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Abstract

A weak and shallow thermohaline circulation in the North Atlantic Ocean is related to
an open Central American gateway and exchange with fresh Pacific waters. We esti-
mate the effect of vegetation on the ocean general circulation using the atmospheric
circulation model simulations for the Late Miocene climate. Caused by an increase in5

net evaporation in the Miocene North Atlantic, the North Atlantic water becomes more
saline which enhances the overturning circulation and thus the northward heat trans-
port. This effect reveals a potentially important feedback between the ocean circulation,
the hydrological cycle and the land surface cover for Cenozoic climate evolution.

1 Introduction10

The Eocene-Oligocene and the Mid-Miocene climate transitions are two major cool-
ing steps in the Cenozoic climate evolution (Zachos et al., 2001) from greenhouse to
“icehouse” climate conditions. A drastic increase in the oxygen-isotopic composition
measured in benthic foraminifer shells points to a combination of Antarctic ice growth
and global cooling at 34 Ma and 14 Ma (Ma: million years before present), respectively,15

which is also indicated by the occurrence of Southern Ocean ice-rafted detritus and
eustatic sea-level change (Miller et al., 1987; Kennett and Barker, 1990; Billups and
Schrag, 2002). Ocean circulation changes and atmospheric pCO2 variations are often
cited as potential catalysts of these cooling events (DeConto and Pollard, 2003). Large-
scale ocean circulation changes, caused by atmospheric circulation changes and/or by20

tectonic reorganizations of gateway regions, may have altered poleward transports of
heat and moisture, which in turn may have resulted in Antarctic ice growth and global
cooling (Kennett, 1977; Zachos et al., 2001). Ocean circulation hypotheses are sup-
ported by C-13 proxy evidence (e.g. Wright and Miller, 1996; Billups, 2002) and the
timing of tectonic events at critical ocean pathways like the Drake Passage, the Tasma-25

nian Seaway, the Indonesian Throughflow (Cane and Molnar, 2001; Lawver and Gaha-
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gan, 2003), the eastern Tethys (Flower and Kennett, 1994), and the Central American
Seaway (e.g., Haug and Tiedemann, 1998).

Here, we will examine climate processes in connection with large-scale ocean circu-
lation changes for a selected Cenozoic time slice, namely the Late Miocene or Torto-
nian (11–7 Ma). The Tortonian was characterized by intensive Antarctic glaciation and5

the buildup of ice sheets in the North Atlantic realm. Specifically, we focus on the spa-
tial temperature distribution, which is a principal problem in understanding Cenozoic
climate change. In the case of the Miocene, elevated global-mean surface tempera-
tures and weak equator-to-pole temperature gradients are proposed (Greenwood and
Wing, 1995; Crowley and Zachos, 2000). While numerical simulations exhibit rising10

global-mean temperatures for increasing greenhouse gas concentrations, they fall far
short of attaining the reconstructed reduction in the meridional temperature gradient
(Barron, 1987; Huber and Sloan, 2001). Since it seems that atmospheric carbon diox-
ide concentration hardly varied during the Miocene (Pagani et al., 1999, 2005, Pearson
and Palmer, 2000), the mechanism which causes bipolar glaciation in the Tortonian15

remains even more enigmatic.
Some authors (Schmidt and Mysak, 1996; Hay et al., 1997) have suggested that

atmospheric heat transport may have played an important role in resolving this “low
gradient paradox”. It is plausible to expect a warmer atmosphere to transport more
latent heat poleward, helping to reduce meridional temperature gradients. However,20

despite the exponential increase of saturation vapor pressure with temperature, this
feedback becomes less powerful as temperature rises (Caballero and Langen, 2005).
Other possible mechanisms located in the atmosphere involve the atmospheric station-
ary wave response due to changing paleogeography and sea level.

On the other side, marine proxy data indicate that ocean gateway changes and major25

reorganizations of the global ocean circulation (e.g. Kennett, 1977; Wright et al., 1992;
Zachos et al., 2001) are consistent with a weakening of the ocean heat transport dur-
ing the Miocene. Concerning the Tortonian, the (then) still opened Central American
Seaway (CAS, i.e., the Panama Strait) allowed for the exchange of saline Atlantic water

607

http://www.clim-past-discuss.net
http://www.clim-past-discuss.net/2/605/2006/cpd-2-605-2006-print.pdf
http://www.clim-past-discuss.net/2/605/2006/cpd-2-605-2006-discussion.html
http://www.copernicus.org/EGU/EGU.html


CPD
2, 605–631, 2006

Effect of vegetation
on the Late Miocene

ocean circulation

G. Lohmann et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

EGU

with comparatively fresher Pacific water, and it has been shown that this leads to weak-
ening of the thermohaline circulation in the North Atlantic Ocean (e.g., Mikolajewicz et
al., 1993; Bice et al., 2000; Butzin et al., 20061). Therefore, the global ocean circula-
tion seems not to be a proper candidate to be responsible for a weaker equator-to-pole
temperature gradient.5

The question of temperature gradients might be linked to other feedbacks in the
climate system, such as changes in the hydrological cycle and vegetation cover. Pale-
ontological and palynological data give evidence for drastic changes in vegetation and
therefore climate during the Cenozoic (Retallack, 2001; Willis and Mc Elwain, 2002).
For example, during the Eocene/Oligocene glaciation tropical rain forests virtually dis-10

appeared poleward of the northern and southern high pressure zones. Grasslands,
which had begun to develop under dry conditions during the Eocene, became more
and more widespread in the Oligocene. During the Mid-Miocene Climatic Optimum,
moist warm forests expanded poleward of the subtropical high pressure zones for a
short period. Following the global climatic deterioration after the Mid-Miocene Climatic15

Optimum, tropical rain forests withdrew again to the equatorial zone. Grasslands and
deserts expanded through much of the lower mid-latitudes (Morley, 2000; Bredenkamp
et al., 2002). C4 grasslands became widespread during the interval from about 8 to
5 Ma (Cerling et al., 1997; Freeman and Colarusso, 2001). During the Miocene, most
of the climatically arranged vegetation belts developed ranging from rain forest along20

the equator to polar desert at high latitudes. However, to date, little is known about the
role of continental vegetation for climate change during the Cenozoic. It is still an open
question whether the vegetation just has adapted to hydrological changes or whether
it has played an active role as a modifier of major climate transitions. In principle, the
vegetation can contribute to a weaker-than-present meridional temperature gradient25

through modifying the local albedo (e.g., Dutton and Baron, 1997; Otto-Bliesner and

1Butzin, M., Lohmann, G., and Bickert, T.: Effect of ocean gateways onto the evolution of
the ocean circulation and marine carbon cycle during the Miocene: Sensitivity studies with an
ocean-circulation carbon cycle model, Paleoceanography, submitted, 2006.
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Upchurch, 1997).
In the light of these findings, we investigate whether such a feedback was effec-

tive during the Late Miocene. We examine if the Tortonian vegetation significantly
enhanced the hydrological cycle with increased precipitation rates over continental ar-
eas providing for a greener land surface. In particular, we are interested in the climate5

sensitivity of the thermohaline circulation (THC) with the vegetation cover and associ-
ated hydrological cycle. For that purpose, we apply an atmospheric circulation model
(AGCM) in combination with a coarse resolution model of the ocean. A dynamical veg-
etation model is used to evaluate the consistency between reconstructed and simulated
vegetation cover. The models and experiments are briefly described in the following10

Section.

2 Methods

2.1 Atmospheric circulation model

For the Late Miocene climate simulations, we apply the atmosphere general circula-
tion model ECHAM4 (Roeckner et al., 1996). The prognostic variables are calculated15

in the spectral domain with a triangular truncation at wave number 30 (T30), which
corresponds to a Gaussian longitude-latitude grid of approximately 3.75◦. The vertical
domain is represented by 19 hybrid sigma-pressure (terrain following) levels with the
highest level at 10 hPa. The model is coupled to a 50 m slab ocean. This allows a pre-
scription of the Miocene ocean heat transport consistent with proxy data (Steppuhn et20

al., 2006). Furthermore, the orography is adapted to the Tortonian when the height of
mountain ranges was generally reduced. For example, Greenland reaches only about
a tenth of its recent elevation. In addition to the above-described boundary conditions,
the atmospheric CO2 is specified with the present-day level of 353 ppmv for all experi-
ments. This lies within the spectrum of values which are given for the Miocene (Cerling25

et al., 1997, Pagani et al., 1999; Pearson and Palmer, 2000). For the land surface, sen-

609

http://www.clim-past-discuss.net
http://www.clim-past-discuss.net/2/605/2006/cpd-2-605-2006-print.pdf
http://www.clim-past-discuss.net/2/605/2006/cpd-2-605-2006-discussion.html
http://www.copernicus.org/EGU/EGU.html


CPD
2, 605–631, 2006

Effect of vegetation
on the Late Miocene

ocean circulation

G. Lohmann et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

EGU

sitivity experiments were performed which are decribed below. Each model simulation
with the AGCM was run over 20 years. The model reaches an equilibrium state after
5 years, and the last 10 years are taken into account for further analysis. A list of the
experiments is given here:

CTRL: Present day control simulation (Roeckner et al., 1996).5

TGEO: Tortonian simulation with adapted geography (Steppuhn et al., 2006). The
global vegetation represents modern conditions, except that the recent Greenland
ice cap is replaced by tundra vegetation.

TVEG: Tortonian simulation with adapted geography as in TGEO and recon-
structed vegetation cover. The Tortonian vegetation was reconstructed on the10

basis of palaeobotanical data such as fossil pollen and leaf data, and fossil car-
poflora (Micheels, 2003). Figure 1 shows the resulting reconstruction of the global
Tortonian vegetation. The Tortonian palaeovegetation was generally more lush
as compared to today, tropical forests expanded and their margins shifted further
poleward. According to the reconstruction of the Tortonian vegetation, land sur-15

face parameters are adapted. To consider the changed vegetation in the model,
data for the albedo, the leaf area index, the vegetation and forest cover, and the
maximum soil water capacity are changed.

2.2 Dynamical vegetation model

The LPJ dynamical vegetation model (Sitch et al., 2003) combines process-based20

descriptions of terrestrial ecosystem structure (vegetation composition, biomass and
height) and function (energy absorption, carbon cycling). Vegetation composition is
described by nine different plant functional types (PFTs), which are distinguished ac-
cording to their physiological (C3, C4 photosynthesis), morphological (tree, grass) and
phenological (deciduous, evergreen) attributes. The model is run on a grid cell basis25

with input of soil texture, monthly fields of temperature, precipitation, as well as short
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and long wave radiation. Each grid cell is divided into fractions covered by the PFTs
and bare ground. Both the presence and the covered fraction of PFTs within a grid
cell depend on their specific environmental limits and on resource competition among
the PFTs. Carbon isotope fractionation is included in the model (Kaplan et al., 2002;
Scholze et al., 2003). The model is run on a horizontal 2◦×2◦ grid, directly forced with5

the output of the AGCM experiments.

2.3 Ocean circulation model

Our ocean model is an updated version of the LSG circulation model developed by
Maier-Reimer et al. (1993). We implemented some significant improvements such as
a new advection scheme for tracers (Schäfer-Neth and Paul, 2001; Prange et al., 2003)10

as well as an overflow parametrization for the bottom boundary layer (Lohmann, 1998;
Lohmann and Schulz, 2000). The spatial resolution is 3.5◦×3.5◦ in the horizontal and
22 levels in the vertical. We calibrated the model by simulating anthropogenic C-14
(Butzin et al., 2005). The ocean is forced by ten-year averaged monthly fields of wind
stress, surface air temperature, and freshwater flux, which serve as background clima-15

tology and originate from the simulations with the atmosphere general circulation model
ECHAM4 described in Sect. 2.1. A surface heat flux formulation based on atmospheric
energy balance model considerations permits that sea surface temperatures (SST)
can freely adjust to ocean circulation changes (e.g., see Prange et al., 2003; Knorr
and Lohmann, 2003; Butzin et al., 2005). The hydrological cycle is closed by a runoff20

scheme which considers continental catchment areas and allows for variable land-sea
distributions, which permits that sea surface salinities (SSS) can freely evolve. The
total integration time of each experiment is 5000 years. For the late Miocene simula-
tions, we assumed a 500 m deep and three gridpoints wide (between 9◦ N and 18◦ N)
gateway between the Atlantic and Pacific Oceans.25
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3 Results

3.1 Hydrological cycle and vegetation cover

The control climate simulates the mean hydrological cycle reasonably well as shown by
Arpe et al. (2000) and is in agreement with observations (e.g., Peixoto and Oort, 1992;
Zaucker and Broecker, 1992). The subtropical highs over the North and South Atlantic5

and Pacific oceans provide a moisture transport from the subtropics to higher latitudes.
In the tropics between 20◦ S and 20◦ N, strong easterlies are observed, especially over
the Atlantic and Pacific Oceans.

Figure 2 indicates strong changes in the hydrological cycle when comparing TVEG
and CTRL. Boreal summer precipitation over the Sahel region is strongly increased10

for the green Sahara (compare Fig. 1). In accordance with the removal of the inland
ice of Greenland, sea ice is drastically reduced caused by a considerably increasing
surface temperatures and the ice-albedo feedback, and local precipitation is increased
over Northern Greenland (Fig. 2c). The Icelandic Low is slightly shifted to the south-
east leading to more precipitation off western Europe and less precipitation between15

Greenland and Iceland (Fig. 2).
The reduced ocean heat transport causes a southward migration of the thermal

equator in both Tortonian simulations TGEO and TVEG. When comparing TVEG with
CTRL in Fig. 2, the Intertropical Convergence Zone moves southward resulting in en-
hanced water vapor export out of the Atlantic catchment area. We evaluate an ad-20

ditional moisture transport from the Atlantic to the Pacific Ocean accounting for an
increase of net Atlantic evaporation (0.12 and 0.31 Sv for TGEO and TVEG, respec-
tively). The unit 1 Sv corresponds to a mass transport of 109 kg s−1, equivalent to a
volume transport of 106 m3 s−1 liquid water.

In order to check the consistency of the reconstructed vegetation distribution with the25

modelled climate in TVEG, we apply the dynamical vegetation model LPJ. We use the
monthly output of the last 10 years of the CTRL and TVEG simulations, iterating these
simulations 200 times in order to get an equilibrium of the dynamical vegetation model
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after 2000 model years. We build an average over the last 500 years and identify the
spatial patterns of the PFTs (in %) for the Tortonian and present-day vegetation cover
(Fig. 3). For the late Miocene, tropical trees are spread in the subtropical Africa (North
and South) and parts of Australia (Fig. 3a), whereas temperate trees are extended
over Asia (Fig. 3b) relative to present conditions. The extension of boreal forests far5

into the northern high latitudes during the Tortonian (Fig. 3c) is in accordance with
proxy data (Boulter and Manum, 1997). Grassland is extended into subtropical areas,
over Greenland and over Alaska. The Sahara desert is smaller than today and consists
of steppe and open grassland rather than sand desert which is consistent to fossil data
(Le Houerou, 1997; Schuster et al., 2006).10

3.2 Ocean circulation

In the ocean circulation experiments, we employ a hybrid coupled modeling approach,
which allows an adjustment of surface temperatures and salinity to changes in the
ocean circulation, based on an atmospheric energy balance model (Lohmann and
Gerdes, 1998; Prange et al., 2002). No flux correction is applied for present day and15

other climate conditions. The control experiment for present-day conditions (Fig. 4a)
reasonably reflects the modern Atlantic Ocean circulation with a southward water ex-
port of 16 Sv at 30◦ S and a heat transport of 0.96 PW (1 PW=1015 W) at 30◦ N, which is
in the range of oceanographic observations (Schmitz, 1995; Macdonald and Wunsch,
1996).20

A comparison of the control run with the Tortonian experiments (TGEO, TVEG) re-
veals significant changes in the meridional overturning circulation (Fig. 4bc): The for-
mation of deep water in the North Atlantic is strongly reduced (TGEO) when the Cen-
tral American Seaway (CAS) is open (Fig. 4). The meridional circulation is only 3 Sv
and represents a “mini-conveyor belt” circulation with an ocean heat transport at 30◦ N25

of 0.19 PW (Fig. 4b). In experiment TVEG, the circulation strength is similar to the
present-day circulation (14 Sv export at 30◦ S, 0.83 PW at 30◦ N), but slightly shallower
than under present-day conditions. The reason might be the increased flow of bottom

613

http://www.clim-past-discuss.net
http://www.clim-past-discuss.net/2/605/2006/cpd-2-605-2006-print.pdf
http://www.clim-past-discuss.net/2/605/2006/cpd-2-605-2006-discussion.html
http://www.copernicus.org/EGU/EGU.html


CPD
2, 605–631, 2006

Effect of vegetation
on the Late Miocene

ocean circulation

G. Lohmann et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

EGU

water from the Antarctic (Fig. 4c).
A detailed analysis of the flow patterns in various depths of the Panamanian gateway

shows an export of surface water from the Atlantic to the Pacific Ocean (Fig. 5a).
An import of thermocline and intermediate layer water from the Pacific to the Atlantic
Ocean is responsible for a reversal of the Northeast Brazil Current (Fig. 5a). The net5

flux of Pacific water through the CAS into the Atlantic leads to relatively low-salinity
thermocline water which hinders deep water formation in the North Atlantic. In TGEO,
the surface winds and net freshwater flux in the North Atlantic are not able to overcome
this freshening (Fig. 4b), whereas the background conditions in TVEG with stronger
northward flow (Fig. 5b) and increase in net evaporation are sufficient to push the ocean10

circulation into a present-day-like circulation mode (Fig. 4c). Both the increased ocean
circulation with a northward shift of the Arctic sea ice, and a local warming associated to
the land surface quantities, induce an anomalous warming between TVEG and TGEO
of up to 8◦C (Fig. 5b).

Caused by the drop in ocean circulation in TGEO relative to CTRL, the sea surface15

salinity in the North Atlantic is considerably reduced (Fig. 6a). Due to the exchange of
surface water close to the CAS, the surface water in the tropical Pacific becomes more
saline. In contrast, the stronger ocean circulation for TVEG as compared to TGEO
and the increased net evaporation yield considerably higher sea surface salinities in
the North Atlantic Ocean (Fig. 6b). The strong increase in North Atlantic upper 500 m20

salinity is clearly emphasized in the Atlantic zonal-mean salinity distribution (Fig. 7a).
The surface and subsurface warming of TVEG relative to TGEO is strongest in the
subtropics and polar latitudes (Fig. 7b). At northern polar latitudes, the warming is
associated to strong poleward surface currents (Fig. 5b), sea ice retreat, and meridional
heat transport.25
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4 Discussion

The vegetation effect on the ocean circulation may be an important mechanism for the
relatively warm late Miocene climate over Europe as reconstructed by terrestrial proxy
data (e.g., Mai, 1995; Wolfe, 1994; Fortelius et al., 2003). Sensitivity experiments with
atmospheric general circulation models demonstrate that the late Miocene vegetation5

contributes to a warming of particularly the high latitudes (Dutton and Barron, 1997;
Micheels, 2003; Francois et al., 2006; Micheels et al., 2006).

Here, we analyse the hydrological cycle and associated vegetation cover onto the
ocean circulation. The atmospheric hydrological cycle has a high mobility and links the
THC with the Earth’s water budget. We find that the Intertropical Convergence Zone10

moves southward resulting in enhanced water vapor export out of the Atlantic catch-
ment area. A similar effect has been proposed for tropical water vapor transport during
glacials (Lohmann and Lorenz, 2000) and Heinrich events (Lohmann, 2003) which may
be responsible for an additional sea surface salinity contrast between the Atlantic and
Pacific/Indian Oceans (Broecker, 1992), as well as for El Niño conditions (Schmittner15

et al., 2000; Soden, 2000; Latif et al., 2000). We find that the water vapor transport
out of the Atlantic area is enhanced for the Tortonian climate relative to the control
experiment. The net Atlantic freshwater forcing has been recognized as an important
external parameter of ocean sensitivity studies (e.g., Birchfield, 1989; Zaucker et al.,
1994; Rahmstorf, 1996). The increased export at Central America is caused by an20

increase in the zonal moisture transport associated to the Atlantic trade winds.
As pointed out by Steppuhn et al. (2006), there is a significant warming of more than

2◦C at the eastern margin of the Pacific Ocean associated with a decreased upwelling
in this area. This is again linked to the southward shift of the thermal equator, the ITCZ
and weaker equatorial Walker circulation. The latter gives rise to a Tortonian perma-25

nent El-Niño state. This aspect will be analyzed in a subsequent study using a coupled
atmosphere-ocean circulation model for the late Miocene. Fedorov et al. (2006) pro-
posed that a permanent El-Niño state may be important for Pliocene glaciation and
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Cenozoic climate evolution.
We find that the vegetation effect on the ocean circulation can be an important mech-

anism for the relatively warm late Miocene climate over Europe. Caused by high salin-
ities at northern high latitudes, the sea ice edge is moved poleward which is in general
agreement with proxy data (e.g., Wolf and Thiede, 1991). In addition, it is possible that5

other mechanisms not included in the present generation of GCMs also had an im-
portant impact on Tortonian climate, such as high-latitude radiative warming by polar
stratospheric clouds (Sloan and Pollard, 1998), increased ocean heat transport driven
by tropical cyclone-induced mixing (Emanuel, 2002; Huber, personal communication),
or increased levels of methane. Methane can be estimated through stable carbon iso-10

topes (biological processes preferentially incorporate C-12) and areas of wetlands as
calculated from the land surface scheme including the vegetation distribution.

5 Conclusions

The Cenozoic climate evolution includes significant changes in the oceanic transports
which are ultimately linked to the paleotopography and opening/closing of passages.15

The open Central American Seaway leads to a exchande of fresh Pacific water with
saline Atlantic water thereby reducing the density in the North Atlantic Ocean and
weakening of the large-scale ocean circulation. For the Late Miocene, we find that the
modified vegetation cover can compensate this gateway effect by changes in the sub-
tropical wind system and by more net-evaporation in the Atlantic Ocean. This increases20

North Atlantic salinity, ocean circulation and poleward heat transport to the north. Due
to a “greener” Tortonian land surface and associated atmospheric and oceanic circu-
lation changes, the Tortonian Atlantic meridional overturning and heat transport have
almost their present strengths.

The failure of AGCMs to simulate the reduced pole-to-equator gradients of warm25

climate intervals is a long-standing problem in paleoclimate modeling (e.g., Sloan et
al., 1995). The interaction between land surface cover, atmospheric as well as oceanic
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circulation could be the so far unknown mechanism for increasing ocean heat transport
at a time when meridional surface temperature and vertical temperature gradients were
greatly reduced relative to the modern (Bice et al., 2000).

Based on our finding, it is conceivable that reorganizations of the global ocean cir-
culation, large-scale shifts of vegetation zones, topographical changes and changes in5

the global carbon chemistry play a dominant role for the major Cenozoic climate tran-
sitions. Consequently, it is of utmost importance not only to understand the behaviour
of these individual systems in better detail but also to investigate the full dynamics,
feedbacks, and synergisms of the coupled system. The results presented show a
possible strong connection between the hydrological cycle, vegetation cover, and the10

ocean circulation. Future work will address the numerous interactions between the
climate system components by use of a global atmosphere-ocean-vegetation-carbon
cycle model. Dutton and Barron (1997) applied a palaeo-vegetation in a modelling
study of the Miocene which led to a significant warming suggesting that vegetation and
vegetation-climate feedbacks could be a significant component of the Cenozoic climate15

evolution. Feedback analysis including synergisms shall be performed to consider the
dynamics of the climate system in a similar way as for the Quaternary climate variations
(e.g., Ganopolski et al., 1998; Kubatzki et al., 2000). A focus can be on the relative
roles of the thermohaline circulation, the atmospheric dynamics including high latitude
and monsoon circulation, as well as land surface effects caused by changed vegetation20

distribution.
In order to further investigate major developments during the Miocene a combined

approach between modeling and establishing proxy records from selected key loca-
tions is needed. Model results on changing patterns of heat transport can be validated
by temperature reconstructions (Mg/Ca, alkenones, TEX86), both from the deep (ben-25

thic fauna) and the shallow (planktonic) ocean (Lear et al., 2003; Billups et al., 2002;
Sluijs et al., 2006). Major changes in ocean circulation can be traced by using wa-
ter mass characteristic proxies like Cd/Ca, Nd isotopes, and C-13 (Frank et al., 1999;
Frank et al., 2002; Delaney and Boyle, 1987). Combination of temperature reconstruc-
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tions with O-18 gives evidence on changes in salinity and may provide indications on
the high salinities in the northern North Atlantic, the position of the ITCZ and associated
teleconnections.
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Fig. 1. (a) The proxy-based reconstructed Tortonian vegetation, and (b) the present-day‘s
vegetation (New et al., 1999). These maps serve as an input into the AGCM experiments
TVEG, TGEO and CTRL, respectively.
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Fig. 2. Changes in the net precipitation minus evaporation for TVEG minus CTRL. Units are
mm/month.
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Fig. 3. Change of the late Miocene relative to the present vegetation (TVEG minus CTRL).
Fractional coverage (in percent): (a) Tropical tree, (b) temperate tree, (c) boreal tree, (d) grass.
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Fig. 4. Atlantic meridional overturning circulation (Sv=106 m3/s) for present-day (a), and the
late Miocene configuration with open Central American Seaway (CAS). (b) with present vege-
tation cover (TGEO), and (c) with reconstructed vegetation cover (TVEG).
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(b)

∆SST [°C] with surface flow anomalies TVEG−TGEO
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Fig. 5. Modelled sea surface temperature anomalies [◦C] and surface flow [m/s]. (a) difference
between TVEG and CTRL, (b) difference between TVEG and TGEO.
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Fig. 6. Modelled sea surface salinity anomalies [PSU]. (a) difference between TGEO and
CTRL, (b) difference between TVEG and TGEO.
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Fig. 7. Zonal mean difference between TVEG and TGEO in the Atlantic Ocean: (a) salinity, (b)
temperature.
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