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Abstract

The skill of proxy-based reconstructions of Northern hemisphere temperature is re-
assessed. Using a rigorous verification method, we show that previous estimates of
skill exceeding 50% mainly reflect a sampling bias, and that more realistic values vary
about 25%. The bias results from the strong trends in the instrumental period, to-5

gether with the special partitioning into calibration and validation parts. This setting is
characterized by very few degrees of freedom and leaves the regression susceptible
to nonsense predictors. Basing the new estimates on 100 random resamplings of the
instrumental period we avoid the problem of a priori different calibration and validation
statistics and obtain robust estimates plus uncertainty. The low verification scores ap-10

ply to an entire suite of multiproxy regression-based models, including the most recent
variants. It is doubtful whether the estimated levels of verifiable predictive power are
strong enough to resolve the current debate on the millennial climate.

1 Introduction

The validity of proxy based reconstructions of Northern hemisphere temperature (NHT)15

has attracted a lot of attention in recent years (McIntyre and McKitrick, 2003; von Storch
et al., 2004; McIntyre and McKitrick, 2005a–c; Huybers, 2005; Rutherford et al., 2005;
Mann et al., 2005; Bürger and Cubasch, 2005; Bürger et al., 2006; Wahl and Ammann,
2006). Aspects of methodology, proxy quality, and verification assessment have been
analysed to cover a number of unresolved issues of the Mann et al. (1998) (hence-20

forth MBH98) publication. That study and a follow-up paper (Mann et al., 1999) used
a limited number of proxies (dendro, ice-core, corals) as regressors for the main pat-
terns of temperature variability and derived a global temperature history of the past
millennium. The method was verified against instrumental data, and for the 22 proxies
available back to AD1400 a reduction of error, RE (Lorenz, 1956, see below), reported25

of 42% for the calibration (1902–1980) and 51% of the validation (1854–1901) period.
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These validation scores, however, disagree with other scores, such as the coefficient
of efficiency, CE (−22%; Nash and Sutcliffe, 1970, see below), correlation, R2 (2%), or
detrended measures (0%, cf. Mann et al., 1998 SI; Wahl and Ammann, 2006). In the
following, we will concentrate on the two scores RE and CE (R2 is scale independent
and thus not really appropriate.)5

The scores are estimated from strongly autocorrelated (trended) time series in the in-
strumental period, along with a special partitioning into calibration and validation sam-
ples. This setting is characterized by a rather limited number of degrees of freedom. It
is easy to see that calibrating a model in one end of a trended series and validating it in
the other yields fairly high RE values, no matter how well other variability (such as an-10

nual) is reproduced. Note that these few degrees of freedom also initiated the debate
on using trended or detrended calibration: The latter had been intuitively applied by
von Storch et al. (2004) (noted by Bürger et al., 2006) so as to ensure enough degrees
of freedom for the regression (thereby departing from the MBH98 setting).

The problem is that few degrees of freedom are easily adjusted in a regression.15

Therefore, the described feature will occur with any trended series, be it synthetic
or natural (trends are ubiquituous): regressing it on NHT using that special calibra-
tion/validation partition returns a high RE. McIntyre and McKitrick, 2005b demonstrate
this with suitably filtered red noise series. We picked as a nonsense NHT regressor
the annual number of available grid points and, in fact, were rewarded with an RE of20

almost 50% (see below)!
If even such nonsense models score that high the reported 51% of validation RE

of MBH98 are not very meaningful. The low CE and R2 values moreover point to
a weakness in predicting the shorter time scales. Therefore, the reconstruction skill
needs a re-assessment, also on the background of the McIntyre and McKitrick, 2005b25

claim that it is not even significantly nonzero.
A second controversy deals with two criticisms of the regression method itself. von

Storch et al. (2004) attribute the low reconstructed amplitudes to an inherent disabil-
ity of any regression-based method to simulate sufficient variability. In Bürger and
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Cubasch (2005) and Bürger et al. (2006) we demonstrate that the method creates an
entire spread of millennial histories depending on data processing details. The error
grows proportional to both the model uncertainty and the proxy scale, the latter leading
to an extrapolation. The criticisms rest on properties of the full proxy-temperature co-
variance matrix: the first on the scale and the second on the number and corresponding5

uncertainty of its entries (which are tens of thousands mutual covariances).
In newer studies (Mann and Rutherford, 2002; Rutherford and Mann, 2003; Ruther-

ford et al., 2005; Mann et al., 2005) the estimation of that covariance matrix utilizes
a technique called regularized expectation maximization (RegEM; Schneider, 2001).
RegEM extends the classical expectation maximization (EM) algorithm (Dempster et10

al., 1977) to situations with more unknowns than cases. But it is evident that the two cri-
tiques above pertain to this newer scheme as well. (A few additional issues regarding
the specific use of RegEM are discussed in a supplement.)

In the above literature no millennial verification skill is reported for RegEM (see be-
low); the millennial reconstructions themselves are nevertheless similar to MBH9815

(cf. Rutherford et al., 2005). For our study we have decided to choose the RegEM
variant instead of the original MBH98 approach, following a suggestion of Rutherford
and Mann (2003). But note that their application includes the utilization of the full proxy-
temperature covariance, in contrast to MBH98 who explicitly work with a reduced space
version of the temperature fields (S. Rutherford, personal communication).20

The study is an attempt to thoroughly estimate the skill of current NHT reconstruction
methods. The skill evades – as much as possible – any properties that solely reflect the
sampling of the calibration period, but instead utilize the maximum possible degrees of
freedom available in the instrumental period.

2 Stationarity digression25

Before we explain our testing procedure, we recall one of the most basic estimation
principles: that a regression/verification exercise is generally nonsense if calibration
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and validation samples are not drawn from one and the same population. Conse-
quently, differences between sample properties, such as calibration and validation
mean, must be considered completely random. Accordingly, verification methodology
was developed from and for stationary records, such as weather or riverflow (Lorenz,
1956; Nash and Sutcliffe, 1970; Murphy and Winkler, 1987; Wilks, 1995). In that5

method, mean and variance are usually seen as population parameters relative to
which errors are to be measured. In fact, from the original articles wherein RE and
CE were introduced, (Lorenz, 1956) and (Nash and Sutcliffe, 1970), respectively, they
were only two different names for one and the same thing: the reduction of the squared
error relative to the variance of the predicted quantity. Only later they appear as dis-10

tinguished entities (Briffa et al., 1988; Cook and Kairiukstis, 1990; Cook et al., 1994),
in that reference is explicitly made to calibration (RE) or validation (CE) variance. That
latter score, CE, has been attributed to the hydrologic study (Nash and Sutcliffe, 1970).
However, we have not been able to find therein any reference to a validation mean,
nor in any of the articles we checked from the hydrologic literature (e.g. Legates and15

McCabe, 1999; Wolock and McCabe, 1999). It thus appears that RE and CE were
originally envisaged as identical measures but have been mistaken for distinguished
entities in dendrochronology. We emphasize that their difference solely reflects sample
properties and must be considered random.

In accordance with classical verification we treat calibration and validation as un-20

specified samples, using a set of resamplings of the full period. Differences in cali-
bration and validation statistics (such as mean and variance) are purely random and
contribute to the uncertainty in model skill (instead of serving as a model selection
tool).

3 Four steps to reconstruction25

The predictand, T , is defined from the 219 temperature grid points that are most
abundant in the full 1854–1980 period (the verification grid points of MBH98; here we
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also use them for calibration (cf. Jones and Briffa, 1992). As a predictor, P, we take
the 22 proxies of the AD1400 step of MBH98. We thus have 127 years of common
proxy and temperature data. Once a calibration subset of these data is defined (next
section) everything is set up for the statistical model. These four steps constitute a
temperature reconstruction:5

GLB: the definition of a target quantity

COV: the estimation of cross covariances
10

MDL: the calculation of the regression model

RSC: the postprocessing (rescaling)

Note that the informational flow goes strictly from GLB through RSC.15

ad GLB) – The target can be either the full temperature field on all grid points, a
filtered version thereof (EOF truncation), or the average NHT series.

ad COV) – the main statistical quantity to be determined is the full Σ cross covariance
matrix Σ, consisting of the 4 submatrices ΣP , ΣP T , ΣTP , and ΣT , between the proxy and
temperature fields. Classically, ΣP T would simply be the covariance between P and T20

estimated from the calibration sample. In RegEM, an iterative procedure is applied to
estimate the full Σ, wherein only the validation T is withheld, and Σ and T are mutually
approximated using the expectation of T given P under the current iterate of Σ. The
expectation is determined via some form of (regularized) regression.

ad MDL) – any regression model can be derived from the full , as follows:25

1. R = Σ−1
P ΣP T− least squares (LS) regression.

2. R I = Σ+
TP ΣT− inverse regression (“+” denoting pseudo inverse).
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3. truncated total least squares (TT; Fierro et al., 1997).

4. ridge regression (RR; Hoerl, 1962).

Note that the calculations 1.–4. are based on standardized variables with subsequent
rescaling. Here we follow most regularizations schemes, such as 3. and 4., as well as
the RegEM implementation of (Schneider, 2001).5

ad RSC) – The result is rescaled to match the calibration variance (cf. Bürger et al.,
2006).

The details are found in a supplement (http://www.clim-past-discuss.net/2/357/2006/
cpd-2-357-2006-supplement.zip). Table 1 illustrates the various settings.

By varying the criteria a set of 48 model variants or flavors is defined, identifiable by a10

quadruple from [0,2]×[0,1]×[0,3]×[0,1] as in Bürger and Cubasch, 2005. For example,
the MBH98 method corresponds to variant 1011 and Rutherford et al., 2005 to 0130.

4 Resampling proxies and temperature

Suppose we have fixed a calibration set C consisting of P and T values, and we want to
build one of the models M above. Since M does not explicitly contain the time variable,15

it only depends on the set C of selected P and T values, and not on their ordering. In
an ideal world, any other sampling C′ would result in the same model M(C′)= M(C). In
the real world of statistics there are sampling errors, and the estimates M(C) vary more
or less about the “true” model M – if such model exists at all. We assume M exists,
and for each of the above flavors we are now estimating it along with a corresponding20

uncertainty range. We are confident that 100 random sets C are sufficient to obtain
reasonable estimates.

Let the full, 127-year long P–T record be given as (Pi , Ti , i∈I). A “random” calibration
set is defined by picking a random permutation π: I→I and letting

C (π) =
{
i ∈ I | π (i ) ≤ n/2

}
(1)25
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(n being the length of I). This divides the original record into two sets, calibration C(π)
and validation V(π)=I \C(π), of roughly equal size. Applying now the 4 steps from
above yields 48 flavors per π, and doing this 100 times generates for each flavor a
distribution of 100 regression experiments.

Their predictive power is evaluated in terms of NHT, calculated from observed, x,5

and predicted values (from the validation part), x̂, of the 219 grid points. In accordance
with (Lorenz, 1956) and (Briffa et al., 1988) we use the scores

RE = 1 −

〈
(x̂ − x)2

〉
〈

(x − x̄c)2
〉 ; CE = 1 −

〈
(x̂ − x)2

〉
〈

(x − x̄v )2
〉 , (2)

with brackets indicating expectation. They are only distinguished by the different refer-
ence value of calibration and validation mean, x̄c and x̄v , respectively.10

Their distribution is depicted in Fig. 1. For each flavor, the scores from the random
calibrations show a considerable spread, but that spread is remarkably similar for RE
and CE. This demonstrates that, in fact, both measure the same thing, and possible
differences merely reflect sampling properties. Most flavors have difficulty predicting
the entire T grid (0xxx), except maybe the variant 0130 favored by Mann et al. (2005).15

Overall, prefiltering the T grid using EOF truncation noticeably improves the perfor-
mance. Here also the use of RegEM gives a few percent of additional score. Interest-
ingly, using NHT itself as a predictand (2xxx) does not seem to be favorable as many
calibrations show very poor performance, thus increasing the uncertainty. Most of the
higher scores lie in a range somewhere between 10% and 30%. Given this uncertainty,20

it is hard to pick one flavor as optimal. From the Figure, the flavor 1120 shows the best
results with a moderate uncertainty, scoring between 15% and 40%.

The additional dots in the Figure represent the “classical” calibration C0 of the pe-
riod 1902–1980 (with validation 1854–1901) used in previous studies. C0 obviously
assumes the role of an outlier, in a positive sense for RE and in a negative one for CE.25

While RE values approach 60% (for 1120) the CE values are negative throughout. It
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appears that in the same sense that that particular calibration rewards trended predic-
tors with high RE values it penalizes them with small CE scores. In other words: the
trend (which is “invisible” to CE) dominates calibration and validation.

Note that the RegEM variant 0130 only scores 30% for C0. This method, whose
millennial performance is assessed here for the first time, was advertised by Mann et5

al. (2005) and earlier to replace the original MBH98 method 1011, which scores almost
50% in our emulation. Hence, even if C0 did not reflect a sampling bias, our results do
not suggest a transition to that variant.

The nonsense predictor mentioned above (number of available grid points) scores
RE=46% (and CE=−23%), which is more than any of the flavors ever approaches in10

the 100 random samples. And it is not unlikely that other nonsense predictors score
even higher. On this background, the originally reported 51% of verification RE are
hardly significant. This has already been claimed by McIntyre and McKitrick (2005b)
in a slightly different context. In addition to that study, we have derived more stable
estimates of verifiable scores for a whole series of model variants, the optimum of15

which (1120) scoring with RE=25%±7% (90% confidence).
Note that such a random calibration set C very likely destroys the original temporal

ordering of the P and T series (albeit synchronously for both), along with the observed
20th century warming trend. To someone more used to dynamical models (which con-
tain the time variable explicitly) this “shuffling” may appear irritating as it would destroy20

the main “physical process” that one attempts to reflect. We therefore emphasize that
empirical models of this kind do in no way contain or reflect dynamical processes other
than can be sampled in instantaneous covariations between variables. The trend may
be an integral part of such a model, but only as long as it represents these covariations.

One might nevertheless attempt to “help the sampling” by picking only those C that25

preserve contiguous time spans of a length typical for P–T interactions, say 5 years.
We have tested for 1, 5, and 10 years, but did not observe significant changes to Fig. 1
apart from a slight decrease of skill and increase of spread (see supplement). For
longer time scales the diminishing degrees of freedom is a limiting factor.
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5 Conclusions

Previous estimates of climate reconstruction skill, especially RE, are founded on the
particular partitioning into calibrating and validating portions of the trended instrumen-
tal period, and thus mainly reflect sampling properties. This leaves very few degrees of
freedom, and they can easily be matched by nonsense regressors. To accommodate5

for this sampling bias we have proposed a strategy that is based on repeated resam-
pling of the instrumental period, similar to other techniques not unusual in statistical
estimation theory (cf. Efron and Gong, 1983).

The results pose a number of questions. (1): Are the results representative, i.e. are
100 experiments per flavor enough to estimate the uncertainty? Given the huge10

amount of possible permutations of 127 years the number of 100 experiments is quite
small. On the other hand, if there is sense at all behind the idea to distill an empirical
model out of the 127 proxy and temperature records, sampling 100 is probably suf-
ficient. The 1902–1980 calibration, as an outlier, is very hard to “sample” randomly.
– (2): Are we in a position to advertise a “best” flavor? The flavor 1120 – EOF trun-15

cated predictand, RegEM, TT regression, and no rescaling – with an RE of 25%±7%
shows the highest scores; but other scores (1011, 1101) are well within the uncertainty
bound. – (3): Are 25% RE enough to decide the millennial NHT controversy? This is
the crucial question. 25% RE translates to an amplitude error of

√
(100–RE) ∼85%.

If one were to focus the controversy into the single question: Was there a Medieval20

Warm Period (MWP) and was it possibly warmer than recent decades? – we doubt
that question can be decided based on current reconstructions alone.
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Table 1. The 3×2×4×2 = 48 regression flavors.

GLB COV MDL RSC

0 219 grid points conventional LS no rescaling
1 1 EOF RegEM inverse rescaling
2 global average TT
3 RR
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Fig. 1. The verification scores RE and CE of all 48 flavors. A bar indicates the spread of
all 100 experiments using randomly resampled calibrations, a black dot the experiment with
1902–1980 calibration.
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