocean against observed changes in sedimentary opal content.

2 Modelling methodology

Here I use an ocean-sediment carbon cycle model based on an off-line representation

of zonally-averaged ocean circulation (Stocker and Wright, 1996). To better resolve15

sea-ice cover, the two 7.5
◦

zones south of 55
◦

S in the parent model (Stocker and

Wright, 1996) are sub-divided into a total of six sub-zones of width 2.5
◦

. Each of these

sub-zones is assumed to be characterized by the same vertical velocity as its par-

ent zone with meridional velocities obtained by linear interpolation between 55
◦

S and

62.5
◦

S and extrapolation south of 62.5
◦

S. Ocean-sediment biogeochemistry involves20

the cycling of three primary nutrients limiting to biological productivity (phosphate, sili-

cic acid, and iron); similar to that of a previous glacial-interglacial study (Watson et al.,

2000) but with explicit consideration of the dissolution of opal in the sediments (Ridg-

well et al., 2003). A full description of the ocean carbon cycle model can be found in

1
Ridgwell, A.: Sediment core modeling and the role of bioturbation: Lessons from lysocline

shoaling at the PETM, Paleoceanography, submitted, 2006.
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Ridgwell (2001).

The ocean is underlain by a series of discrete sediment modules handling ocean-

sediment interactions Ridgwell (2001), similar in nature to earlier box modelling work

(Munhoven and Francois, 1996; Walker and Opdyke, 1995). Each module comprises

a single 5 cm thick (bioturbationally homogenized) surface layer in which dissolution5

of biogenic material proceeds. This layer lies atop a series of 1 cm thick sub-layers

with a diffusive-like transfer imposed between them (representing the effect of deeper,

less intense bioturbation). Excess solid material (i.e., rain minus dissolution flux) is

exported out of this surface layer (buried) and stored in the uppermost sub-layer of the

stack, thus building up a synthetic sediment record. Conversely, material is removed10

from the stack (eroded) should there be any deficit in the surface layer.

One advantage that synthetic sediments have over the data is that the precise

(model) age of material deposited to the sediment surface is known. A numerical

tracer of the time of deposition is used to tag calcite reaching the sediment surface,

allowing a mean age for each sediment sub-layer to be tracked (Ridgwell, 2001
1
). In15

this way, an internal age-scale is generated, alleviating the need for the tuning of a

δ
18

O stratigraphy to an orbital template (Bassinot et al., 1994).

The model is run over approximately four glacial-interglacial cycles (400 kyr) follow-

ing an initial 150 kyr spin-up. Ideally, the biogeochemical model would be informed by

a suite of surface environmental boundary conditions (such as dust flux and sea-ice ex-20

tent) generated internally within an integrated Earth system model. Instead, because

this particular model lacks an interactive climate component, a time history of surface

environmental boundary conditions is generated by the transformation of paired pale-

oclimatic reconstructions (made at discrete time slices) by a suitable continuous proxy

signal.25
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3 Testing hypotheses for G-I change using synthetic sediment cores

Enhanced aeolian iron supply to the glacial Southern Ocean has been hypothesized to

drive a stronger biological pump and lower the concentration of CO2 in the atmosphere

(Martin, 1990). Although considerable uncertainties remain regarding the operation of

the iron cycle in this region (Ridgwell and Watson, 2002), results from ocean carbon5

cycle models go some way to supporting the iron hypothesis and suggest that changes

in dust supply may have been responsible for anywhere between 5 and 45 ppm of

the observed glacial-interglacial variability in atmospheric CO2 (Archer et al., 2000;

Bopp et al., 2003; Watson et al., 2000). The model predicted phasing between dust

forcing and changes in CO2 is also consistent with observations (Watson et al., 2000)10

despite arguments that an apparent lag in response of up to ∼5 kyr exists (Broecker

and Henderson, 1998).

In the underlying deep-sea sediments, records of biogenic opal content from the At-

lantic and Indian sectors of the Southern Ocean reveal a pronounced meridional asym-

metry (Anderson et al., 1998; Charles et al., 1991; Mortlock et al., 1991) (see Fig. 1),15

with glacial-interglacial changes in the composition of sediments lying approximately

either side of the position of the present-day Antarctic Polar Front (APF) being oppo-

site in sign. To the south, interglacial-age sediments are characterized by higher opal

contents than that which occurs during glacial periods, while to the north, it is glacial

sediments that are the more opal-rich. These changes are paralleled by indicators of20

Si utilization (De La Rocha et al., 1999), suggesting that the antagonistic sedimentary

response in wt% opal primarily reflects a change in the surface ocean environment and

biogenic opal export.

These two facets of the glacial-interglacial cycles are potentially intertwined as fol-

lows. The physiological effects of enhanced Fe availability on diatom cellular com-25

position, particularly more efficient utilization of silicic acid (Watson et al., 2000) and

consequently leakage (transport) to lower latitudes (Brzezinski et al., 2002; Matsumoto

et al., 2002) could help explain the lower opal accumulation observed to the south of
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the APF (Sigman and Boyle, 2000). To test whether aeolian iron supply plays a fun-

damental controlling role in the export of biogenic material from the surface ocean,

particularly of opal, the model is forced with a varying dust flux signal to the Southern

Ocean (47.5–70.0
◦

S), following Watson et al. (2000) (Fig. 1a).

The result of several hundred thousand years of sediment accumulation in the model5

is shown in Fig. 1(b,c). South of the APF, changes in aeolian iron supply has little ef-

fect on sedimentary opal content, while to the north, model sediments are strongly

anti-phased with the data. Although glacial organic carbon export in the model is en-

hanced by ∼100% south of the APF (driven by increased Fe availability), the model-

parameterized effect of Fe availability on Si utilization efficiency by diatoms (Ridgwell,10

2001) (manifested in the Si:C export ratio) restricts the increase in opal export to just

∼35%, leaving little imprint on the sedimentary opal record. To the north, a slight re-

duction in advected Si supply coupled with greater Si utilization efficiency during glacial

times combine to produce a substantial decrease in opal accumulation, contrary to the

data. While different assumptions regarding the dependence of Si:C export ratios on15

Fe availability could conceivably improve the simulation, it is highly unlikely that a simul-

taneous match could be achieved to the data both north and south of the APF. Thus,

although the effects of dust are consistent with the timing of the observed intra-glacial

variability in atmospheric CO2 (Ridgwell and Watson, 2002; Watson et al., 2000), the

sedimentary (opal) record is not consistent with the iron hypothesis as a sole driver of20

biogeochemical changes in the Southern Ocean between glacials and interglacials.

Reconstructions of the cryosphere at the time of the Last Glacial Maximum (LGM)

indicate that seasonal sea-ice cover was much more extensive than today in the South-

ern Ocean. In addition to being suggested as exerting a strong control on atmospheric

CO2 (Stephens and Keeling, 2000), this surface environmental change is also central25

to explanations for the observed paleoceanographic features of this region (Anderson

et al., 2002; Charles et al., 1991; Crosta and Shemesh, 2002; Sigman and Boyle

2000). However, the highly non-linear nature of sedimentary opal preservation (Archer

et al., 2000; Ridgwell et al., 2002) and the unobvious coupling relationship between
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opal export and sea-ice cover (Chase et al., 2003) point to the need for analysis within

a numerical model to quantify whether changes in sea-ice extent could give rise to the

features of the opal record. Seasonal sea-ice limits are now modified in the model with

present-day wintertime and summertime fractional sea-ice coverage of each model grid

point taken from CLIMAP (CLIMAP, 1976) and interpolated at intermediate months ac-5

cording to monthly insolation. The maximum and minimum seasonal limits are then

varied over the course of approximately four glacial-interglacial cycles, taking informa-

tion regarding the timing and rate of change from the Vostok temperature record (Petit

et al., 1999) and taking the absolute amplitude of the envelope from the difference be-

tween present-day and LGM reconstructions (CLIMAP, 1976). This assumes that a10

first-order correspondence exists between sea-ice cover and Antarctic air temperature,

an assumption supported by coupled climate model results (Gildor amd Ghil, 2002).

The resulting forcing is shown in Fig. 2a.

In contrast to the large decrease in atmospheric CO2 (>45 ppm) reported in a box

model of the ocean carbon cycle (Stephens and Keeling, 2000) a relatively muted15

response (∼7 ppm) is found here to increased glacial sea-ice cover in the Southern

Ocean. This disparity may be a consequence of the lack of any explicit representa-

tion of equatorial up-welling zones (regions of intense CO2 out-gassing in the modern

ocean Takahashi et al., 1997) in more highly idealized box models which can result

in the Southern Ocean becoming the dominant source of CO2 to the (modern) atmo-20

sphere (Stephens and Keeling, 2000). While the sea-ice forcing has little apparent

impact on the global carbon cycle it does drive a marked change in sediment compo-

sition (Fig. 2). The primary features of the opal record are now reproduced extremely

well, particularly associated with transitions into and out of cold glacial stages (e.g.,

2.2, 4.2, 6) and immediately following glacial inception. Crucially, the characteristic an-25

tagonistic variability either side of the APF is captured. This is a simple consequence

of increased seasonal sea-ice cover south of the APF restricting biogenic export dur-

ing glacials, with previously utilized nutrients advected northwards and fuelling greater

(mainly diatom) export to the north (Anderson et al., 2002).
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The information contained in the model sediments is determined by processes and

environments representing large spatial means. In contrast, cores recovered from the

deep sea may be influenced by local processes such as up-welling (Bertrand et al.,

1996) and sediment redistribution by bottom currents (Bareille et al., 1994). Moreover,

in order to maximize the temporal resolution of core data, drilling locations are often5

chosen where such local processes result in enhanced sedimentation rates. Close

model-data correspondence in the absolute values of opal content is thus not expected

a priori. Despite this, the match for core RC13-259 (Fig. 2b) is surprisingly good,

lending confidence to the plausibility of the model assumptions. It should be noted

that the sedimentary response to G-I perturbation has not been “tuned” in any way –10

adjustment of unconstrained parameter values is undertaken only in order to achieve

a reasonable present-day ocean-sediment steady state (Ridgwell, 2001). Nor is there

anything unique about the particular opal records chosen – alternative choices of pairs

of observed and synthetic cores are found to exhibit similar matches. For instance,

the model captures the prominent ∼10–20 wt% opal highs associated with Isotope15

Stages 2.2, 4.2, and 6 in cores lying 5–10
◦

further to the north (Mortlock et al., 1991).

Interestingly, where the three sub Antarctic sectors are resolved, the model predicts

significant inter-sector differences, with the amplitude of opal variability in the Pacific

sector only about ∼30–40% of that occurring at the same latitude in the Atlantic. This

is consistent with opal and lithogenic flux data (Chase et al., 2003) and could reflect20

enhanced opal preservation in the Atlantic sector being facilitated by the greater flux of

detrital material to the sediments there (Ridgwell et al., 2002).

Isotopic tracers can also be incorporated alongside bulk sediment fractions in the

synthetic cores (Ridgwell, 2001
1
). For instance, simulations made of down-core vari-

ability in planktonic foraminiferal δ
13

C (not shown) suggest that sea-ice can also explain25

virtually all of the ∼1 ‰ increase associated with the last deglacial transition exhibited

by RC13-259 (Mortlock et al., 1991), consistent with interpretations of diatom-bound

organic matter δ
13

C (Crosta and Shemesh, 2002).

Other reconstructions of the past state of the cryosphere have suggested that the
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minimum (summer-time) limit may have been little changed (Crosta et al., 1998) con-

trary to CLIMAP (CLIMAP, 1976). Driving the model with a seasonal sea-ice forcing

making this alternative (summer-time) assumption results in little variability in opal con-

tent (<5 wt%) occurring either side of the APF. That the CLIMAP reconstruction enables

the better fit to the opal data does not support any drastic revision of CLIMAP being5

required, as concluded by Gersonde and Zielinski (2000) on the basis of analyses

of diatom sea-ice proxies. However, the simplicity of the coarse resolution zonally-

averaged model used here severely limits its ability to make any detailed assessment

of likely LGM sea-ice extents. In addition, no account is taken of changes in biogeo-

chemical cycling due to the replacement of open ocean with seasonal ice zone ecosys-10

tems (Abelmann et al., 2006). The robust result that can be taken from this modelling

example though is that the opal record must be closely linked (by a non-linear bio-

geochemical transformation) to the Antarctic climate signal (temperature), mostly likely

mediated by changes in the seasonal limits of sea-ice extent.

The results presented here demonstrate that comparisons made between synthetic15

sediment cores and paleoceanographic data can provide important additional insights

into the processes involved in glacial-interglacial change. Although in isolation, re-

duced aeolian iron supply can explain a significant (5 to 45 ppm) fraction of the initial

observed deglacial increase in CO2 (Archer et al., 2000; Bopp et al., 2003; Ridgwell,

2001; Watson et al., 2000), the synthetic sediment records highlight the existence of20

important omissions from this simplistic picture. Changes in the seasonal limits of

sea-ice can account for much of the missing sedimentary control. Combined, the two

surface ocean forcings give a slightly better simile of the opal data particularly south of

the APF (not shown) than sea-ice alone. This beneficial interaction is not obvious from

the effects of the two mechanisms in isolation, demonstrating the additional value of a25

mechanistic modelling approach. Simulation of additional proxies such as δ
15

N would

allow the biogeochemical effects of further mechanisms such as ocean stratification

(Crosta and Shemesh, 2002; Francois et al., 1997; Sigman and Boyle, 2000) to be

disentangled from the sedimentary record.
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4 Conclusions

A full understanding of the mechanisms responsible for glacial-interglacial changes in

the global carbon cycle as exemplified by ice-core records of atmosphere composition

still elude us. Given the substantial uncertainties in some of the key components of the

global carbon cycle and the wide variety of different hypotheses proposed to account5

for the glacial control of CO2, improved use of data constraints is vital for constraining

and informing modelling work. By generating a model output that is comparable to the

nature of the observed data, synthetic sediment cores provide a potentially powerful

means of quantifying past climatic changes and compliment more traditional ways of

interpreting the paleoceanographic record.10
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sity Research Fellowship.
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Fig. 1. Influence of glacial-interglacial variability in aeolian Fe supply on the sedimentary opal

record of the Southern Ocean. Warm (interglacial) and cold (peak glacial) marine isotope

stages (Bassinot et al., 1994) are highlighted in orange and blue, respectively. (a), Dust flux

forcing (Watson et al., 2000) applied to the region 47.5
◦

S to 70
◦

S in the model. (b–c), Observed

(thick green line, top axis scale) and model-predicted (red line, bottom axis scale) down-core

variability in wt% opal content for sediment cores lying either side of the APF. Observed data is

based on a pair of cores (RC13-259; 53.9
◦

S 04.9
◦

W, RC13-254; 48.6
◦

S 05.6
◦

W) taken from

the Atlantic Sector of the Southern Ocean (Charles et al., 1991; Mortlock et al., 1991). Core

RC13-259 exhibits an anomalous pattern through Stages 3 and 4 compared to other cores

south of the APF in this area (Mortlock et al., 1991) – the result of a hiatus occurring around

this level (Anderson, R. F., personnel communication). Data from the nearby core RC11-77

(Burckle, L. H., personnel communication) is therefore spliced into the interval ∼12–90 ka BP.

Each synthetic core is recovered (Ridgwell, 2001
1
; Heinze, 2001) from a grid point having

approximately the same frontal coordinate (Chase et al., 2003) (latitude relative to the position

of the APF – taken to be at 55
◦

S in the model) as the real cores (relative to the observed APF in

the Atlantic sector of the Southern Ocean at ∼50
◦

S Mortlock et al., 1991). Synthetic sediment

data is plotted using an internal age stratigraphy (Ridgwell, 2001
1
).
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Fig. 2. The influence of glacial-interglacial variability in the seasonal limits of sea-ice extent

on sedimentary opal content. (a), Change in maximum/wintertime (continuous line) and mini-

mum/summertime (dotted line) fractional sea-ice cover applied to the model Southern Ocean

(shown averaged over all model grid points lying south of the APF). (b–c), Observed (thick

green line) and model-predicted (red line) down-core variability in opal content.

1386

http://www.clim-past-discuss.net
http://www.clim-past-discuss.net/2/1371/2006/cpd-2-1371-2006-print.pdf
http://www.clim-past-discuss.net/2/1371/2006/cpd-2-1371-2006-discussion.html
http://www.copernicus.org/EGU/EGU.html

