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Abstract

We developed the McGill Wetland Model (MWM) based on the general structure of the
Peatland Carbon Simulator (PCARS) and the Canadian Terrestrial Ecosystem Model.
Three major changes were made to PCARS: 1. the light use e� ciency model of pho-
tosynthesis was replaced with a biogeochemical description of photosynthesis; 2. the5

description of autotrophic respiration was changed to be consistent with the formulation
of photosynthesis; and 3. the cohort, multilayer soil respiration model was changed to a
simple one box peat decomposition model divided into an oxic and anoxic zones by an
e� ective water table, and a one-year residence time litter pool. MWM was then evalu-
ated by comparing its output to the estimates of net ecosystem production (NEP), gross10

primary production (GPP) and ecosystem respiration (ER) from 8 years of continuous
measurements at the Mer Bleue peatland, a raised ombrotrophic bog located in south-
ern Ontario, Canada (index of agreement [dimensionless]: NEP=0.80, GPP=0.97,
ER=0.97; systematic RMSE [g C m� 2 d� 1]: NEP=0.12, GPP=0.07, ER=0.14; unsys-
tematic RMSE [g C m� 2 d� 1]: NEP=0.15, GPP=0.27, ER=0.23). Simulated moss NPP15

approximates what would be expected for a bog peatland, but shrub NPP appears to
be underestimated. Sensitivity analysis revealed that the model output did not change
greatly due to variations in water table because of o� setting responses in production
and respiration, but that even modest temperature increases could lead to converting
the bog from a sink to a source of CO2. General weaknesses and further developments20

of MWM are discussed.

1 Introduction

Over the last decade, the carbon (C) cycle in terrestrial and ocean ecosystems has
been incorporated into a number of global climate simulations showing general agree-
ment of a positive carbon cycle-climate feedback between the terrestrial biosphere and25

oceans and the atmosphere, but with large variations in the magnitude of the resulting
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CO2 increase in the atmosphere (Friedlingstein et al., 2006). It has been generally
acknowledged that while most of the terrestrial models capture the essence of the C
cycle they lack many processes and components that may be critical to a more realistic
assessment (Thornton et al., 2007; Denman et al., 2007). A recent example of a fac-
tor not included in the early coupled terrestrial C climate models that has a very high5

leverage on size of the positive feedback is the inclusion of a nitrogen cycle (Thorn-
ton et al., 2007). Additionally, land-use and land cover change, permafrost dynamics,
and some critical but presently excluded ecosystems such as wetlands are believed to
be important. Northern peatlands, the dominant form of wetland above � 45� N though
they also occur in tropical regions, have not been included. This is in part because they10

represent <4% of the global land surface (Gorham, 1995).
While the present day net primary production (NPP) of northern peatlands may rep-

resent <1% of total terrestrial NPP, the amount of organic C stored in peatlands is very
large relative to any other terrestrial biome or ecosystem � i.e. between � 250 and
450 Pg C, or 10 to 20% (Gorham, 1991; Turunen et al., 2002) of a � 2,300 Pg C total15

(Denman et al., 2007). The maintenance of this store of C is in large part a function
of the moisture conditions of peatlands. If moisture were to change due to climate
change, it is expected that the C uptake or release and methane (CH4) emissions in-
crease or decrease resulting from wetter or dryer conditions respectively (Moore et al.,
1998). A change in stored C by 5% could represent 12 to 25 Pg C. Unfortunately, unlike20

forested and grassland ecosystem biogeochemistry models, there has been little e� ort
in developing models of peatland biogeochemistry that are suitable for use in climate
simulations (e.g. Frolking et al., 2002). In this paper we develop a model, based on the
general Peatland Carbon Model (PCARS: Frolking et al., 2002), but that has the same
general structural and functional components as the Canadian Terrestrial Ecosystem25

Model (CTEM: Arora 2003; Arora and Boer, 2005a, b, 2006), the terrestrial C model de-
veloped for inclusion in the Canadian Centre for Climate and Model Analysis (CCCma)
coupled general circulation model. Eventually a MWM-like model would be incorpo-
rated into CTEM if the general climate models are su� cient to support the hydrological
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needs of wetland simulation in climate change scenarios.
Peat is the remains of partially decomposed plants and it accumulates because the

NPP of a peatland exceeds decomposition, on average. Decomposition in peatlands
is slow because of the persistence of anoxic conditions throughout most of the peat
pro�le due to the saturated conditions inhibiting the di� usion of oxygen; therefore, the5

hydrology of the ecosystem is critical to the cycling of C. In addition, many peatland
plants, particularly the Sphagnum mosses that grow on the ombrotrophic (i.e. rain-fed,
and/or nutrient poor peatlands) are much more resistant to decomposition than the
foliar tissues of vascular plants (Moore and Basiliko, 2006). As litter is added to the
peat pro�le the peatland surface continues to grow in height. As the litter decomposes10

it loses its original structure leading to a dramatic change in the pore size distribution
at the long-term position of the water table. This e� ectively creates two layers of peat:
a deep and thick anoxic zone called the catotelm and a shallow, thin oxic zone called
the acrotelm (Ingram, 1978). To simulate decomposition in peatlands it is essential
that there be an adequate description of the hydrology of these layers of a peatland,15

particularly the day-to-day and seasonal variability in the position of the water table.
In other work we have modi�ed the Canadian Land Surface Scheme (CLASS) for the
inclusion of organic soils and the estimation of the water table for both fen and bog
type peatlands � the two dominant forms of northern peatlands (Letts et al., 2000;
Comer et al., 2000; Ouyang et al, in press). Once the water table is known a model20

needs to be able to capture the di� erences in the rates of decomposition caused by the
di� erences in anaerobic conditions down through the peat pro�le and the progressively
more recalcitrant residual material that dominates at depth.

In addition to the reduction in decomposition in peatlands, a model of peatland C dy-
namics needs to account for the uniqueness in the plants that inhabit peatlands. Peat-25

land vegetation is characterized by sedges, herbs, deciduous and evergreen shrubs,
the latter often represented by ericaceous shrubs, mosses that are usually Sphagnum
in the more nutrient poor acidic peatlands, and conifer trees, if trees are present. Most
terrestrial ecosystem models can adequately represent photosynthesis and respiration
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for sedges using the function for grasses, and deciduous shrubs and conifers, but they
lack the attributes of plant functional types that capture the behaviour of ericaceous
shrubs and mosses. Mosses present a further problem, as they have no roots or vas-
cular system.

The Canadian Terrestrial Ecosystem Model (CTEM) is representative of the general5

structure and function of class of terrestrial ecosystem models used in global couple
climate simulations (Aurora, 2003). CTEM has three live C components: leaves, stem
and roots; and two dead C components: litter and soil. Photosynthesis is based on
the biogeochemical approach (Farquhar et al., 1980; Collatz et al., 1991, 1992) with
coupled photosynthesis-stomatal conductance and a description of moisture stress.10

Autotrophic respiration is the sum of maintenance respiration for the three live compo-
nents and growth respiration. Heterotrophic respiration is the sum of respiration from
a litter pool and a single soil pool, with base respiration rates modi�ed by soil or litter
temperature and moisture. To adapt PCARS closer to the structure and approach of
CTEM we have: 1) replaced the light use e� ciency approach for photosynthesis in15

PCARS with the biogeochemical approach used in CTEM and then developed the pa-
rameters for the biogeochemical model for typical peatland plants: sedges, ericaceous
shrubs, mosses; 2) modi�ed the description of autotrophic respiration to be consistent
with the new formulation for photosynthesis; and 3) converted the cohort, multi-layer
soil respiration model used in PCARS (the Peat Decomposition Model: Frolking et al.,20

2001) to a two-compartment litter and soil respiration model, where the soil (peat) is
partitioned into an oxic and anoxic zone using an e� ective water table.

In this paper we �rst describe the model developments and then evaluate the perfor-
mance of the MWM with the plant functional types for an ombrotrophic bog � the Mer
Bleue peatland of the Fluxnet Canada and Canadian Carbon Project research net-25

works (La�eur et al., 2001, 2003; Roulet et al., 2007). We then examine the sensitivity
of the model to changes in �key� environmental variables such as temperature and wa-
ter table. We conclude with a brief discussion of how the model could be extended to
other peatland types and how the MWM might be adapted for use in regional or global
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analyses.

2 McGill Wetland Model (MWM)

The MWM comprises four C pools: two living matter pools � vascular plants comprising
leaves, sapwood and roots, and moss, as well as two dead matter pools � litter and
peat. C enters the system through photosynthesis of vascular plants and mosses and5

leaves via either autotrophic respiration or heterotrophic respiration. The C allocation
in roots and leaves and the simple growing degree-days approach for the seasonal
phenology of vascular plants follow PCARS: a �xed maximum and minimum threshold,
Bmaxfoliar and Bminfoliar, respectively, bound the foliar biomass of a given vascular plant
and Bmaxfoliardetermines in turn the root biomass. Sapwood volume (Bstem) is a �xed10

parameter throughout the simulations. Moss capitulum biomass (Bmoss) is also �xed
and photosynthesises whenever environmental conditions permit. Once the vascular
plant tissue and moss die they become litter and are decomposed for one year in a
litter pool and then transferred to the peat C pool. At present the MWM has four plant
functional types (PFTs): mosses, sedges, shrubs, and conifer trees. The details of the15

processes that are substantially changed from PCARS to MWM are described below.

2.1 Photosynthesis

MWM computes the photosynthesis for each PFT at an hourly time step based on
the Farquhar biochemical approach (Farquhar et al., 1980; Collatz et al., 1991, 1992).
The computation for the non-vascular8 PFT is slightly di� erent since mosses do not20

possess stomata. For mosses, a semi-empirical model including the e� ects of water
content on photosynthetic capacity (Tenhunen et al., 1976) and on total conductance
to CO2 (Williams and Flanagan, 1998) replaces the stomatal conductance of vascular
PFTs.
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For all PFTs, net photosynthesis (An) is expressed as:

An=Vc

�
1 �

È�

Ci

�
� Rd Vc= min(Wc ; Wj ) (1)

where Vc is the rate of carboxylation of Rubisco, Ci is the intercellular CO2 partial pres-
sure, È� is the CO2 compensation point in the absence of mitochondrial respiration
which is related to � , the Rubisco enzyme speci�city factor and oxygen concentration,5

[O2], through È� =0.5[O2]/� . Rd is the dark respiration and Vc is determined by the
minimum of the rate of carboxylation when limited by Rubisco activity (Wc ) or RuBP re-
generation via electron transport (Wj ). We use the standard formula for Wc (not shown),
where the key parameter in this description is Vmax25 the maximum velocity of Rubisco
carboxylation at 25� C. The rate of electron transport (Wj ) (not shown) is described in10

Farquhar and von Caemmerer (1982). The key variable here is the potential electron
transport rate J (Smith, 1937), which is a function of intercepted photon �ux density
(I) and Jmax the maximum light-saturated rate of electron transport whose temperature
dependency is outlined by Farquhar et al. (1980) and Lloyd et al. (1995). Jmax at 25� C
(Jmax25) is determined from a Jmax : Vcmax ratio (Medlyn et al., 2002).15

2.2 Conductance of vascular plant types

The canopy conductance (gc ) and boundary layer conductance (gb ) are required to
obtain the Ci of vascular PFTs:

Ci =Cs � An

�
1:4
gb

�
1:6
gc

�
(2)

Cs=Ca �
1:4Anp

gb
(3)20

where Cs is the canopy surface CO2 partial pressure, Ca the atmospheric CO2 partial
pressure, p is the atmospheric pressure, and the constants 1.4 and 1.6 consider the
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reduced di� usivity of CO2 compared to water through the leaf surface and the canopy,
respectively. Ci is evaluated through iteration. A land surface scheme would provide
the value of gb in a coupled regional or global simulation; in the stand-alone version
gb is calculated with the Ball-Berry approach (Ball et al., 1987). The Jarvis approach
(Jarvis, 1976) parameterized for peatlands is used to evaluate the canopy resistance5

(rc ), which is inversely proportional to gc .
Soil matric potential (Ñ ) used in the calculations of canopy conductance was eval-

uated individually for the catotelm and the acrotelm using the formulations of Camp-
bell (1974) and Clapp and Hornberger (1978) and the parameters for peat suggested
by Letts et al. (2000). A normalized water-content function, G(� ), parameterized for10

peatland by Letts et al. (2000) modi�es gc to account for the water stress factor:

G(� )=1 � (1 � � )2� (� )= max

"

0; min

 

1;
� l � � lim

� p � � lim

!#

(4)

where � lim is the residual soil-water content, � l is the volumetric soil-water content and
� p is the soil porosity. The function is calculated independently for �bric and hemic
peat and is weighted according to the root-biomass content in each of those layers.15

Shrub and sedge root biomass pro�les from Moore et al. (2002) are used to estimate
the weighting of � in our simulations. Volumetric soil-water content is evaluated at two
depths (d ) corresponding to the centre of �bric and hemic layers:

� l =� p [
W � d
Ñ sat

]
� 1
b (5)

where W is the water table depth, Ñ sat is the soil matric potential at saturation and b is20

the soil texture parameter of the peat layer as suggested by Letts et al. (2000).
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2.3 Total conductance of mosses

For mosses, total conductance to CO2 (gtc ) is used to �nd Ci instead of stomatal
conductance employed for vascular plants:

Ci =Ca �
An

gtc
(6)

Total conductance is determined from a least square regression described by Williams5

and Flanagan (1998) as:

gtc =� 0:195+0:134Ê f � 0:0256Ê2
f +0:00228Ê3

f � 0:0000984Ê4
f +0:00000168Ê5

f (7)

where Ê f is the moss water content in units of g fresh moss/g dry moss (=Ê m+1).
This relationship is only valid up to the maximum holding capacity of mosses (Êmaxcap).
Soil-water content and the capitulum interception of atmospheric water determine the10

water content of mosses. A function derived from the results of an experiment done by
Hayward and Clymo (1982) with Sphagnum capillifolium determines the moss water
content from capillary rise (Ê cr ) in g water/g dry moss:

Ê cr = max
�
Êmin cap; min(Êmax cap; 22 exp [� 6:5W])

�
(8)

where Êmincap is the minimum interception capacity for mosses. The water content in15

the capitulum of mosses (Ê ca ) is added to the total moss water content (Êm):

Êm=Ê ca + Ê cr (9)

In turn, the intercepted water pool is a� ected by a loss rate, kd , due to evapotranspi-
ration (Frolking et al., 1996):

Ê ca (t + 1)= min
�

Êmax cap; Ê ca (t ) +
� waterhppt

Bmoss

�
during a rain event (10)20

Ê ca (t + 1)=Ê ca (t ) exp
�
� kd td

�
otherwise; (11)
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where t refers here to the hourly time steps, � water is an approximation of the rain water
density, hppt is precipitation in mm h� 1, td is the sum of the number of one-hour time
steps with no precipitation. This sum is reset to zero as soon as a precipitation event
occurs. If MWM were coupled to a surface climate model, Eqs. (9) and (10) would not
be necessary since they would be derived directly from the latent heat �ux.5

2.4 Autotrophic respiration

The temperature dependency of the autotrophic respiration (AR) of mosses follows
a Q10 type relationship and is further modi�ed by the function fÊ to account for the
moss water content e� ect on respiration (Fig. 2e, f; Frolking et al., 1996). A Q10 of 2.0
(Frolking et al., 2002; Arora, 2003) along with the base rate respiration at 25� C, Rd 25,10

are used to calculate total dark respiration at temperature T (in � C):

R=R25fÊ Q
(T� 25)=10
10 (12)

The autotrophic respiration of other PFTs also follows a Q10 relationship for tempera-
ture sensitivity and is a combination of maintenance respiration of the leaves, stems,
roots, and growth respiration similarly to CTEM (Arora, 2003). It is closely linked to the15

allocation of C in the plant.

2.5 Decomposition

Heterotrophic respiration (HR) in the C stored in peat is partitioned between oxic and
anoxic respiration according to the position of an e� ective water table. It is assumed
that the mass of peat above the e� ective water table decomposes under oxic rates20

through aerobic pathways, while peat below the water table decomposes at anoxic
rates through anaerobic pathways. The e� ective water table depth, We� , represents
the position of the water table that is derived from the actual water table depth by
adding the water distributed in the oxic layer expressed as depth and subtracting the
air volume trapped in the anoxic layer. An hourly moisture pro�le is used to estimate25
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the amount of water in the oxic compartment. Each compartment is characterized by
either oxic or anoxic conditions with corresponding rates of respirations equal to:

Roxic=ke� ;oft Co (13)

Ranoxic=ke� ;aft Can (14)

where ke� ;o and ke� ;a are termed the e� ective hourly mass loss rates in oxic and anoxic5

conditions, respectively, Co and Can are the carbon contents in the oxic and anoxic
compartment, respectively. The temperature dependency of decomposition, ft , is simi-
lar to that used in PCARS (Frolking et al., 2002) with the addition of a minimum temper-
ature for decomposition (Clein and Schimel, 1995). We use the peat bulk density pro�le
based on Fig. 1c in Frolking et al. (2001) to �nd the carbon content, which is also frac-10

tioned in the oxic and anoxic compartments accordingly with the e� ective water table
depth:

Co= frac �
h
4056:6W2

e� + 72067:0We�

i
(15)

Can= frac �
h
4056:6PD2 + 72067:0PD

i
� Co (16)

where PD is the total peat depth and frac is the biomass to carbon ratio. Peat depth15

requires initialization (PD0) and is site speci�c. Fresh litter is decomposed in a separate
compartment for a year using Eq. (12), with ke� replaced with an initial decomposition
rate (k0) for moss and for all other litter and Co is replaced with the mass of moss
and all vascular plant litter, respectively. Total C content, or equivalent peat depth,
is obtained by adding Eqs. (13) and (14), by subtracting from it the loss in C due to20

decomposition and adding to it the remaining litter from the plants after its initial year
of decomposition, and �nally by solving the quadratic for PD. Fresh litter C content is
therefore not included to the peat C pool in its �rst year.

The Peat Decomposition Model (PDM) developed by Frolking et al. (2001) is used
to obtain a �representative� vertical pro�le of mass loss rates for bogs and fens. The25
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pro�les are built using the long-term �xed water table depths of Frolking et al. (2001) for
a representative bog and fen, but the e� ect of anaerobic conditions on decomposition
is kept as in PDM: a modi�er equal to 0.1 for fens or 0.025 for bogs is used for anoxic
conditions. During the initialization of the peat pro�le the peat temperature pro�le is
also assumed constant. For MWM ke� ;o and ke� ;a are then obtained by integrating the5

area under the exponential mass loss curves of the pro�le in the oxic and anoxic layer,
respectively (e.g. see Figure Frolking et al., 2001).

3 Site and data sets

The �uxes of CO2 in the MWM, such as photosynthesis and respiration, are func-
tions of environmental drivers. These drivers can either be input to the model from10

measurements from a speci�c site or can be obtained from a land surface model
or general climate model, if MWM is being run in a coupled mode. The model re-
quires hourly weather data: air and soil temperatures, water table depth, photosyn-
thetic photon �ux density, precipitation (rain and snow), wind speed, atmospheric pres-
sure, atmospheric CO2 concentration, relative humidity and net radiation. A com-15

plementary data set containing model parameters based on studies reported in the
literature serves for all sites within a range of general northern peatlands types (Ta-
ble 1). For the purposes of the present study we run the MWM using 8 years of
environmental measurements (1 January 1999 to 31 December 2006) from the Mer
Bleue peatland, a 28 km2 raised ombrotrophic bog near Ottawa, Canada (45� 250N,20

75� 400W). We use the calendar year for our simulations. The climate of the re-
gion where Mer Bleue is located is cool-temperate with a mean annual tempera-
ture of 6.0� C and a mean annual precipitation of 944mm for the period 1970�2000
(www.climate.weathero� ce.ec.gc.ca/climate normals/index e.html). Hourly weather
data is taken from the MB �ux tower data set (http://�uxnet.ccrp.ec.gc.ca/e about.htm).25

The bog is covered by mosses (Sphagnum capillifolium, Sphagnum magellanicum),
evergreen shrubs (Chamaedaphne calyculata, Kalmia angustifolia, and Ledum groen-
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landicum), and some deciduous shrubs (Vaccinium myrtilloides), scattered sedges
(e.g. Eriophorum vaginatum), patches of black spruce (Picea mariana) and larch (Larix
laricina) in the central part (Roulet et al., 2007). The peat depth is approximately 5 m.
Total aboveground biomass for vascular species measured in 1999 and 2004 averaged
356� 100 g m� 2 (Moore et al., 2002) and 433 g m� 2 (Bubier et al., 2006). Belowground5

biomass in 1999 was 1820� 660 g m� 2 (Moore et al., 2002). Sphagnum capitulum
biomass in 1999 was 144� 30 g m� 2 (Moore et al., 2002) and 158 g m� 2 in 2004 (Bu-
bier et al., 2006).

4 Results and discussion

We �rst assess how well MWM performed in capturing the annual and seasonal pat-10

terns and magnitude of C exchanges using the 8 years of continuous measurements
from the Mer Bleue peatland. We examine the patterns of gross primary production
(GPP), ecosystem respiration (ER), and net ecosystem exchange (NEE) and then ex-
amine the sensitivity of the MWM output to changes in the key environmental variables
of moisture and temperature. Details on the measurement of NEE and how GPP and15

ER were derived from the NEE observations as well as the errors and uncertainties in
the observations can be found in La�eur et al. (2001, 2003) and Roulet et al. (2007). In
the analysis presented below it should be noted that the uncertainty can be fairly large
on GPP and ER derived from gap-�lled NEE records for short time scales (hourly,
daily) but the uncertainty gets much smaller for long time scales (annual) (Hagen et al.,20

2006).

4.1 Annual patterns of simulated and measured exchange �uxes

We summed the daily gap-�lled NEE from Mer Bleue to generate an annual net ecosys-
tem productivity (NEP), disregarding the loss of C via methane (CH4) emissions and
net dissolved organic carbon (DOC) export, which are not yet simulated by MWM. Here25
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we use the terminology for NEP as proposed by (Chapin et al., 2006): NEP is the di� er-
ence between GPP and ER and equals � NEE. From the output of MWM we estimated
net primary production (NPP) of the mosses and shrubs as the di� erence between
their GPP and AR respectively. We can compare this simulated NPP with the annual
estimates of NPP for Mer Bleue of Moore et al. (2002) and the range of NPP found in5

the literature for open bogs. Finally, MWM produces an output of total HR based on
the sum of oxic decomposition of the �rst year litter and the peat located above the
e� ective water table and anoxic decomposition from below the e� ective water table. At
present we cannot do a complete analysis of net ecosystem C balance, NECB (Chapin
et al., 2006), because we have not yet incorporated modules that partition the decom-10

position products into CO2 and CH4 �uxes, and net DOC export: currently, ER all goes
to CO2. This means MWM annual ER should exceed, on average, the eddy covariance
measurements of ER by � 15 g C m� 2 yr� 1 based on the six year estimates of NECB
(Roulet et al., 2007).

In general, the MWM simulates the magnitudes and interannual trend in annual NEP15

(Table 2). The maximum NEP underestimate was 59 g C m� 2 yr� 1 in 1999 and the
maximum overestimate was 46 g C m� 2 yr� 1 in 2000. The average absolute di� erence
between simulated and measured NEP is 39 g C m� 2 yr� 1. NEP is underestimated for
two of the eight years (1999, 2006) and overestimated in the other years. GPP under-
estimation and overestimation followed the same pattern as NEP. The mean di� erence20

between observed and simulated NEP for 8 years of simulation is only 11 g C m� 2 yr� 1,
or <20%.

There are no direct measurements to evaluate how well MWM does in estimating the
fractional components that make up total comprise GPP and ER, but the proportions
approximate what is generally expected (Table 2). The fraction of moss and shrub GPP25

ranges between 0.33 and 0.39 (mean 0.36� 0.02) and 0.61 and 0.67 (mean 0.64� 0.02)
of the total. AR represents over 90% of ER, with shrub respiration and moss respiration
comprising on average 64� 1% and 27� 2% respectively. Oxic zone decomposition
contributes to 96% of HR, consistent with the relative proportions of oxic and anoxic
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sources of CO2 and CH4 in the peat column from Blodau et al. (2006).
NPP, which is the di� erence between GPP and AR, displays a di� erent pattern than

the gross �uxes (Table 2). In the MWM simulation moss NPP represents a mean of 62%
of total NPP (minimum and maximum of 49% and 89%), while shrubs NPP averages
38% (minimum and maximum of 11% and 51%). So while the contribution of moss and5

shrub to GPP and ER varies only slightly over the eight years (standard deviation of
0.02 and 0.01 g C m� 2 yr� 1) NPP shows a much greater interannual variability (0.16 g
C m� 2 yr� 1). This is due to the way MWM handles growth and maintenance respiration.
In the case of moss, each year the GPP goes entirely to growing new moss, which is
then assumed to die at the end of the growing season; whereas shrub has a biomass10

that requires signi�cant maintenance respiration and hence a smaller fraction of GPP
being translated into new biomass. MWM produces lower values of shrub NPP than
expected. Measurement of the annual change in biomass in peatland shrub and moss
is di� cult, but the expected ranges based on a synthesis of peatland NPP studies
(Moore et al., 2002) are 21�169 g C m� 2 yr� 1 for shrub above-ground NPP and 8�15

190 g C m� 2 yr� 1 for moss NPP, and 79�377 g C m� 2 yr� 1 for total NPP (assuming
biomass is 50% C). For Mer Bleue, Moore et al., (2002) estimated above ground shrub
and moss NPP in 1999 to be 80 and 85 g C m� 2 yr� 1, respectively, while the MWM for
the same year simulated 9 and 47 g C m� 2 yr� 1, respectively. For the eight simulated
years, the average of simulated above ground shrub and moss NPP were 95 g biomass20

m� 2 yr� 1and 157 g biomass m� 2 yr� 1, respectively. We believe this underestimation
of shrub NPP occurs, in part, because of the range in which shrub foliar biomass is
allowed to vary. We use the minimum and maximum values from PCARS (Frolking et
al., 2002), but the range could easily be greater with the water table variability observed
over the 8-year evaluation period. There is, however, a dearth of empirical observations25

of the fractional components of total NPP in peatlands, and as far as we know, no one
to our knowledge has reported on year-to-year variations in peatland biomass, be it
aboveground or simply foliar.
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4.2 Seasonal and interannual variability of simulated and measured exchange �uxes

Simulated GPP follows a strong annual cycle with maximum daily �uxes ranging from
5.0 g C m� 2d� 1 to 6.0 g C m� 2 d� 1 during the peak growing season to zero during
the coldest months (Fig. 1). Statistical analysis reveals an index of agreement of 0.97
between the simulated and the tower �uxes with a systematic root mean square error5

(RMSEs) and an unsystematic root mean square error (RMSEu) of 0.07 g C m� 2 d� 1

and 0.27 g C m� 2 d� 1, respectively. The low systematic error is somewhat misleading
as the trend of measured versus modelled values is non linear. There is a slight over-
estimate of simulated daily GPP for �uxes between 0 and � 4 to 4.5 g C m� 2 d� 1 and
an underestimation of observed larger �uxes (>6 g C m� 2 d� 1) by 3 to 4.5 g C m� 2 d� 1

10

(Fig. 2). This weakness in capturing the full range of observed variability, especially
the highest hourly �uxes, is not signi�cant on an annual time scale. The tendency for
MWM to underestimate the largest GPP is partly explained by the maximum threshold
de�ned in the model for foliar biomass. However, the maximum foliar biomass should
have a seasonal, not an hourly impact. The model is built from relationships that �t15

curve to data, hence the tendency to be weak at capturing the full range of observed
variability.

The average growing season water table depths and temperatures were ranked for
the 8 years of simulation to observe if there was any correlation with the average �uxes
(Table 3). The standard deviation for the average temperatures is 0.79� C and that for20

average water table depth is 0.06 m. According to the sensitivity analysis described
below only the variation in temperatures signi�cantly a� ects the �uxes. In general,
GPP is greater in warmer years. However, there are exceptions to this trend. 2004 has
the highest simulated GPP even though it corresponds to a relatively cold year and the
lowest GPP is found in 1999, which has the warmest growing season.25

Examining the inter-annual variability of cumulative GPP (Fig. Y-2a) reveals the con-
sequences of limiting the range in which vascular plant foliar biomass can exist. The
growing season of 2002 was extremely dry. At Mer Bleue we made casual observa-
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tions that indicated there was increased leaf litter fall of the evergreen shrubs. However,
MWM does not allow the foliar biomass to go below a prescribed minimum value. The
following year (2003) MWM grossly over-estimated GPP. Such a result would occur if
the MWM carried over too much foliar biomass from the previous year. This would
increase shrub photosynthesis by having more than expected leaf area to capture light5

and conversely increase moss photosynthesis due to a lack of shading by the shrubs.
However, shrubs account for more than 65% of overall photosynthesis. Such �ndings
underscore the importance of drought stress on the vascular plants, which was not
something we initially considered an issue. Yet, it appears that a year-to-year memory
is needed to ensure a better description of the antecedent conditions for production in10

subsequent years.
ER shows a strong annual cycle with maximum daily �uxes ranging between �4.2 g

C m� 2 d� 1and �5.2 g C m� 2 d� 1 during the growing season and �uxes of approximately
�0.25 g C m� 2 d� 1 during the cold season. Simulated respiration has an agreement of
0.97 with the tower �ux and a RMSEs and RMSEu of 0.14 g C m� 2 d� 1 and 0.23 g C15

m� 2 d� 1, respectively. Simulated respiration is biased towards carbon loss compared
to tower measurements, especially during the growing season (Fig. 3). There is a
slight over-estimate of simulated ER for �uxes up to � �4 to �4.5 g C m� 2 d� 1, but for
a small number of observed larger �uxes (i.e. <�6 g C m� 2 d� 1) MWM underestimates
them by 1 to 3 g C m� 2 d� 1 (Fig. 2). While this underestimation of the �ux cannot20

be directly attributed to a speci�c modelling approach in the MWM, it may suggest the
need for a stronger or di� erent temperature dependency (e.g., a Q10>2.0). The highest
annual �uxes are found in 1999 and 2001 and the lowest annual �uxes are in 2000 and
2004. As expected, warmer years tend to have larger ER �uxes. No correlation exists
between the rankings of ER and GPP �uxes. This re�ects the fact that even though25

both �uxes are sensitive to the temperature in a similar manner, other environmental
conditions also signi�cantly a� ect the annual �uxes.

Simulated daily NEP shows a strong annual cycle with maximum daily uptakes rang-
ing between 1.5 g C m� 2 d� 1 and 2.5 g C m� 2 d� 1 during the growing season and

1706

http://www.biogeosciences-discuss.net
http://www.biogeosciences-discuss.net/5/1689/2008/bgd-5-1689-2008-print.pdf
http://www.biogeosciences-discuss.net/5/1689/2008/bgd-5-1689-2008-discussion.html
http://creativecommons.org/licenses/by/3.0/


BGD
5, 1689�1725, 2008

McGill Wetland
Model: peatland
carbon simulator

N. Roulet et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

maximum ecosystem loss of around �0.25 g C m� 2 d� 1 during the cold season and ap-
proximately �1.0 g C m� 2 d� 1 during the growing season (Fig. 4). RMSEs was 0.12 g C
m� 2 d� 1, the RMSEu was 0.15 g C m� 2 d� 1 and the index of agreement 0.80 (Fig. 5).
The NEP of 2004 and 2005 has the highest magnitudes while the lowest NEP occurs
in 1999 and 2002. Larger NEP generally occurs in the warmer years. Daily NEP is5

not simulated but derived from the subtraction of ER from GPP. Therefore NEP has a
tendency to underestimate the highest �uxes in a similar way to GPP. NEP also accu-
mulates the errors propagated from both GPP and ER �uxes, generating a RMSE that
represents a relative error twice as large as that for GPP and ER.

4.3 Sensitivity analysis10

Sensitivity analyses were performed to assess the change in C �uxes with variations
in the two main environmental parameters: water table depth and moisture supply
through precipitation; and temperature, including air, surface and peat temperatures.
This analysis serves two purposes. First, it gives an indication of what the key sensi-
tivities are in the MWM and second, it provides some initial insights into the potential15

sensitivity of C cycling in northern peatlands to changes in climate. In the future we
plan to use MWM coupled to a surface climate model to simulate the potential a� ects
of climate change using the output of general climate simulations as input to the cou-
pled wetland model. Finally, it should be repeated that in this sensitivity analysis the
structure of the ecosystem does not change due to competition among plant functional20

types even though the range of physical conditions imposed in the sensitivity analysis
is, in some cases, well outside the range that would be considered climatic and hydro-
logic ‘niches’ of the peatland plant functional plant types. The sensitivity analyses are
done for the 8 years and averaged for that period (Table 4).

To fully cover the potential climatic changes, we imposed variations from the actual25

water table depth of �10 cm (wetter) to +30 cm (drier) in increments of 5 cm. A nega-
tive increment or a decrease in water table depth refers to a water table closer to the
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peat surface. The e� ects of the water table depth variations in moss C cycling occur
through changes of moss water content, which is in turn used to calculate gtc and
f� . The changes in the shrub C cycling occur through variation in soil water content,
which a� ects the stomatal conductance. Our analysis shows that a modest decrease
(increase) in water table depth results in slight decreases (increases) of both GPP and5

autotrophic respiration. The sensitivity of autotrophic respiration for mosses is greater
than that of GPP and therefore NPP increases (decreases) with a shallower (deeper)
water table. The situation is reversed for shrubs. Consequently, the model favours
shrub growth in a drier wetland and moss growth in a more humid one. A greater
sensitivity for shrubs than for mosses to water table depth seems to indicate that moss10

PFT would be more stable than shrub PFT to changes in water table depth and thereby
to changes in the water balance of the ecosystem. HR is far more sensitive than the
live plant derived �uxes to water table variations. Since the e� ective water table depth
determines the partitioning between the much faster oxic decomposition rates and the
slower anoxic decompositions rates, the total HR (oxic plus anoxic) increases when the15

water table moves deeper into the peat and decreases as the water table rises toward
the peat surface. Even though the sensitivity of HR is much greater than other sen-
sitivities, the magnitude of the �uxes derived from decomposition are relatively small,
therefore the sensitivity of NEP to variations in HR is also small. The magnitude of
moss NPP is much larger than other �uxes and it dictates the direction of change of20

NEP regardless of its low sensitivity to water table changes. In none of the simulated
cases was the bog a net source of C to the atmosphere. La�eur et al. (2005) explained
the lack of an apparent relationship between water table and the observed changes in
ecosystem respiration at Mer Bleue by the o� set of both positive and negative factors
on production and heterotrophic respiration with changes in water table.25

For the temperature sensitivity analyses, we varied the mean from �2� C to +5� C in
1� C increments. The analyses show that an increase (decrease) in temperature re-
sults in decrease (increase) in moss GPP and an increase (decrease) in moss AR.
Autotrophic respiration is more sensitive to temperature change than GPP and there-
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fore an increase (decrease) in temperature leads to a decrease (increase) in moss
NPP. An increase (decrease) in temperature corresponds to an increase (decrease)
in shrub NPP. The HR �ux is equally responsive to temperature change: as tempera-
ture increases (decreases) the respiration increases (decreases). The changes in the
�uxes with temperature are quite signi�cant as temperature imposes an exponential5

impact upon C cycling. The Q10 relationship used to determine the temperature sensi-
tivity of AR and HR has a higher coe� cient than the Arrhenius relationship describing
that of GPP; therefore, the net e� ect is that NEP decreases (increases) as temperature
increases (decreases). These analyses show that according to MWM ombrotrophic
bogs could turn into net emitter of C to the atmosphere with a persistent rise in tem-10

perature of � 5� C.

5 Conclusions and Prospects for MWM

MWM captures the primary C cycling processes in northern peatlands and simulates
the C exchanges between peatlands and atmosphere within the acceptable errors,
when compared to tower measurements from the Mer Bleue ombrotrophic bog. Other15

major peatlands types include rich and poor fens, and both bogs and fens that support
forest covers. MWM needs to be developed further and then evaluated for these other
peatland types before it can be applied for the regional to global assessment of the
interactions between climate and general peatland carbon dynamics.

Our evaluation and sensitivity analysis identi�es some areas for MWM improvement20

to compare year-to-year dynamics. The most critical problem we discovered lies in the
way evergreen shrub foliar biomass is treated. It was not anticipated that a formula-
tion for excess leaf loss due to drought stress would be needed. However, extended
periods (e.g., >30 days) with no precipitation during the growing seasons of both 2001
and 2002 resulted in extremely dry conditions at the surface of the peatland (Roulet25

et al., 2007) and leaf drop from some shrubs towards the end of the summer of 2002.
MWM limits the amount of foliar biomass within a speci�c range and currently has no
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capacity to shed an extra amount of litter due to extended extremely dry periods. In
other words, MWM lacks a function analogous to the drought stress function contained
in many forest ecosystem models. Such a function would have resulted in a smaller
amount of evergreen foliar biomass in the spring of 2003 and this would have reduced
2003 growing season production. Currently MWM has no interannual biomass mem-5

ory. Unfortunately, our search of the literature reveals no studies reporting interannual
variations in peatland vascular plant biomass. We also suspect that the moisture con-
tent of the moss does not become dry enough in years that experience drought. The
supply of water to the moss is crudely modelled in MWM’s present form. Once the wa-
ter table drops below a certain depth � e.g. 20 to 30 cm, there is no signi�cant capillary10

raise of water to the moss (Hayward and Clymo 1982). Once this occurs the moss is
kept moist only by atmospheric inputs and when there are extended periods with no
rain we have observed the moss becomes very desiccated. However, we currently do
not simulate this desiccation well in MWM but we believe when MWM is coupled to the
surface climate model we will be able to simulate plant and moss water losses much15

better.
The MWM also needs further development to simulate the outputs of C as CH4 and

DOC. PCARS (Frolking et al., 2002) has a crude formulation for the emission of CH4
but it has not been widely tested. MWM does estimate anaerobic decomposition so
the challenge is �rst estimating how much CH4 is produced per mass of anaerobic20

decomposition and then emitting some of the produced CH4 after oxidation along each
of the transport pathways of di� usion, bubble �ux and/or plant mediated transport.
Roulet et al. (2007) and others studies conclude that DOC is a signi�cant loss of carbon
from peatlands. Some of the aerobic and anaerobic decomposition estimated in MWM
has to support this net production of DOC and the simulation of this loss presents a25

number of challenges. First, MWM will have to be coupled to a hydrological model
that gives reasonable estimates of the loss of water through runo� , and secondly the
partitioning of gross decomposition among CO2, CH4 and net DOC export will have to
be formulated to maintain continuity between the changes in C stores and �uxes. We
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are unaware of any studies that provide the process basis for the partitioning among
the three C outputs for northern peatlands. There have been many studies of net DOC
export, but none have related the export to gross DOC production or fraction of overall
decomposition.

Water table depth is a key variable for peatland C cycling because it in�uences the5

spatial distribution of soil water content and subdivides the peat pro�le into oxic and
anoxic compartments. In this stand-alone version of MWM, where there is no comple-
mentary calculations of water balance and energy balances, water table depth and soil
climate are the direct inputs from �eld measurements. In order to investigate the re-
sponse of northern peatlands to projected climate change, both water table depth and10

soil climate need to be simulated under the projected climate conditions. Therefore,
our future plans are to couple the MWM to wetland-CLASS (Canadian Land Surface
Scheme) to simulate the water table depth and soil climate. In addition, the empirical
functions in this stand-alone version of MWM to simulate the moss water content will
be replaced by more realistic evapotranspiration functions transferred from wetland-15

CLASS. After validating the coupled MWM-CLASS model against �eld measurements,
MWM-CLASS will be ready to answer ‘what-if’ questions and investigate how C cycling
in northern peatlands may change due to projected climate change based on the IPCC
emission scenarios.
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Table 1. Parameters and initial values use in the MWM simulations.

Parameter Value Units Description Reference/Source

Values for Model Parameters at 25� C
Jmax:Vmax 1.67 � ratio Medlyn et al., 2002
mosses
Vcmax25 6 umol m� 2s� 1 max carboxylation rate (spring) Williams and Flanagan, 1998

14 umol m� 2s� 1 max carboxylation rate (summer) idem
7 umol m� 2s� 1 max carboxylation rate (autumn) idem

Rd 25 0.946 umol m� 2s� 1 dark respiration rate Harley et al., 1989
shrubs
Vcmax25 17 umol m� 2s� 1 max carboxylation rate N.T. Roulet unpublished
Site speci�c
frac 48.7 % biomass to carbon ratio T.R. Moore unpublished
Bmoss 144 g dry biomass m� 2 moss capitula biomass Moore et al., 2002
Bminfoliar 175 g dry biomass m� 2 min shrub foliar biomass idem
Bmaxfoliar 600 g dry biomass m� 2 max shrub foliar biomass idem
Bstem 0.003 m3m� 2 shrub sapwood volume idem
PD0 4 m initial peat depth Roulet, 2007
Others
� lim 0.04/0.15 � residual soil-water content in �bric/hemic peat Letts et al., 2000
� p 0.93/0.88 � soil porosity in �bric/hemic peat idem
 sat 0.0103/0.0102 m soil matric potential at saturation in �bric/hemic peat idem
b 2.7/4.0 � soil texture parameter in �bric/hemic peat idem
Êmaxcap 15 g H2O g dry biomass� 1 maximum holding capacity of moss Silvola, 1990
Êmincap 5 g H2O g dry biomass� 1 minimum interception capacity of moss Price et al., 1997
kd 1 % water loss rate in capitulum Frolking et al., 1996
ko 0.05/0.2 y� 1 intial decomposition rate for moss/shrub T.R. Moore unpublished
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Table 2. Observed (Obs.), simulated (Sim.), and the di� erence between observed and simu-
lated (É) annual NEP, GPP and ER for 8 years for the Mer Bleue peatland.

NEP GPP ER NPP

Year Obs. Sim. D Obs. Sim. D moss1 shrub1 Obs. Sim. D moss1 shrub1 oxic HR1 anoxic HR1 Sim. moss1 shrub1

1999 65 1 �64 646 624 �22 0.34 0.66 �582 �623 �36 0.27 0.65 0.08 <0:01 52 0.82 0.16
2000 32 78 46 463 628 165 0.39 0.61 �431 �550 �119 0.27 0.65 0.08 <0:01 126 0.79 0.21
2001 2 39 37 543 662 119 0.33 0.67 �541 �623 �81 0.26 0.65 0.08 <0:01 93 0.61 0.39
2002 13 35 22 511 647 136 0.38 0.62 �498 �612 �116 0.27 0.64 0.09 <0:01 91 0.89 0.11
2003 15 85 70 495 667 172 0.36 0.60 �480 �582 �102 0.28 0.63 0.08 <0:01 136 0.58 0.42
2004 115 133 18 683 713 30 0.36 0.64 �568 �580 �12 0.28 0.63 0.08 <0:01 181 0.52 0.48
2005 91 101 10 668 710 42 0.34 0.66 �598 �609 �11 0.28 0.64 0.08 <0:01 151 0.49 0.51
2006 147 99 �48 772 704 �68 0.34 0.66 �625 �604 20 0.27 0.65 0.08 <0:01 147 0.56 0.44
Mean 60 71 11 598 669 72 0.36 0.60 �540 �598 �57 0.27 0.64 0.08 <0:01 122 0.62 0.38
Std. Dev. 53 43 � 110 36 � 0.02 0.02 66 25 � 0.01 0.01 0.00 <0:01 41 0.37 0.16

1718

http://www.biogeosciences-discuss.net
http://www.biogeosciences-discuss.net/5/1689/2008/bgd-5-1689-2008-print.pdf
http://www.biogeosciences-discuss.net/5/1689/2008/bgd-5-1689-2008-discussion.html
http://creativecommons.org/licenses/by/3.0/


BGD
5, 1689�1725, 2008

McGill Wetland
Model: peatland
carbon simulator

N. Roulet et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

Table 3. The ranking of the relative patterns on water table and temperatures for the 8 years of
comparison between the observed and simulated peatland carbon dynamics.

1999 2000 2001 2002 2003 2004 2005 2006

temperature1 1 8 4 6 5 7 2 3
water table2 1 7 2 3 4 6 5 8
NEP3 8 5 6 7 4 1 2 3
GPP3 8 7 5 6 4 1 2 3
ER3 2 8 1 3 6 7 4 5
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Table 4. The sensitivity of simulated GPP, autotrophic respiration (AR), NPP and oxic and
anoxic heterotrophic respiration (HR) expressed in percent change relative to the baseline sim-
ulation (observed environmental variables). A negative sign indicates a decrease relative to the
baseline while a positive sign indicates an increase.

moss shrub

GPP AR NPP GPP AR NPP NEP Oxic HR Anoxic HR
Base line (gC/m2/y) 237.82 166.48 71.34 431.52 415.72 15.80 68.79 16.24 2.11
hwtd(�10 cm) �0.22 �3.44 +7.28 �0.49 �0.19 �8.38 +11.34 �40.10 +122.25
hwtd(�5 cm) �0.09 �1.36 +2.86 �0.24 �0.09 �4.15 +5.56 �19.75 +36,68
hwtd(+5 cm) +0.06 +0.82 �1.74 +0.24 �0.09 +8.92 �3.55 +17.35 �9.81
hwtd(+10 cm) +0.08 +1.22 �2.58 +0.45 +0.18 +7.4 �8.53 +34.07 -16.05
hwtd(+15 cm) +0.09 +1.33 �2.82 +0.67 +0.26 +11.28 �11.73 +50.95 �20.65
hwtd(+20 cm) +0.09 +1.34 �2.85 +0.91 +0.37 +15.03 �14.90 +68.12 �22.21
airT(�2) +2.11 �15.19 +42.46 �12.11 �17.16 +120.7 +51.76 �15.61 �12.89
airT(�1) +1.18 �7.77 +22.03 �5.72 �8.61 +70.41 +21.76 �7.74 �6.66
airT(+1) �1.38 +8.09 �23.48 +4.92 +8.84 �98.09 �15.08 +7.6 +7.16
airT(+2) �3.04 +16.47 �48.59 +9.22 +18.06 �223.36 �41.68 +15.48 +14.82
airT(+3) �4.59 +25.12 �73.94 +11.87 +27.54 �400.47 �78.67 +23.83 +23.03
airT(+5) �8.32 +43.04 �128.15 +14.79 +48.15 �863.07 �174.52 +42.28 +41.26
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Fig. 1. The time series of hourly measured (blue dashed line) and simulated (red solid line)
GPP for 1999�2006.
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Fig. 2. The scatter plot of observed and simulated daily GPP and ER for 1999�2006. The
sold black line indicates the 1:1 line and the dashed line is the best �t relationship between the
observations and the simulated GPP and ER.
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Fig. 3. The time series of hourly measured (blue dashed line) and simulated (red solid line) ER
for 1999�2006.
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Fig. 4. The time series of hourly measured (blue dashed line) and simulated (red solid line)
NEP for 1999�2006.
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Fig. 5. The scatter plot of observed and simulated daily GPP and ER for 1999�2006. The
sold black line indicates the 1:1 line and the dashed line is the best �t relationship between the
observations and the simulated NEP.
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