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Abstract

The Northern Hemisphere temperature response to volcanic and solar forcing is stud-
ied using first a set of simulations with an intermediate-complexity climate model, driven
by reconstructed forcings. Results are than compared with those obtained from the
seven high-resolution reconstructed temperature records for the last millenium that are
at present available. Focus of the analysis is on the timescale dependence of the re-
sponse. Results between the model and the proxy-based reconstructions are remark-
ably consistent. The response to solar forcing is found to equilibrate at interdecadal
timescales, reaching an equilibrium value for the regression of 0.2-0.3°C per W/m?.
The time interval between volcanic eruptions is typically shorter than the dissipation
timescale of the climate system, so that the response to volcanic forcing never equi-
librates. As a result, the regression on the volcanic forcing is always lower than the
equilibrium value and goes to zero for the longest temporal scales. The trends over the
pre-anthropogenic period are found to be relatively large in all reconstructed temper-
ature records compared to their interdecadal-centennial variability. This is at variance
with a recent claim that reconstructed temperature records underestimate climatic vari-
ations at multi-centennial scales.

1. Introduction

External forcings, like volcanic eruptions or solar irradiance variations, have been
shown to play an important role in generating Northern Hemisphere (NH) temperature
variations during the past millenium (Mann et al., 1998; Crowley, 2000). The response
to volcanic forcing is reliably detected in temperature reconstructions for the past mille-
nium, but the response to solar forcing is claimed to be weakly present in some periods
only (Hegerl et al., 2003). However, it seems likely that the relative importance of each
forcing factor depends on the timescale. Volcanic eruptions result in a strong, but short-
lived reduction of the large-scale radiative forcing, so that this forcing is probably most
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relevant for annual-decadal timescales. The solar irradiance spectrum, on the other
hand, has increasing power at longer timescales. Numerous studies have found evi-
dence of solar forcing at long temporal scales (e.g. Crowley and Kim, 1996). Therefore,
this forcing might be important primarily for temperature variations at multidecadal and
longer timescales.

The present paper examines how the large-scale temperature response depends on
the timescale. This is first done by using a set of model simulations with the ECBIlt
climate model, driven by reconstructed forcing factors. The simulated NH temperature
response is analysed as a function of timescale by computing the regression and corre-
lation with the forcing for a range of low-pass filter periods. The model results are than
compared with results from seven high-resolution temperature reconstructions that go
back at least to 1000 AD. Four of these are based on (partly overlapping) multi-proxy
datasets (J098: Jones et al., 1998; Ma99: Mann et al., 1999; Cr00: Crowley and Low-
ery; 2000; Ma03: Mann and Jones, 2003), while two are based on tree-ring data only
(Br0O: Briffa, 2000; Es02: Esper et al., 2002). One reconstruction combines annual
tree-ring data with low-resolution records to obtain the longer temporal scales (Mo05:
Moberg et al., 2005). All reconstructions are available at the World Data Center for
Paleoclimatology ( ). It will be examined whether these
reconstructions contain a plausible forced signal, given the response characteristics of
the climate system. This can be considered as an evaluation of the quality of these
records, as the proxy data underlying the reconstructed forcings are independent of
the datasets used for the temperature reconstructions. In the present paper focus will
be on the timescale dependence of the solar and volcanic forced signals in both the
model runs and the proxy-based reconstructions.

2. Climate model and experimental design

ECBiIlt is an intermediate-complexity climate model containing a dynamic atmosphere,
a global 3-D ocean model and a thermodynamic sea-ice model. The atmospheric
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component (T21, L3) incorparates simplified representations of the diabatic-heating
processes and the hydrological cycle. There is a land surface parameterisation, based
on a bucket model for soil moisture and a thermodynamic snow model. Cloud cover is
prescribed from seasonal climatology. The atmospheric component is synchronously
coupled to a flat-bottom ocean component with comparable horizontal resolution and
12 vertical levels. More details on the model are given by Weber et al. (2004).

Four 1000-yr experiments were carried out: two use both volcanic and solar forcing,
but start from a different initial state. Two other experiments are driven by either vol-
canic or solar forcing alone. The forcing factors are taken from Crowley (2000). The
solar forcing results in a 0.20% decrease in total solar irradiance (TSI) for the deep-
est part of the Maunder Minimum (at ca. 1690 AD) with respect to the mean value of
1366 W/mZ. In the following the radiative forcing is defined as the prescribed anomalies
in TSI divided by four to account for the Earth’s geometry.

The analysis period is taken to be 1000-1850 AD. This minimizes anthropogenic
effects in the reconstructed temperatures. The model analysis is carried out over the
same period, in order to have identical forcing records and record lengths in the anal-
ysis. Reconstructed temperatures are representative of the Northern Hemisphere or
emphasize temperatures in the extra-tropics. Although some records are calibrated
against annual-mean temperature, all reconstructions rely mainly on proxy data that
reflect warm-season temperatures. For this reason simulated June—July—August (JJA)
data are used in the analysis, taken over latitudes north of 20° N.

3. Climatic signals due to volcanic and solar forcing

The radiative forcing due to reconstructed variations in solar irradiance and volcanic
eruptions is shown in Fig. 1. The solar forcing mainly consists of a low-frequency
signal. The present reconstruction does not resolve annual-decadal timescales, as is
evident from Fig. 1 where low-pass filtered data (for filter periods of 20, 40, 150 and
400 yr) are shown as well. The filter periods are chosen such that low-pass filtering of
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the record results in visually different signals, reflecting decadal (20 yr), interdacadal
(40 yr), centennial (150 yr) and longer timescales (400 yr).

The volcanic forcing consists of a sequence of strong pulses, which occur at irregular
time intervals. In the analysis period 56 eruptions occurred with an amplitude larger
than —0.5W/m?. The largest eruption had an amplitude of —11.8 W/m? (in 1259 AD),
while the next-largest eruptions fall in the range -5 to -7 W/m? (6 cases). The am-
plitude of the volcanic forcing rapidly decreases for longer timescales, with clearly dif-
ferent signals at 20, 40 and 150 low-pass filter periods. The trend component (400-yr
low-pass filtered) is very small.

Figure 1 also shows the simulated NH temperature from one of the volcanic-solar
forced ECBIlt runs. A visual inspection of the record already suggests that the tem-
peratures primarily reflect the volcanic forcing at short timescales. Temperatures show
a pronounced decline in the year of an eruption. The mean anomaly (not shown)
is —0.3°C, taking the composite over all 56 eruptions. Reconstructed temperatures
show a much weaker response to volcanic eruptions (0.05-0.1°C; compare Hegerl et
al.,, 2003). Smoothing the model data with a 10-yr low-pass filter results in a mean
response that is lower by a factor of two. The temperature reconstructions, how-
ever, show a very similar mean response for the smoothed data. This sugggests
that the proxy data do not register the strong response to volcanic eruptions at an-
nual timescales, although most records do show pronounced variability at annual
timescales. This issue will be examined further below when comparing the regres-
sion on the volcanic forcing in the model and as derived from the data. Multi-centennial
temperature variations are simulated in the volcanic-solar and solar forced runs, but
are very weak in the run with volcanic forcing only.

4. The temperature response as a function of timescale: the model experiments

The temperature regression on the solar and volcanic forcing, Ry, and A, is shown
in Fig. 2a for different low-pass filter periods. As the reconstructed solar forcing does
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not resolve annual-decadal timescales, results for R, are only shown for interdecadal
and longer timescales. In all model runs the regression on the solar forcing does
not depend on the filter period in this timescale range, while it is somewhat higher
in the runs which include volcanic forcing than in the run with solar forcing alone. In
the volcanic-solar forced runs the mean NH temperature is lower and the temperature
variations are larger than in the run with solar forcing only. For this reason, R, appears
to be larger. This spurious effect disappears when the regression is computed from the
reduced records, that is, the temperature record minus the response to each volcanic
eruption (the mean response scaled by the amplitude of that eruption).

The solar forcing can be thought of as a superposition of periodic components. The
linear response to such is forcing is again periodic and the temperature regression can
be shown to increase for increasing forcing periods, reaching an equilibrium level for
periods considerably longer than the dissipation timescale of the system (White et al.,
1998). At shorter timescales the response is damped due to the thermal inertia of
the ocean. The dissipation timescale is set by the depth of the oceanic mixed layer
and the efficiency of long-wave radiation to space. It is estimated to be a few years
(White et al., 1998). In the present experiments A, seems to have equilibrated at
interdecadal timescales, consistent with earlier results from a 10000 yr solar-forced
experiment (Weber et al., 2004).

The volcanic-solar forced and volcanic forced runs give consistent results for A, g.
The simulated R,;=0.12°C per W/m? for filter periods of 020 yr, while it continuously
decreases for longer periods. The response to volcanic forcing is seen to remain below
the equilibrium value for all filter periods. After a volcanic eruption temperatures relax
back to normal values within 3-5 yr, while the time between two eruptions is more than
10 yr in 73% of the cases. Therefore, it is reasonable to assume that the response to
each eruption is independent of that to the previous or the next eruption. As a result,
the response never equilibrates but instead goes to zero for centennial timescales. For
later comparison with the reconstructed temperatures, A, is also computed for the
10-yr smoothed temperature records. This reduces the value for the “unfiltered” data
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considerably.

Temperature regressions increase, when the spatial sampling is restricted to more
northern latitudes. There is also a weak dependence on the season, with somewhat
smaller regressions for summer data than for annual-mean (or winter) data. The func-
tional dependence on the filter period does not depend on the geographical coverage
or seasonality.

Correlations show that the volcanic forcing indeed explains most variance at annual-
decadal timescales, while the solar forcing dominates at interdacadal and longer
timescales (Fig. 2b). Correlations between the two forcing factors are low at all
timescales. Therefore, the noise levels are higher and correlations between the tem-
perature and each forcing are lower in the volcanic-solar forced runs than in the runs
with one forcing only. Correlations (and regressions) are computed for a range of lags.
The lag at which the optimum correlation occurs increases for the longer filter periods,
with values of 0-5 yr (volcanic forcing) and 5-10 yr (solar forcing).

The equilibrium temperature regression on the solar forcing of 0.2°C per W/m? is
a factor of two lower than figures given for comparable solar-forced experiments with
more comprehensive GCMs (Weber et al., 2004). The low sensitivity is associated
with the lack of cloud and moisture radiative feedbacks, which are assumed to affect
all timescales in a similar manner. The correlation coefficient (signal-to-noise ratio) in
ECBilt is found to be similar to that in GCMs, as ECBilt also underestimates internal
climatic variability due to its coarse atmospheric resolution.

5. The temperature response as a function of timescale: proxy-based recon-
structions

The regression on the solar forcing is found to be consistent among five of the re-
constructed temperature records. For these records Ry, has very similar values for
low-pass filter periods of 40 and 150 yr, but has a higher value for the 400 yr low-pass
filtered data. The results for four of these records, which also have similar amplitudes,
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are shown in Fig. 3a. The MoO05 record has a similar timescale dependence, but its
regression is higher by a factor of two. Two other records show small negative A, for
all filter periods. No attempt was done to correct the regression on the solar forcing
for the effect of volcanic forcing on the reconstructed temperatures, as there is some
ambiguity in determining the reduced record without a clear response to volcanic erup-
tions at annual timescales. The model results indicate that the timescale dependence
of A is not affected by this, although its amplitude may be somewhat overestimated.

In order to examine the response to the solar forcing in more detail, the regression is
considered separately over several timescale bands. In the timescale range 40—120 yr,
which can be assumed to be reasonably well resolved in a 850-yr record, the regression
is consistent among all seven records. Values (in °C per W/mz) range between 0.17
and 0.34, with an outlier of 0.57 for the Mo05 record, see Table 1. Also in the centennial
range (100-300 yr) regressions are fairly consistent. They diverge most in the multi-
centennial range, which is certainly not well resolved because of the limited record
length. The two tree-ring based records exhibit correlations that are close to zero in
this range. The other records, that all have a positive correlation at multi-centennial
timescales, have a (much) higher regression at these timescales than at the 40-120 yr
timescale range. The ratio between R4y, and R4o_120y, is given in Table 1 as well. It
varies between 1.1 and 2.3.

It is already evident that A, is anomously high at the longest temporal scales by
comparing the linear trend in the reconstructed temperature records with those in the
forcing factors. The linear trends (over the 1000-1850 AD period) in the solar and
volcanic forcing are —0.15 and —0.19 1072 W/m?, respectively. Assuming that Rso has
equilibrated at the interdecadal-centennial range, this implies a temperature decline
of 0.03-0.09°C (per 1000 yr). Assuming that R, is 0.05 at most at multi-centennial
timescales, the volcanic forcing adds a negative trend of 0.01°C to this. This is in all
cases lower than the linear trend in the reconstructed temperature records. Assuming,
on the other hand, that A, only equilibrates at multi-centennial timescales implies

values of 1.1 to 3.8°C per W/m? (dividing the linear trend in the temperatures by that in

144

1, 137-153, 2005

NH temperature
response to solar
and volcanic forcing

S. L. Weber

Print Version

Interactive Discussion

i


http://www.climate-of-the-past.net/cpd.htm
http://www.climate-of-the-past.net/cpd/1/137/cpd-1-137_p.pdf
http://www.climate-of-the-past.net/cpd/1/137/comments.php
http://www.copernicus.org/EGU/EGU.html

10

15

20

25

the solar forcing). This is difficult to reconcile with the values found for the 40-120 yr
range.

The regression on the volcanic forcing is consistent among all seven records, both
in its timescale dependence and its amplitude. The maximum R, occurs for the
20-yr low-pass filtered data, with a continuously decreasing R, for increasing filter
periods. As in the model, temperatures relax back to normal values within 3-5 yr after
an eruption so that the system never equilibrates. Very low regressions are found for
the unfiltered data. Clearly the reconstructed temperatures do not capture the strong
response to volcanic eruptions at annual timescales, which is also evident from the
composite response to all individual eruptions. Taking this into account, the timescale
dependence of R, is very similar in the data and in the model simulations.

It is clear from Fig. 3 and Table 1 that the amplitudes of AR, and A, vary among the
seven different records. This may be related to differences in geographical coverage
and seasonality of the underlying proxy dataset or differences in calibration methods
(Esper et al., 2005). However, the timescale dependence is very similar for all records
in the case of R, .. Tentatively, we conclude that this is also true for A, considering
the interdecadal-centennial timescale range and the trend component separately. As
in the model runs, A, is lower than A, for all timescales.

The correlations for the reconstructed records are shown in Fig. 3b. Basically there
is a similar timescale dependence as in the model, although overall values are lower.
This is not surprising, as the reconstructed forcings are used to drive the model runs.
Consequently, they optimally fit the simulated temperatures. In the case of the proxy
data, both the forcings and the temperatures are only an estimate of the true historical
records (Jones and Mann, 2004). The timescale separation between the influence
of volcanic and solar forcing is more rigorous in the model than in the data. This is
partly due to the lack of a strong volcanic signal at annual timescales in the proxy data.
The lag at which the optimum correlation occurs increases for increasing filter periods.
Lags are somewhat longer in the data than in the model, ranging over 0—20 yr (volcanic
forcing) and 10-20 yr (solar forcing).
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6. Discussion and conclusions

The present analysis shows a remarkable agreement between the timescale depen-
dence of the response of simulated and reconstructed temperature records to the ex-
ternal forcing factors. The regression on the volcanic forcing is maximum at decadal
timescales, while it goes to zero at the longest temporal scales. The response to the
volcanic forcing never equilibrates, as the time interval between two eruptions is typi-
cally larger than the dissipation timescale of the system. This implies that A, is much
lower than R for all timescales. Although there are some ambiguities, the regres-
sion on the solar forcing seems to equilibrate at interdecadal timescales both in the
simulated and in the reconstructed data. The reconstructions have a relatively large
Rso at multi-centennial timescales, which may indicate that equilibrium is only reached
at these timescales. However, this is hard to reconcile with the typical equilibration
timescale of the climate system. Therefore, it is assumed that the system indeed equi-
librates at interdecadal timescales and other factors play a role at the longest temporal
scales.

It is difficult to establish the statistical significance of the present results, as the num-
ber of samples is low. Correlations found in the model are high enough to pass a
significance test, but correlations are lower in the data. However, the similarity be-
tween model-based and data-derived results is a strong indication of their validity. In
addition, the seven temperature reconstructions show a reasonable agreement among
each other. The main ambiguity is in the timescale dependence and amplitude of the
regression on the solar forcing. The best agreement is seen between those recon-
structions that have some overlap between the underlying datasets (Cr00, Ma99, Jo98
and Ma03). A similar timescale dependence, but a larger amplitude of Ry, is found in
Mo05. The high-frequency component of this record is based on long tree-ring series
only. The calibration is done by variance scaling rather than regression on the instru-
mental record. The timescale separation (between the high-frequency and the low-
frequency components) lies at 80 yr (Moberg et al., 2005), a timescale which is well
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below that at which R, is found to rise in the present analysis. Finally, the two other
tree-ring based reconstructions (Br00 and Es02) deviate at multi-centennial timescales,
showing no correlation with the solar forcing. For the interdecadal-centennial range
they give consistent results. The estimated equilibrium regression is 0.2—0.35°C per
W/m?, according to all records that are calibrated by regression methods.

The present analysis indicates that trends over the pre-anthropogenic period are rel-
atively large in all reconstructed temperature records, compared to their interdecadal-
centennial variability. These trends cannot be explained from the volcanic and solar
forcing (Crowley, 2000), as R,.<0.1 and R,,<0.35°C per W/m? at the longest tem-
poral scales. The implied combined trend is —0.05 to —0.1°C (per millenium) over
the pre-anthropogenic period, which is much lower than the trends of —0.1 to —0.3 °C
which are found in the reconstructions (Table 1). Also, the trend of —0.7 °C in Mo05 is
larger than that implied by the combined solar and volcanic forcing. Deforestation prior
to 1850 AD (Bauer et al., 2003) and orbital forcing (Mann et al., 1999) have been put
forward as alternative explanations for these trends.

Orbital forcing arises due to a shift of the longitude of perihelion relative to the moving
Vernal Equinox, corresponding to a shift of ca. 17 days over the past millenium. Its
amplitude varies with latitude and season (Berger, 1978). The regression was found
to be R,,=0.05°C per W/m? in the ECBIlt model, at a lag of ca. 1 month (Weber and
Oerlemans, 2003). This is consistent with a linear response that is far from equilibrium
(R much lower than its equilibrium value), as appropriate for this slow modification of
the seasonal cycle (forcing period of 1 yr). Orbital forcing implies a quasi-linear trend
in the mean temperature over latitudes north of 20°N of 0.2°C (May) to zero (July)
to —0.25°C (September), while values are larger for more northern latitudes. As NH
temperature reconstructions are biased toward the warm season and high northern
latitudes, it is possible that orbital forcing plays a role. The amplitude of the orbital-
forced trend is however difficult to establish, as it would depend on the mixture of
seasonality and latitudinal location of the records in the underlying proxy network.

Recent work has claimed that temperature reconstructions based on regression
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methods underestimate low-frequency variability (Von Storch et al., 2005). The present
results indicate, however, that low-frequency variations in reconstructed records are
higher than expected from the reconstructed forcing factors. A better assessment of
the true shape of the temperature spectrum is needed to resolve this issue, possi-
bly using low-resolution data to assess the longest timescales (Moberg et al., 2005).
The present paper has analysed the forced component of climatic variability, assuming
a linear response model. It is possble that internal feedbacks, which are not repre-
sented in the ECBIlt climate model, strongly modify the response at multi-centennial
timescales. This would imply that the relatively high reconstructed trend component is
realistic, arising from volcanic and solar forcing alone. Alternatively, orbital forcing or
land-use changes may explain this component. Finally, there may be a random coin-
cidence between long-term trends in NH temperatures and the external forcings over
the past millenium.
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Table 1. The regression R of the reconstructed NH temperatures on the solar forcing for the
40-120 yr band-pass filtered data, the 400-yr low-pass filtered data and the ratio between
these two. The bottom line shows for each record the linear trend computed over the pre-
anthropogenic period.

Cr00 Ma99 Jo98 Br00 Es02 Ma03 Mo05

R40-120: (°C per W/m?) 021 033 034 027 017 022 057
Ra00+yr ('C per W/m?) 045 035 051 005 -003 038 1.29
ratio 215 1.06 149 020 -0.18 171 228

linear trend (°C per 1000yr) -0.30 -0.20 -0.33 -0.17 -0.07 -19 -0.71
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Fig. 1. The radiative forcing due to variations in solar intensity (upper panel), volcanic eruptions
(middle panel; both in W/m?) and the simulated anomalies in NH temperature (in °C) from one
of the volcanic-solar forced runs with the ECBIlt climate model for the pre-anthropogenic period
(time in years AD). Also shown are the smoothed records, using low-pass filter periods of 20 yr
(blue), 40 yr (green), 150 yr (red) and 400 yr (yellow; solar forcing only).

151



http://www.climate-of-the-past.net/cpd.htm
http://www.climate-of-the-past.net/cpd/1/137/cpd-1-137_p.pdf
http://www.climate-of-the-past.net/cpd/1/137/comments.php
http://www.copernicus.org/EGU/EGU.html

regression

0.5 oo

0 20 40 150 400

correlation

osd
07f A

061 T

051

o4l =

0 20 40 150 400

Fig. 2. (a) The regression (in °C per W/m?) for different low-pass filter periods (in yr) of the
NH temperatures on the volcanic and solar forcing, indicated by V and S, in the ECBilt exper-
iments driven by solar-volcanic forcing (blue and green lines), solar forcing alone (black line)
and volcanic forcing alone (red line), and (b) same for the correlation. The temperature data
are smoothed with a 10-yr low-pass filter prior to the analysis (dotted lines give results for the
unsmoothed data) for later comparison with the proxy-based estimates.
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Fig. 3. Same as Fig. 2, but now for the reconstructed temperature records of Jo98 (yellow line),
Ma99 (red line), Ma03 (greenblue line) and Cr00 (black line).
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