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Abstract

Numerous studies have dealt with carbon (C) concentrations in Histosols, but there

are no studies quantifying the relative importance of all individual C components in

pore waters. For this study, measurements were made of all the carbon components

(i.e., particulate organic carbon, POC; dissolved organic carbon, DOC; dissolved inor-5

ganic carbon, DIC; dissolved methane, CH4) in the soil pore water of a calcareous fen

under three different water management regimes (re-wetted, deeply and moderately

drained). Pore water was collected weekly or biweekly (April 2004 to April 2006) at

depths between 10 and 150 cm.

The main results obtained were: (1) DIC (94–280 mg C l
−1

) was the main C-10

component. (2) POC and DOC concentrations in the pore water (14–125 mg C l
−1

vs.

41–95 mg C l
−1

) were pari passu. (3) Dissolved CH4 was the smallest C component

(0.005–0.9 mg C l
−1

). Interestingly, about 30% of the POM particles were colonized by

microbes indicating that they are active in the internal C transfer in the soil profile (“C-

Shuttles”). Consequently, it was concluded that POC is at least as important as DOC15

for internal soil C turnover. There is no reason to assume significant biochemical dif-

ferences between POC and DOC as they only differ in size. Therefore, both POC and

DOC fractions are essential components of C budgets of peatlands. Furthermore dis-

solved CO2 in all forms of DIC apparently is an important part of peatland C-balances.

1 Introduction20

The carbon (C) storage in ecosystems and the C balance between the atmosphere

and terrestrial ecosystems is vulnerable to changes in environmental conditions (global

change). Soils hold the largest C pool of terrestrial ecosystems (IPCC, 2007). To

fully understand soil C dynamics and potential feedbacks with the atmosphere, greater

insight into the soil internal C dynamics (turnover and pathways) is needed.25

Space for internal C dynamics is given in the pore system and the medium is pre-
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dominately water. Total carbon (TC) in pore water is composed of dissolved organic

carbon (DOC), dissolved inorganic carbon (DIC=CO2 in all dissociation species), dis-

solved methane (CH4), and particulate organic carbon (POC). Organic matter (OM) in

pore water is differentiated by size: Particulate organic matter (POM), and in parallel

POC, is defined as organic matter in water samples larger than 0.45µm and dissolved5

organic matter (DOM), linked to DOC, is defined as organic matter in water samples

smaller than 0.45µm (Zsolnay, 2003).

Most studies on carbon concentrations in Histosols concentrated on DOM and DIC

(Billett et al., 2004; Worrall et al., 2005; Fiedler et al., 2006) and POM seems to be

the forgotten component. Therefore, the importance of POM is potentially underesti-10

mated but there is no study that allowed an estimation of the relative importance of

the individual C components in the soil pore water of Histosols. Wet ecosystems can

lose a significant fraction of the net carbon uptake via leaching (Neal and Hill, 1994;

Waddington and Roulet, 1997; Pastor et al., 2003; Worrall et al., 2003) but it is un-

known how much C may be lost via leaching of POC. However, studies about POC15

in aquatic systems highlight peatlands as a major POC source to the flanking aquatic

systems (Bouchard, 2007; Dawson et al., 2004; Laudon et al., 2004). It can be as-

sumed that POC is an important component of the pore waters of Histosols, since it

must originate from there, i.e. moving from the peat to the pore water and then to the

stream water. Consequently, the objective of this study was to evaluate the temporal20

and spatial patterns of the individual C components (POC, DOC, DIC and dissolved

CH4) in the pore water profiles of a fen throughout the year along a gradient of water

management to achieve first insights into the relative importance of POM compared to

the other C fractions.
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2 Material and Methods

2.1 Environmental settings

The study site is located in the Donauried fen area near Ulm, Germany (Table 1). The

Donauried area extends over 472 km
2

and includes the largest coherent peatland area

(30 km
2
) in southern Germany. The peatland is fed by productive karst springs (1100–5

8800 l s
−1

) originating from the flanking Swabian Alb (Geyer and Gwinner, 1986). The

mean annual air temperature of the study area is 7.7
◦
C, and the mean annual precipi-

tation is 744 mm.

The historical peat layer, which was approximately 7 m thick, has gradually dimin-

ished due to anthropogenic interventions over the last 200 years, i.e. lowering of the10

groundwater level and direct peat removal. Between 1951 and 1990, the average loss

of peat was 7.2 mm a
−1

, (Flinsbach et al., 1997) which is equivalent to 5.67 t C ha
−1

a
−1

.

In 1966, certain areas within the peatland were protected. Since 1984, an area of

approximately 0.5 km
2

has been flooded by regulating water inflow and outflow (11–

24 l s
−1

). For this study, three anthropogenically affected peatlands (previously used as15

peat cuts) were investigated (Table 1):

1. a deeply drained fen site (48
◦
29

′
7.48

′′
N, 10

◦
11

′
29.03

′′
E) with a mean groundwa-

ter level (GWL) of −99±37 cm,

2. a moderately drained fen site (48
◦
28

′
59.63

′′
N, 10

◦
12

′
19.50

′′
E) with a mean GWL

of −22±16 cm, and20

3. a long-term re-wetted fen site (48
◦
28

′
59.15

′′
N, 10

◦
11

′
51.92

′′
E), rewetted for

∼20 years, with a mean GWL of −5±12 cm (Höll, 2007).

The areas can be differentiated by their predominant plant communities resulting from

the long-term differences in water supply of the peatland. While mainly Thypha spec.,
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Carex spec. and Equisetum spec. were found on the re-wetted fen, the plant com-

munity of the deeply and moderately drained areas were characterised as meadow

species (Lolium perenne L, Poa pratensis and Festuca ovina, Bromus erectus).

2.2 Sampling

Sampling of freely drained pore water was carried out at weekly (DOC, DIC, CH4) and5

biweekly (POC) intervals between April 2004 and April 2006. Samples were collected

at different depths (from 10 to 150 cm, Table 1) at the respective sites using slotted PVC

wells (3 replicates per depth). Whenever the given soil depth was below the ground-

water level, pore water could be collected. The PVC well (10 cm long, outer diameter

of 2.5 cm; Stockmann, Warendorf, Germany) was sealed at both ends and coated with10

filter gauze (32–60 PP, Eijkelkamp, Giesbeek, Netherlands) in order to prevent coarse

particles (>2 mm) from entering. A stainless steel capillary (3×0.5 mm; Hero, Berlin,

Germany) was inserted from the top of the centre of the tube. The end of the capillary

was closed using a three-way stop-cock (Fleischhacker, Schwerte, Germany).

The pore-water samplers were inserted to pre-defined depths using a stab drill.15

The hollow space above the well was filled with a mixture of peat and coarse sand.

In order to determine DIC and dissolved CH4, the samples were introduced through

the three-way stop-cock using evacuated N2- rinsed vacutainer (22.5 ml; Altmann-

Analysentechnik, Holzkirchen, Germany). This technique is specific for the sampling

of freely drained pore water under water-saturated conditions. The carbonates were20

converted to CO2 by the injection of 0.5 ml H2 SO4 (10%) into the vacutainer being

half filled with sample solution. Pore water was subsequently removed with a syringe

(Omnifix, 50 ml; VWR, Bruchsal, Germany) in order to determine TOC and DOC. On

return to the laboratory all samples were shaken and half of these samples were fil-

tered (0.45µm pore size, PET45/25; Macherey-Nagel, Düren, Germany) to determine25

DOC. Samples for DOC and TOC analysis were stored at 4
◦
C and analysed the next

day. POC was calculated as the difference between TOC and DOC. Total carbon (TC)

in the pore water was calculated as sum of POC, DOC, DIC, and CH4.
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Water samples for straining POC particles were taken twice in autumn at the moder-

ately drained fen at 20, 40 and 60 cm depth.

Additionally samples were collected for analysis of size distribution of POM (July,

August and November 2006) at the moderately drained fen and re-wetted fen at depths

between 10 and 60 cm.5

The samples for the δ
13

CDIC were collected in April 2005. The δ
13

C of CO2 in the

unsaturated soil pores was collected in evacuated vacutainers (more details see Höll,

2007). The DIC was converted to CO2 by acidification with 85% H3PO4 and stored un-

der N2. For sampling groundwater and water from the karst aquifer we could kindly use

the deep wells of the local water supply company (Zweckverband Landeswasserver-10

sorgung). The δ
13

CDIC was determined in the same way as δ
13

C of CO2.

2.3 Analyses

CH4 and DIC as CO2 were analysed in the headspace of the vacutainers by gas chro-

matography (CH4: FlD, CO2: ECD and FID with methanizer; PE Autosystem XL Gas

Chromatograph, Perkin Elmer, Wellesky, MA, USA). External standards for CH4 and15

CO2 were used to calibrate the system at 1, 101, 1024 ppm CH4; 293, 14890, 2983 ppm

CO2. The volume-related back calculation (mg l
−1

) was made using the Bunsen solu-

bility coefficient (Clever and Young, 1986, for more details see Fiedler et al., 2006).

Organic carbon of pore water (with and without filtration) was analysed using a DIMA-

TOC 100 (Dimatec, Essen, Germany). All samples were continuously homogenised by20

a magnetic stirrer during the measurement. Two external standards for TOC were used

to calibrate the system.

The size distribution (0.45µm to 2000µm) was measured using a laser diffractome-

ter (Coulter LS200; Fa. Beckmann, Krefeld, Germany). The sum frequency distribution

was made on the assumption that all particles were spherical (Coulter Software, Vers.25

3.01).

The water samples for straining POC particles were filtered using a 2µm nylon mem-

brane (Millipore, Germany). Standard fixation and dehydration procedures (Amann et
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al., 1990) were slightly modified, according to Assmus et al. (1995). Filters were trans-

ferred to a fixation buffer (4% paraformaldehyde in PBS) and fixed for 2 h at 28
◦
C. The

samples were washed and dehydrated in 50, 80, and 96% ethanol (5 min each). Filters

were stained with the DNA-specific dye DAPI (Sigma, Germany). DAPI was stored in a

0.35 mg ml
−1

aqueous stock solution at 4
◦
C. For staining, the stock solution was diluted5

500-fold in distilled water and 20 ml of the working solution was applied to each filter.

After incubation for 10 min at room temperature, the filters were rinsed with distilled

water and air dried. Afterwards the filters were transferred to slides and mounted in

antifading solution (Johnson et al., 1981). Epifluorescence microscopy was performed

with an Axioplan microscope (Zeiss, Germany) supplying an excitation wavelength at10

365 nm.

For isotope measurements, samples were injected in gas tight flasks (volume 1 ml).

The δ
13

C-ratios were determined on a continuous flow isotope ratio mass spectrometer

(IRMS), (DELTAplus XP, Thermo Finnigan, Bremen, Germany) which was equipped

with a GasBench II for automatically analysing dissolved inorganic carbon (DIC) and15

gases at the Max-Planck Institute for Biogeochemistry (Jena, Germany).

2.4 Statistical Analyses

Non-parametric analyses were used since the data were not normally distributed

(Sharpo-Wilks’ W Test) and could not be transformed. The Mann-Whitney (U) Test

was used to detect significant (α=1%) differences between individual sites and depths.20

Analyses were made using Statistica 6.0 (StatSoft Inc., Tulsa, USA).
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3 Results

3.1 Distribution of C components

3.1.1 Spatial pattern

The site specific position of the groundwater level did not affect the concentrations of

total carbon (TC) (around 300 mg C l
−1

) in pore waters.5

The mean POC concentrations ranged from 14 to 125 mg l
−1

(Table 1). No statis-

tically significant trends in sites and depths were found, even though concentrations

tended to be lower with increasing soil depth (moderately drained and re-wetted fen).

The highest concentrations were systematically found at the depth of the site-specific

mean groundwater table (deeply drained −150 cm, 125 mg C l
−1

; moderately drained,10

between −20 and −40 cm, 67–74 mg C l
−1

; re-wetted fen −10 cm, 72 mg C l
−1

). The

POC fraction of TC varied between 15 and 30% (Fig. 1). In the re-wetted and moder-

ately drained peatland, the POC proportion was similar to DOC. In the deeply drained

fen POC tended to be lower than DOC.

Generally, POC concentrations tended to be lower with increasing distance to the15

overlying water table.

DOC concentrations decreased with increasing wetness of the site, i.e., DOC con-

centrations were lowest in the re-wetted fen (around 50 mg C l
−1

). The mean DOC

concentrations in drained areas ranged between 72 and 95 mg C l
−1

and were irregu-

larly distributed in depth.20

At all sites, the most important C component of pore water (up to 280 mg C l
−1

) was

dissolved inorganic carbon. The DIC proportion increased with increasing wetness of

the site i.e., deeply drained (50–60%) < moderately drained (up to 70%) < re-wetted fen

(75% of TC) and increasing depth (Fig. 1). DIC concentrations significantly increased

with soil depth (Table 1), where in some cases DIC concentrations were two-fold higher25

than in the upper horizon (189 vs. 94 mg C l
−1

in moderately drained fen).

Dissolved CH4 had the lowest concentrations of all C components (∼0.1% of TC
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in pore waters). The mean CH4 concentrations ranged from 0.005 to 0.006 mg C l
−1

(deeply drained fen), 0.005 to 0.196 mg C l
−1

(moderately drained fen), and 0.363 to

0.175 mg C l
−1

(re-wetted fen), respectively.

3.1.2 Temporal pattern

Neither the total C concentrations nor the POC, DOC, and DIC concentrations revealed5

a statistically significant dependence on soil temperature, precipitation or groundwater

level. Dependence was particularly expected at the upper soil layers. However, ground-

water tables tended to be low when air temperatures were high. Consequently, the

number of samples and the temporal coverage of the topsoil levels for higher tempera-

tures were significantly lower than for lower temperatures. Additionally, the temperature10

amplitude in greater depths with constant water saturation was dampened.

Beside irregular seasonal dynamics distinct but non-significant trends between the

two years of study were found. In both years, the rainfall was lower than the long-term

mean of 744 mm (580 mm from April 2004 to March 2005, and 685 mm from April 2005

to March 2006). The lower precipitation in the first study period led to considerably15

lower groundwater levels compared to the second year (GWL: re-wetted fen −9, pe-

riod 2004/2005 vs. 0 cm, period 2005/2006); moderately drained fen −29 vs. −19 cm,

deeply drained fen −125 vs. −75 cm). The deeper the drainage, the larger were the

differences in mean groundwater tables between the two years.

Relatively high TC concentrations were measured in both years (300 mg C l
−1

). In the20

re-wetted fen mean POC concentrations were mostly around 50 mg C l
−1

, with the ex-

ception in 10 cm depth where mean concentrations ranged between 75 mg C l
−1

(wetter

period) and 105 mg C l
−1

(drier period). Lower mean POC concentrations in the wetter

period than in the drier period were also found in all depths of the moderately drained

fen (37 to 73 mg C l
−1

, period 2005/2006 vs. 56 to 114 mg C l
−1

, period 2004/2005).25

However, in the deeply drained fen higher POC concentrations were found in the drier

than in the wetter period (except in 150 cm depth).
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The inter-annual variation for DOC concentrations was similar to POC. In the wetter

period, higher DOC concentrations were found in the deeply drained fen (except in

150 cm depth), while lower concentration were observed in the moderately drained (66

to 87 mg C l
−1

, period 2005/2006 vs. 81 to 92 mg C l
−1

, period 2004/2005) and rewetted

fen (37 to 49 mg C l
−1

vs. 52 to 64 mg C l
−1

).5

In the wetter year, the proportion of DIC of TC in the pore water was higher (51–79%)

at all sites and depths than in the drier year (26 to 73%). In the moderately drained fen

this trend was more pronounced than in the rewetted and deeply drained fen.

The δ
13

C values of DIC ranged between −16.7±0.6 and −18.4±0.6, and were

lower than those in the aquatic system (karst spring −14.3±0.1, surface water −11.710

to −13.0±0.8), but higher than those of the CO2 of the gaseous phase in pores

(−23.9±1.3 to −26.6±0.4) (Table 2).

3.2 Characterization of POM

3.2.1 Particle size distribution of the POM fraction

The particle size distribution of POM at the re-wetted fen was rather uniform regardless15

of sampling depth or time (Fig. 2a). In the re-wetted fen, 75–95% of all particles were

smaller than 1µm. The moderately drained fen (Fig. 2b) had larger particles (60–

100%>1µm) than the re-wetted fen. In particular the rewetting of the area after a

longer dry period (see Fig. 2b, 20 cm, August) led to very large particles of >20µm

(100%) in the pore waters.20

3.2.2 Colonization by microbes

Microbes could be detected on about 30% of the POM particles >1µm. A rough calcu-

lation based on the microscopic images revealed different colonization patterns in rela-

tion to the depth of the particles. In tendency more particles from the upper layers were

colonized by microbes compared to deeper layers. In contrast the number of microbes25
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per particle was more related to the size of the particles than to the depth. Smaller

particles were colonized by 5–10 microbes, whereas on larger particles (>10µm) more

microbes could be localized. Most of the microbes localized on the POM particles were

rod shaped and single cells, which formed microcolonies, indicative of bacteria or Ar-

chaea. Typical filamentous fungi were not observed. An example of a colonized POM5

particle is given in Fig. 3.

4 Discussion

4.1 POC and DOC are pari passu

The first simple “take-home-message” of this study is that POC occurs in similar con-

centrations as DOC in the pore waters. Therefore it is potentially important for internal10

C turnover. The mean DOC concentrations of the investigated peat sites exhibit con-

centrations that are in the same range of published data for drained (81 to 129 mg l
−1

;

Moore and Clarkson, 2007) and re-wetted peatlands (70–100 mg C l
−1

; Glatzel et al.,

2003). Therefore, the Donauried study site does not appear to be an exceptional site

and POC values could represent common values. Because of a lack of data from other15

peat pore waters, we can only compare our data with POC data from open aquatic

systems for which DOC/POC ratios from 0.4 to 17 have been reported (Zhang et al.,

1992; Dawson et al., 2004; Raymond et al., 2004; Guo and MacDonald, 2006; Bouillon

et al., 2007). The mean DOC/POC ratios of the present study ranged between 0.4 and

2.8. This appears rather comparable but since samples from open aquatic systems20

are taken at some distance from the peat source it can be expected that POC is more

depleted in rivers than DOC due to the faster sedimentation of larger heavier particles.

Consequently, POC concentrations of aquatic systems reported in the literature were

mainly 10 to 1000 times lower (Richey and Victoria, 1993; Hope et al., 1997; Dawson

et al., 2002) than the POC concentrations determined in the pore water of our peatland25

(40 and 125 mg C l
−1

, Table 1). Comparable high POC concentrations have been found

2060

http://www.biogeosciences-discuss.net
http://www.biogeosciences-discuss.net/5/2049/2008/bgd-5-2049-2008-print.pdf
http://www.biogeosciences-discuss.net/5/2049/2008/bgd-5-2049-2008-discussion.html
http://creativecommons.org/licenses/by/3.0/


BGD

5, 2049–2073, 2008

POC in pore water in

fens

S. Fiedler et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

◭ ◮

◭ ◮

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

only in estuaries (134 mg C l
−1

, Zhang et al., 1992) and in rivers during floods (up to

75 mg C l
−1

, Meybeck and Helmer, 1989).

4.1.1 Definition of POC

For future investigations we suggest a global agreement on defining DOM <0.45µm

and POM >0.45µm (Zsolnay, 2003) which would guarantee a direct comparison of the5

data between DOC studies. Past studies sometimes defined POC as particles >0.7µm

(Hope et al., 1997; Billett et al., 2004; Dawson et al., 2004; Kardjilov et al., 2006) or

>0.8µm (Raymond et al., 2004). The use of 0.7µm filter pore size for this study would

have reduced the results for POC concentrations by 20 to 85%.

Other studies also defined an upper limit for the size of POC, e.g. Chow et al. (2005)10

proposed 1.2µm and Michalzik and Stadler (2005) used 2 mm as an upper limit. Our

study demonstrated that flooding of soil horizons releases large particles and that par-

ticle sizes may vary over a wide range. Therefore, we propose that no upper size limit

of POC is defined since an important mobile C fraction would be missed in the pore

water dynamics of peat. For instance, 10 to 100% of the POC in our study was too15

large to fit in the definition range of Chow et al. (2005).

4.1.2 Origin and biochemical composition of POM and DOM

Both DOM and POM are composed of aggregated colloids, organic filaments, cell

fragments, microbial biomass (e.g., algae and bacteria) (Ranville and Schmiermund,

1998). POM may form from aggregation of DOM (Kerner et al., 2003). Consequently,20

there is no reason to assume that DOM and POM differ substantially in their biochemi-

cal composition. The preferential presence of large particles (>20µm) after re-wetting

and generally higher POC concentrations in the zone of intensive dry / wet cycles sug-

gest that POM of this study mainly originated from mechanical ablation of the peat.

However, high and relatively constant POC concentrations in the permanently water-25

saturated areas suggest further mechanisms for the formation of POM. Microbes may
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play an important role in POM dynamics. Polysaccharide producing microbes can lead

to the formation of particles >2µm. According to Petry (2004), this can lead to a POC

increase of 8–72% in waters. Using a DAPI stain it was possible to detect microbes on

the particles. Interestingly, only one third of the particles was colonized by microbes,

suggesting differences in substrate quality of the POM. However, DAPI staining does5

not differentiate between active, inactive or dead cells. It is therefore still unclear if

the microbes detected on the POM particles were actively metabolizing and function-

ally important for POM turnover. Therefore, the activity status of microbes colonizing

POM particles and consequently the significance of bacteria fungi and Archaea for the

stability of POM has to be investigated in further experiments using molecular tools.10

Nevertheless our results suggest that POM may function as an important internal shut-

tle for C and associated organisms.

4.2 Sources of DIC – the largest component of TC

DIC was the largest C component of the investigated pore waters. The high DIC

concentrations resulted from a surplus of CO2 derived from the feeding karst waters15

(geogenic carbon) and the accumulation of biogenic CO2. The distribution of δ
13

C

values shows the expected distinct variations among the samples. The δ
13

C values

determined for CO2 in the gaseous phase (from −23.0 to −25.1) in the Histosols were

close to the isotopic signature of decomposed C-3 vegetation in soils (−25) (Deines,

1980). Signatures of the different samples of the aquatic systems were comparable to20

those reported from other aquatic systems, including streams (−13.9), springs (−14.2),

groundwater (−13.7), and soil water (−16.3) (Pan et al., 2002; Marfia et al., 2004).

The δ
13

C values for DIC of the pore waters (−16.7 to −18.4) were lower than values

of aquatic system and higher than CO2 of the gaseous phase of pore space (up to

−26.6±0.4). This reveals that the DIC of the pore waters in our site does not exclu-25

sively originate from accumulated CO2 of in situ microbial activity but also from the

karst water feeding the fen. Unfortunately, it is not possible to separate this mixed
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signal into the two sources, since we neither know the production rates of CO2 in the

soils nor could we determine the proportion of the karst water that really reaches the

measurement plots.

The mean DIC concentrations (94–280 mg C l
−1

) of the pore waters investigated

were higher than concentrations found in soil solutions of other studies (30–5

113 mg C l
−1

, Marfia et al., 2004; Sigfusson et al., 2006) or aquatic systems

(<15 mg C l
−1

, Hoffer-French and Hermann, 1989; Huttunen et al., 2002, Billett et al.,

2004; Dawson et al., 2004). In this study, the highest DIC concentrations were ob-

served in the re-wetted fen in the permanently water-saturated horizons. We attribute

a significant share of the DIC to the use of DIC-rich karst water for re-wetting because10

DIC in the re-wetted fen showed the highest δ
13

C values (−16.7±0.6).

4.3 CH4 – the smallest and most dynamic component

Dissolved CH4 exhibited the lowest concentrations of all C components varying around

0.1% of TC in pore waters. Nevertheless, the values represent super-saturation of CH4

of up to 100 000 fold compared to atmospheric equilibrium concentration. Methane15

amounts might not be important for sub-surface C-budgets, but CH4 concentrations are

highly variable in time and space. Fiedler et al. (2005) reported CH4 concentrations in

pore water of hydric soils of up to 1.8 mg C l
−1

. Consequently, CH4 must be considered

for the understanding of C turnover in peat soils. Small CH4 pools in the soil solution

measured synchronously to net CH4 emissions at the soil surface (data not shown)20

also point to fast escape from the production zone to the atmosphere or indicate high

turnover rates.

5 Conclusions

There is a sharp discrepancy in the attention that is brought about to DOC as compared

to POC that was hardly considered. This study exhibited that POC and DOC were at25
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least equally relevant for the carbon composition in the pore water of the studied His-

tosols. Independent of water management the POC fraction reached means of up to

30% of TC while DOC had means of up to 35% of TC in pore waters. Our results fur-

thermore suggest that DOC and POC represent a size continuum of the same organic

matter and need to be studied together to understand their ecological function in the5

ecosystem. From both a quantitative and qualitative point of view, results suggest that

POC is an essential C fraction for internal soil C turnover. However, the POC fraction

is a black box up to now. It is only certain that POM particles were colonized by mi-

crobes and therefore it is highly likely that it is part of the more labile active carbon pool

that is essential for rapid carbon turnover. For this study, it was impossible to derive10

a mechanistic model explaining POM concentration dynamics because neither spa-

tial nor temporal patterns were significantly correlated with environmental parameters

such groundwater level, soil temperature or precipitation. Given the importance of POM

within the C budget of peatlands, more data sets over a longer period than two years

are needed. The ultimate fate of POM in pore waters of Histosols demands greater15

consideration when calculating C budgets, particularly the extent to which POM is ex-

ported to aquatic systems, or undergoes degradation and returns to the atmospheric

C pool.
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Table 1. Descriptive statistics of C components in pore water and characteristics of the His-

tosols of the Donauried study site. The sampling period was 1 April 2004 to 31 March 2006.

Means, standard deviations (SD) and sample numbers (n) of all measured values are shown;

statistically significant differences between sites and depth for each carbon component are

indicated by different letters (p<1%), n.d.=not defined.

Depth [cm] BD H CaCO3 Corg Nt Time with TOC POC DOC DIC

water (DOC+POC) mean±SD (n) mean±SD (n) mean±SD (n)

saturation mean±SD(n)

[g cm
−3

] [g kg
−1

] [%] [mg C l
−1

]

Deeply drained fen (Foli-Calcic Histosol); extensive grassland since about 25 years

−10 0.31 H10 69 407 28 0 n.d. n.d. n.d. n.d.

−20 0.29 H9-10 84 397 26 0 n.d. n.d. n.d. n.d.

−40* 0.22 − 820 189 2.5 5 90±23 (9)
b,d,h

14±14 (9)
A,B

86±34 (17)
A,B

126±76 (21)
h,k

−60 0.18 H6 70 451 25 16 101±39 (26)
c,d,e

30±39 (26)
A,B

81±27 (49)
A,C

152±77 (91)
g,h

−80** 0.39 − 22 86 5.0 33 132±40 (44)
g,h

45±36 (44)
A

95±25 (68)
A

176±71 (74)
e,f

−150*** − − − − − 87 130±74 (61)
d,f,h

125±166 (61)
A

72±30 (97)
A

280±111 (212)
a

Moderately drained fen, (Calcari-Fibric Histosol); extensive sheep pasture, nature protection area since 1992

−10 0.24 H9 62 406 36 29 115±59 (15)
d,c,h

55±63 (15)
A,B

73±30 (41)
A,B

94±46 (78)
k

−20 0.21 H6 49 425 27 52 141±94 (52)
d,h

74±94 (52)
A

79±29 (81)
B,C

152±78 (121)
f,h

−40 0.13 H5 41 465 24 86 138±122 (56)
h

67±121 (56)
A

88±33 (104)
B,C

173±85 (177)
f,g

−60 0.17 H5 29 469 23 97 104±41 (79)
d,f

38±36 (79)
A,B

76 ± 29 (129)
B

189 ± 69 (212)
e

Re-wetted fen, (Calcari-Sapric Histosol); nature protection area since 1972

−10 0.17 H9 57 398 31 91 107±89 (53)
c,b,f

72±87 (53)
A

41±21 (80)
D

193±72 (116)
d,e

−20 0.20 H9 56 414 33 94 90±53 (65)
b,e,g

46±53 (65)
A,B

50±24 (121)
D

222±88 (201)
c,d

−40 0.21 H7 47 407 32 97 81±53 (55)
a,b

46±26 (55)
A,B

52±34 (117)
D

249±79 (188)
a,b

−60 0.16 H7 51 498 27 100 73±51 (57)
a

37±52 (57)
B

55±41 (126)
D

231±66 (208)
b,c

H humification index (according to von Post), *calcareous horizon (Kalkmudde), **silty horizon

(Schluffmudde), ***gravel aquifer
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Table 2. Isotopic ratios of dissolved inorganic carbon and CO2 of gaseous phase (average

above all depth, n=sample numbers).

δ
13

C-ratios [‰]

Deeply drained fen Moderately drained fen Re-wetted fen Hydrosphere

Pore water −17.9±0.7 (n=10) −18.4±0.6 (n=10) −16.7±0.6 (n=10)

Groundwater −11.8±0.2 (n=3)

Karst groundwater −12.4±0.1 (n=3)

Karst spring −14.3±0.1 (n=3)

Drainage ditch −16.7±0.6 (n=10)

River (Nau) close to fens −13.0±0.8 (n=5)

Gaseous phase in pores −26.2±1.2 (n=13) −26.6±0.4 (n=14) −23.9±1.3 (n=14)
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Figure 1
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Fig. 1. Relative contribution of each C-component [%] with regard to the overall annual dis-

solved C content (numbers in brackets are dates of measurements). Statistically significant

differences between C-components are indicated by different letters.
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Fig. 2. Sum curves [cumulative %] of particle size in the POM fraction (>0.45µm) at different

managed peatlands of the Donauried (Germany), (a) re-wetted fen, (b) moderately drained fen

at distinct sampling depths and times.
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10 µm 

Fig. 3. DAPI staining POC particle (>0.45µm) from water sample collected from moderately

drained fen collected in 40 cm below surface. The photo shows a microcolony of about 5–

10 cells on particle.
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