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Abstract

Eddy covariance data are increasingly used to estimate parameters of ecosystem mod-

els and for proper maximum likelihood parameter estimates the error structure in the

observed data has to be fully characterized. In this study we propose a method to

characterize the random error of the eddy covariance flux data, and analyse error5

distribution, standard deviation, cross- and autocorrelation of CO2 and H2O flux er-

rors at four different European eddy covariance flux sites. Moreover, we examine how

the treatment of those errors and additional systematic errors influence statistical esti-

mates of parameters and their associated uncertainties with three models of increasing

complexity – a hyperbolic light response curve, a light response curve coupled to wa-10

ter fluxes and the SVAT scheme BETHY. In agreement with previous studies we find

that the error standard deviation scales with the flux magnitude. The previously found

strongly leptokurtic error distribution is revealed to be largely due to a superposition of

almost Gaussian distributions with standard deviations varying by flux magnitude. The

crosscorrelations of CO2 and H2O fluxes were in all cases negligible (R
2

below 0.2),15

while the autocorrelation is usually below 0.6 at a lag of 0.5 hours and decays rapidly at

larger time lags. This implies that in these cases the weighted least squares criterion

yields maximum likelihood estimates. To study the influence of the observation errors

on model parameter estimates we used synthetic datasets, based on observations of

two different sites. We first fitted the respective models to observations and then added20

the random error estimates described above and the systematic error, respectively,

to the model output. This strategy enables us to compare the estimated parameters

with true parameters. We show that the correct implementation of the random error

standard deviation scaling with flux magnitude significantly reduces the parameter un-

certainty and often yields parameter retrievals that are closer to the true value, than25

by using ordinary least squares. The systematic error leads to systematically biased

parameter estimates, but its impact varies by parameter. The parameter uncertainty

slightly increases, but the true parameter is not within the uncertainty range of the esti-
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mate. This means that the uncertainty is underestimated with current approaches that

neglect selective systematic errors in flux data. Hence, we conclude that potential sys-

tematic errors in flux data need to be addressed more thoroughly in data assimilation

approaches since otherwise uncertainties will be vastly underestimated.

1 Introduction5

The availability of carbon dioxide and water vapour flux measurements between ecosys-

tems and the atmosphere around the world offers various opportunities to improve

our knowledge about processes connected with the global carbon cycle (Friend et al.,

2007; Baldocchi et al., 2001). The interplay of models and data gives us insights into

the performance of models, our level of understanding the system, but also into the10

quality of data and the information content therein about the processes represented in

the model. Classically, parameters were often derived from experiments at leaf or plant

scale or from expert judgement. If nonlinear relationships are involved the parameters

are scale-dependent and cannot be easily transferred to but also not observed on larger

scales. An alternative option to obtain parameter estimates is the inversion of models15

against data. In this case a cost function describing the misfit between model output

and observations is minimized by varying the parameters. The inversion of models

against Eddy-Covariance (EC) data leads to parameter estimates at ecosystem scale,

our scale of interest, thus EC data are increasingly used for model inversions. EC

data contain information about the actual ecosystem flux, but a measured quantity is20

always the sum of the “true” value and errors, these errors need to be addressed in

an adequate way. The measurement errors can be distinguished into random errors,

fully systematic errors and selective systematic errors (Moncrieff et al., 1996). Fully

systematic errors appear constantly and arise for instance from inaccurate calibration

or consistently missing high or low frequency components of the cospectrum, while25

selective systematic errors appear only during special temporal periods, for instance

at night under unfavorable micrometeorological conditions. The random error of EC
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data arises from the measurement instruments, the stochastic nature of turbulence

and varying footprint (the area that influences the measurement, it depends primarily

on atmospheric stability and surface roughness). Quantification of the random error

is a prerequisite for statistical comparisons between models and data and model-data

synthesis as it expresses our confidence in the data (Raupach et al., 2005). The char-5

acteristics of the errors play an important role for the parameter estimation, the error

distribution, error cross- and autocorrelations or inhomogeneous variance can bias the

parameter retrieval if not accounted for (Tarantola, 1987). The study of Trudinger et al.

(2007) showed that how data errors and uncertainties are treated in the optimization

criterion will have a significant impact on the retrieved parameters. Studies using EC10

data in inverse modelling often assume constant error variance (Reichstein et al., 2003;

Owen et al., 2007; Wang et al., 2007), use the standard deviation of the model residu-

als (Sacks et al., 2006; Braswell et al., 2005) or an adhoc fraction of the observations

(Knorr and Kattge, 2005). During the last few years approaches for the quantification of

random errors of EC data came up, they used paired observations, first spatially sep-15

arated measurements (Hollinger et al., 2004), but as there are only few appropriately

distanced towers available, Hollinger and Richardson (2005) developed a methodol-

ogy using daily differenced measurements with equivalent environmental conditions

that allowed to characterize the univariate distribution for several sites (Hollinger and

Richardson, 2005; Richardson et al., 2006). However, the auto- and crosscorrelation20

of the errors have so far not been systematically quantified and are assumed to be

zero. Moreover, the systematic errors are still under investigation and challenging the

scientific community (Wilson et al., 2002; Friend et al., 2007). Hence the aim of this

study is

– to fully analyze the random error of EC water and carbon fluxes regarding the25

properties important for parameter estimation, i.e. beside the univariate distribu-

tion, also autocorrelation and multivariate correlations of CO2 and H2O fluxes,

– to elucidate the effect of the error model choice on model parameter estimates
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and their uncertainties,

– and to explore how selective systematic errors influence parameter estimates of

models describing carbon and water exchange.

We carry out the parameter estimation experiments with synthetic data based on

eddy covariance data from two European sites and with three models of different com-5

plexity, a hyperbolic light response curve, a light response curve coupled to water fluxes

and the SVAT scheme BETHY, a process-based model that calculates the CO2, H2O

and energy exchanges of soil, vegetation and atmosphere for the terrestrial land sur-

face (Knorr and Heimann, 2001).

2 Methods10

2.1 Analysis strategy

The first part of the study deals with the characterization of the random error. We

estimate the random error for four different sites, Hainich, Loobos, Puechabon and

Hyytiälä, using the gapfilling algorithm of Reichstein et al. (2005). We focus on the

statistical properties important for parameter estimation, e.g. variance, distribution, au-15

tocorrelation, crosscorrelations. The kurtosis is a measure of peakedness and can be

used as an indicator for the type of distribution, the excess kurtosis used here is zero

for Gaussian distributions and three for double exponential distributions. To reveal the

influence of errors to parameter estimates we designed 20 synthetic data sets with ran-

dom errors and 20 synthetic data sets with systematic errors for each model that are20

based on EC data from two sites. We optimized model parameters for three models to

match ten periods consisting of 14-day EC data measured at Hainich and Loobos in

2005 from May to September to get a range of reasonable parameter estimates. The

estimated parameters were used to create a reference model output. Then we added

a random error and systematic error respectively. The random errors were estimated25
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from the real data in the same way as for the first part of the study, the selective sys-

tematic error is a fixed percentage of the averaged observed night time flux subtracted

from the modelled night time flux. Afterwards the parameters were reestimated using

different ways to account for data uncertainty and error distribution. This strategy of-

fers the advantage that the properties of the error are known and the model error is5

zero, but the dataset is still realistic. Knowing the true properties of the reference data

we could compare estimated parameters with true parameters and model output to a

reference model output to reveal the influence of the errors.

2.2 Data

We used half hourly EC and meteorological data from the CarboeuropeIP database.10

In the statistical analysis of the random error we inlcuded data from four sites: Hainich

in Germany, an unmanaged deciduous broad-leaf beech forest, Loobos in the Nether-

lands, a planted maritime coniferous forest, Hyytiälä (Finland), an evergreen needle-

leaf forest and Puechabon (France), an evergreen broadleaf forest. For the parameter

retrieval experiments we chose two sites, Hainich and Loobos. The data sets were15

processed using the standardized methodology described in Papale et al. (2006); Re-

ichstein et al. (2005). CO2 fluxes are corrected for storage, low turbulence conditions

are filtered using the u
∗

criteria and spikes (outliers) are detected. Subsequently gap

filling and fluxpartitioning is applied. For the parameter estimation only filtered and

corrected high quality measurements are used.20

2.3 Observation errors

In this study we assume that the measurement value consists of the actual value and

an additive systematic and random error

x = F + δ + ǫ, (1)

where δ is a systematic error and ǫ is a random error. The commonly used ordi-25

nary least squares (OLS) optimization assumes the random error standard deviation,
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e.g. the data uncertainty to be constant (homoscedasticity). A constant standard devi-

ation, can usually be provided by the manufacturer of a measurement device or it can

be determined with simple tests. For flux data the standard deviation of the random

error is not constant in this case tests need to be performed for varying conditions,

quantifying the changes of the standard deviation. One option is to perform measure-5

ments close to each other, temporally or spatially, provided that the conditions are the

same or very similar, then the actual value is equal and the variation is caused by the

random error. For the flux data meteorological conditions, the state of the vegetation

and if spatially seperated the footprint and topography have to be the comparable. To

get an estimate of the random error we used the gapfilling algorithm of Reichstein et al.10

(2005). This tool computes the expected value of the flux using data measured under

the same meteorological conditions in a time window of ±7 days. The small time win-

dow is necessary to ensure a similar condition of the ecosystem. The residual of the

gap filling algorithm can be used as a random error estimate (Moffat et al., 2007), it

is comparable to the paired observations approach used in Hollinger and Richardson15

(2005), as shown in Richardson et al. (2007). For the parameter estimation an error

standard deviation has to be assigned to each observation. For the parameter estima-

tion experiments we compared the different estimates for the standard deviation of the

random error:

1. constant weights,20

2. the standard deviations of the observations with similar meteorological conditions

within a time window of ±7 days is used directly from the gapfilling algorithm

(std),this is equal to the standard deviation of the residuals between observations

with similar meteorological conditions and expected value,

3. the standard deviations of the residuals of the gapfilling algorithm (res) were ob-25

tained grouping the data according to the flux magnitude in 30 groups with an

equal number of data points, for each group the standard deviation was com-

puted (see Fig. 1). Afterwards the standard deviation was related to the flux mag-
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nitude using two linear regression lines to allow for a minimum for net ecosystem

exchange of carbon (NEE) and one linear regression line for the latent heat (LE).

For the third method the modeled flux (here the flux derived from the gapfilling al-

gorithm) has to be used to derive the dependency of error standard deviation on flux

magnitude, because the relationship between the residuals and measured flux is bi-5

ased (Draper and Smith, 1981). Furthermore an observation that is accidentally lower

is given a higher weight than an overestimated value, which will lead to an underesti-

mation of flux magnitude by the model (Evans, 2003).

2.4 Parameter estimation

The procedure of parameter estimation can be described as varying the parameters10

until the best fit between model and data is found. The fit or misfit between model and

data is quantified via the costfunction:

J(p) = (xd − xm)T C−1
d

(xd − xm) (2)

xd represents the data vector, xm the model output vector, Cd the error covariance

matrix. The best parameter set is found at the minimum of the cost function. T denotes15

that the vector is transposed. For uncorrelated errors the function simplifies, as all off

diagonal elements of the matrix Cd are zero, to:

J(p) =

N
∑

i=1

(

xdi − xmi

σdi

)2

(3)

σd is the standard deviation of the random errors, N the number of data points. In

this study we use synthetic data based on a model output, therefore the model error20

is zero. To consider the uncertainty of flux measurements is necessary if the errors

are hetereoscedastic, e.g. error variance (=squared standard deviation) increases with

increasing flux magnitude, or if different data sources are used. From another point of

view this means that data with high uncertainty (high error variance) get a lower weight
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than data with low uncertainty (low error variance). For constant error variance the

Eq. (3) simplifies to the OLS method summing up only the squared distances. Given

a double exponential distribution as proposed by Hollinger and Richardson (2005) and

Richardson et al. (2006), parameter estimation should be based on the sum of abso-

lute deviations rather than on squares. To find the minimum of the costfunction we5

used the Levenberg-Marquardt algorithm implemented in the data analysis package

“PV-WAVE 8.5 advantage” to (Visual Numerics, 2005) for the simple models. For the

complex BETHY model a Bayesian approach was used to determine the a posteri-

ori probability density function (PDF) of parameters including prior information and the

Metropolis Markov Chain Monte Carlo (MCMC) technique was used to sample the PDF10

of parameters, which was then characterised by mean and 95% confidence intervalls

(Knorr and Kattge, 2005). The Optimisation Intercomparison of Trudinger et al. (2007)

compared different algorithms, including the two used here, for the optimisation of a

simple coupled model. The optmisation algorithms were found to be comparable with

respect to the parameter retrival.15

2.5 Evaluation of the parameter estimation performance

The reestimation of the parameters was evaluated through the deviation from the orig-

inal parameter value, the parameter uncertainty and the root mean squared error be-

tween model output computed with the reestimated parameters and the reference

model output without noise. The uncertainty of the parameters determined with the20

Levenberg-Marquardt algorithm, was derived by bootstrapping (n=500), which is only

based on the empirical sample not on assumptions about probability theory of the nor-

mal distribution (Wilks, 1995). As a measure of uncertainty for the paramters we used

the 95% confidence intervall (=1.96· standard error) of the mean of the parameter dis-

tribution. When using the Metropolis algorithm the parameter uncertainties can be di-25

rectly calculated from the sampling of the MCMC approach. The uncertainty reduction

when using the Metropolis algorithm was computed as 1−
posterior uncertainty

prior uncertainty
.
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2.6 Models

2.6.1 Hyperbolic light response curve

The Hyperbolic light response curve (HLRC) computes net ecosystem exchange of

CO2 (NEE) depending on global radiation (Rg, incoming shortwave radiation):

NEE = −

α · β · Rg

α · Rg + β
+ γ (4)5

α is an approximation of the canopy light utilization efficiency, β is GPP (Gross primary

production) at light saturation and γ is the ecosystem respiration. Instead of Rg pho-

tosynthetic active radiation (PAR) or photosynthetic photon flux density (ppfd) is often

used, they are closely related to Rg, but not measured at all EC sites. Using Rg instead

of PAR or ppfd changes only the value of α, as PPFD is approximately twice the Rg.10

2.6.2 Water use efficiency model

To increase the complexity of the model we coupled NEE with the latent energy (LE)

using the HLRC and connecting it to LE via the water use efficiency (WUE), which is

the ratio of gross primary production and latent heat. The WUE times water vapour

deficit (WUE VPD) is considered constant (Beer et al., 2007). Using VPD as additional15

driver NEE and LE can be connected as follows:

NEE = −

α · β · Rg

α · Rg + β
+ γ (5)

LE = (γ − NEE) ·
VPD

WUE VPD
. (6)

This model is inverted against NEE and LE. To make sure, that LE and NEE errors

contribute to a similar extend to the cost function when using constant weights, we20
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scaled the sum of the added synthetic errors to the sum of synthetic errors weighted

with std for NEE and LE respectively:

1

c

∑

error =
∑ error

std
(7)

c denotes the constant weight, the same weight is used for the inversion of the BETHY

model. The model underestimates LE, but as we use the model output as reference,5

model performance is of minor importance. We used this model to show, that the re-

sults derived with the simple model hold for models of various complexities and to me-

diate between the very simple HLRC and the quite complex SVAT scheme of BETHY.

2.6.3 BETHY

BETHY is a process-based model of the coupled photosynthesis and energy balance10

system to simulate the exchange of CO2, water and energy between soil, plant canopy

and atmosphere (Knorr and Heimann, 2001). It computes absorption of PAR in three

layers, while the canopy air space is treated as a single, well mixed air mass with a

single temperature. Evapotranspiration and sensible heat fluxes are calculated from

the Penman-Monteith equation (Monteith, 1965). Carbon uptake is computed with the15

model by Farquhar et al. (1980) for C3. The stomata and canopy model of Knorr (2000)

simulates canopy conductance in response to PAR, VPD and soil water availability. In

the version of BETHY applied here, autotrophic respiration is calculted as a temper-

ature modulated fraction of photosynthetic capacity while heterotrophic respiration is

based on a basal respiration modulated by soil water availability and air temperature.20

The inversion set up was the same as in Knorr and Kattge (2005), inverting all 21 pa-

rameters simultaneously. The prior uncertainties of the parameters were set to 20%

of the prior parameter value. For the synthetic datasets the prior parameter were the

parameters used to generate the data.
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3 Results and discussion

3.1 Statistical properties of the error estimates

3.1.1 Heteroscedasticity

The standard deviation of the error has been derived from the residuals of the gap-

filling model, e.g. standard deviation of the residuals depending on the flux magnitude5

(res), and using the standard deviation of the gapfilling algorithm directly (std). Figure 1

shows the relationship between flux magnitude and error standard deviation for NEE

and LE. The standard deviation is not homogeneous, e.g. the errors are heteroscedas-

tic and increase with increasing flux magnitude. Thus the residuals have to be weighted

with the reciprocal of the standard deviation of the random errors as already suggested10

by previous studies (Richardson et al., 2006). The magnitude of the error variance is

similar for the two methods of deriving the error variance described in the previous sec-

tion, see Fig. 1, for res the observations needed to be grouped to derive the standard

deviation. The res standard deviation for NEE ranges from 1 to 5, for LE from 5 to 40.

With the std method the ranges are wider because the data were not grouped. For15

NEE the standard deviation lies between 0.5 and 9.5, for LE between 2.8 and 85. For

eddy covariance data it is known, that the error variance increases with increasing flux

magnitude, Richardson and Hollinger (2005) showed that the error standard deviation

of NEE not only scales with flux magnitude, but that wind speed also has a fundamental

effect on the uncertainty. Thus not the whole variability of the standard deviation can20

be reproduced when only the flux magnitude is used. Another source for the higher

scatter of the std results is the uncertainty in the estimation of the standard deviations

derived directly (std).
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3.1.2 Distribution

Previous studies (Richardson and Hollinger, 2005) showed, that the error distribution

of NEE is rather double exponential (Laplace) than normal and this is also found for

the data used here (see Fig. 2e, f). For LE the distribution is even more peaked than

the double exponential distribution. The normal distribution is characterized by the5

mean and the standard deviation. As error standard deviation increases with increas-

ing flux magnitude the distribution of all error estimates is a superposition of normal

distributions with varying standard deviation. If we group the data according to the

flux magnitude, we find Gaussian distributions for high flux magnitudes (see Fig. 2a,

b), adding more data to the distribution plot, we find a rather double exponential distri-10

bution (see Fig. 2c–f). Another possibility to show the Gaussian distribution is shown

in Fig. 2g, h , we normalized the errors with the standard deviation derived with the

gapfilling algorithm (std) this transforms all error distributions to a standard deviation of

unity. For NEE the normalized errors are slightly closer to a normal distribution than for

LE. Thus the double exponential distribution is largely due to a superposition of Gaus-15

sian distributions and the least squares criteria can be used for eddy covariance data

show here. Figure 3 shows the distribution of errors from the four different sites. The

normalization of NEE resulted in a rather Gaussian distribution, for LE the distribution

is inbetween Gaussian and Laplace distribution and is slightly skewed. This indicates,

that the distribution of the error varies from site to site or that the error estimation does20

not perform well for all sites. One indicator for the peakedness of the distribution is

the excess kurtosis (=kurtosis-3), it is zero for a normal distribution and 3 for a double

exponential distribution, a high kurtosis indicates a strong peak. Figure 4 shows the

kurtosis for ten two week periods for the four sites. For NEE the normalization of the

errors decreases the kurtosis and changes the distribution to a less peaked shape.25

The kurtosis is in general below the kurtosis for double exponential distributions, but

some outliers indicate a much stronger peak (excess kurtosis=5.5). For LE the kur-

tosis decreases also for HAI, LOO and PUE. For HYY the kurtosis increases after
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normalization. The kurtosis shows a high sensibility to outliers, but also to the rule of

the detection of outliers, excluding outliers will always decrease the kurtosis. As the

outliers are important for the characterisation of the distribution and the data is already

prefiltered (spike detection according to Papale et al., 2006) we did not exclude them.

For errors of fluxes with high magnitude, normal distribution is still found (excess kur-5

tosis 0.3) and seems to be valid across sites. Overall, we conclude that random error

characteristics should be considered on a site-by-site basis. When comparing different

studies and different sites regarding their error distribution, a careful documentation of

the influence and the treatment of outliers is strongly recommended.

3.1.3 Correlation10

Autocorrelation

Figure 5 shows the autocorrelation function of the random errors for the four eddy

sites. The behaviour of the function is similar for all sites, the autocorrelation decays

fast, after 10 hours there is no considerable change in the correlation. Figure 6 shows15

boxplots for the autocorrelation for a lag of 30 min, it is usually below 0.7, with one

exception for Puechabon (0.82). Hyytiälä shows the highest autocorrelation for LE and

NEE, Loobos the lowest for NEE and Hainich the lowest for LE. Although the gapfill-

ing algorithm provides a reasonable estimate for the random error, the autocorrelation

could partly be an artefact of the algorithm, if the deviation from the statistical expection20

value was not caused by a random error the following and previous value would deviate

in a similar way and the actual autocorrelation of the random error would be lower. To

make sure that error autocorrelation does not influence the parameter estimation one

could prefer to use only every second or third value for the parameter estimation.

25
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Crosscorrelation

R
2

values for the crosscorrelation between NEE and LE errors of the four sites and

ten data periods for each site are summarized in Table 4. In our study the correlation

between NEE and LE errors is close to zero, thus the correlation between NEE and5

LE errors is of minor importance and does not need to be considered in the error co-

variance matrix. The highest R
2

was 0.24 for one period for Puechabon, for the same

period the outlier of the LE autocorrelation for a lag of 30 min was found (see Fig. 6).

The measurements of NEE and LE are both based on the vertical wind velocity and

errors introduced via the wind velocity measurement, such as errors due to turbulence10

sampling must show up as a correlation between NEE and LE errors. This indicates

that the variation in the measured fluxes under similar meteorological conditions seems

(i.e. the flux errors) to be rather caused by changes in concentrations of water and CO2

than by the measurement of the vertical wind velocity. As auto- and crosscorrelation

are low, the generalized least squares method (Eq. 2) can be simplified to the weighted15

least squares method (Eq. 3) by setting off-diagonal elements in the error covariance

matrix to zero.

3.2 Parameter retrieval

3.2.1 Ordinary least squares vs weighted least squares

The parameters were estimated for three models of different complexities, the syn-20

thetic data is based on data from two different sites (Loobos and Hainich). We are

comparing constant weights with two ways of estimating the standard deviation of the

observation errors, which is then used to weight the data for the parameter estima-

tion to account for the non constant error standard deviation. The standard deviation

of the errors was estimated as the standard deviation of the observations measured25

under similar metereorological conditions (std) and as the standard deviation of the

gapfilling algorithm residuals related to the modelled flux magnitude (res), see Fig. 1.
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The results of the parameter retrieval experiments (Fig. 7) show, that the random er-

ror introduces no systematic error to the parameter estimates and the true parameters

are usually within the parameter uncertainty (95% confidence interval) derived from

bootstrapping. The mean of the parameter ratios is not significantly different from unity

(α=0.05). The mean uncertainty of the parameters using a non constant estimate for5

the error standard deviation as weight is between 10 and 24% lower for the HLRC than

using constant weights (see Table 2). Due to the stochastic nature of the procedure,

these results are true for the mean results but there exist data periods for both sites in

which the results are opposite. The std weights decrease the mean uncertainty more

than res and therefore describes the error standard deviation better. The root mean10

squared error (rmse) between reference model output without noise and the model

output with the reestimated parameters can be decreased using std as weights for the

HLRC, for res it increases, again indicating, that a description of the data uncertainty

only based on flux magnitude is not sufficient.

For the water use efficiency model the results of the model parameterization are simi-15

lar, estimates of parameter uncertainty decrease between 5% and 60% and the RMSE

between reference model output and model output of the reestimated parameters is

decreased when using std, while res increases the value (see Table 3). For simplicity

we focus on the comparison between constant weights and std, since std gave the

best results. For the inversion of the BETHY model the distance between retrieved20

and true parameters can be decreased using std compared to the constant weights

(see Table 4). The influence of using varying data uncertainty compared to constant

data uncertainty with the MCMC algorithm is less pronounced as the absolute value

of the data uncertainty is more important than the relative changes. Nevertheless the

reduction of uncertainty for parameters is higher when using std and the rmse be-25

tween reference and model output is decreased. Another advantage of weighting the

data showed up during the initial fit to real data for the creation of the reference model

output, the parameters estimated with std weights resulted in reasonable parameters,

whereas using constant weights for some periods negative values for α were estimated
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(not shown). The random error complicates the parameter retrieval, it can increase the

number of local minima or the minimization can become an ill-posed problem. Using

weights representing the data uncertainty seems to improve the behaviour of the cost

function and improves the extraction of information inherent to the data. This shows

that the standard deviation provided by the gapfilling algorithm is a good measure for5

the eddy covariance data uncertainty, it improves the parameter retrieval and therefore

model performance after optimization, at least for the sites used here. For skewed error

distributions we would expect the parameter estimates to be biased.

3.2.2 Least squares vs absolute deviations

As the use of absolute deviations in the cost function was suggested previously by10

Richardson et al. (2006) we compare least squares and absolute deviations, to illus-

trate the effect to parameter estimation. Comparing the parameter ratio again shows no

significant difference between the methods. For our sites, the parameter uncertainty in-

creases using absolute deviations compared to the ordinary least squares method (see

Table 2). The rmse increases compared to the OLS using constant weights and for the15

weighted least squares. Since by normalizing the errors with the standard deviation we

get a Gaussian distribution for our selected sites the absolute deviation minimization

cannot improve the parameter retrieval. If the errors show a double exponential dis-

tribution as a result of the superposition of different Gaussian distributions, then least

squares optimization should be applied. If the error distribution is more peaked due to20

outliers or a different data filtering, robust methods like the minimization of absolute de-

viations or robust regression tecniques, which exclude outliers, may be advantageous.

Testing whether the normalized error distribution is Gaussian could support the choice

of the costfunction.
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3.2.3 Systematic error

Figure 8 shows the results of the parameter retrieval based on data with a selective

systematic nighttime error of 10, 20 and 40%. The α and γ parameters of the HLRC

show a systematic bias, estimated parameters underestimate the underlying true pa-

rameter. The bias is stronger for higher data error. For β the parameter bias seems5

to be not systematic, the retrieved parameter is for some periods lower, for some pe-

riods higher than the original parameter. β is GPP at light saturation, as NEE at light

saturation does not change but only the night time flux, representing the respiration, is

lower β should also be lower to sum up to the same NEE values during daytime. The

effect on γ seems to be too low to show up in the comparably high values of β. For10

the water use efficiency model all parameters are biased, all estimates are lower than

the true values. Through the interconnection of GPP and LE and the use of water and

CO2 fluxes to constrain the parameters the distance to the true value decreases for all

parameters. This indicates the potential of using multiple constraints for inverse model

parameter estimation. The parameter uncertainties increase the higher the error but15

the real value of the parameter is not within the uncertainty range of the estimated

parameter. This means, that the real uncertainty of the parameter is underestimated,

projection of the parameter uncertainty to model output will result in uncertainties for

the fluxes that are too low. To get the real uncertainty for parameters and fluxes further

knowledge about the systematic errors is needed and methods need to be developed20

to incorporate them into the estimation of uncertainty, if the systematic errors cannot

be removed.

4 Conclusions

Previous work to quantify the random error structure of eddy covariance data (Hollinger

et al., 2004; Richardson and Hollinger, 2005; Richardson et al., 2006) has focused on25

describing the moments of the distribution of the error, particularly relating the expected
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magnitude of the error (i.e. its standard deviation) to the flux magnitude, and evaluat-

ing whether or not flux errors are Gaussian. Here we have built on these efforts by

considering the auto- and crosscorrelation, introducing a new method to quantify the

standard deviation of the random errors. We show the effect of the varying standard

deviation to the distribution and investigate how random and systematic errors affect5

parameter estimates.

The analysis of the error distribution shows that the apparently double exponential

distribution can be almost entirely due to the superposition of Gaussian distributions

with inhomogeneous variance. Whether this is the case for a special site can be af-

firmed by testing the normality of the normalized error distribution. If it cannot be af-10

firmed one should consider using robust methods. The autocorrelation is low, but one

might consider to analyse the autocorrelation function and use only every second or

third flux for parameter estimation if there is enough data available. As a reason for the

low but significant autocorrelation of errors we can not exclude artefacts of the gap fill-

ing tool. The crosscorrelation between LE and NEE is low and can be neglected. The15

assumption for ordinary least squares that is not met is the constant error standard de-

viation, thus the ordinary least squares method needs to be extended to weighted least

squares, using the reciprocal of the standard deviation as weight in the costfunction.

We propose a measure for data uncertainty, e.g. the standard deviation of the values

used to compute the expected value, that can be used to weight the data in the cost-20

function. Weighting the data decreases the parameter uncertainty and the parameter

retrieval is improved. We showed that this result holds true for a wide range of model

complexities. We show that the impact of systematic errors varies by parameter, but

the bias is systematic, therefore the interpretation of parameters derived from data with

systematic errors might be misleading. The parameter uncertainty slightly increases25

when a systematic error is added, but the true parameter is not within the uncertainty

range of the estimate. Not considered here but of similar importance is the model error,

which was set to zero by using the model output as basis for the synthetic data. For the

least squares optimization the model output random error is additive to the data ran-
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dom error and depending on the point of view part of the data random error can also

be seen as model errors, e.g. footprint heterogeneity. Even more severe problems can

arise from model structural problems, which are comparable to systematic data errors,

the model cannot reproduce the dynamics in the data because processes are missing

or represented in an insufficient way. Using inverse model parameter estimation we5

can only accept the best fit although the model is not meant to reproduce the patterns

emerging from these insufficiencies. Hence we conclude that potential systematic er-

rors in flux data or models need to be addressed more thoroughly in data assimilation

approaches since otherwise uncertainties will be vastly underestimated.
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Table 1. Crosscorrelation between NEE and LE errors for ten two week periods between March

and September 2005.

R
2

of NEE and LE errors

Data 1.– 16.– 1.– 16.– 1.– 16.– 1.– 16.– 1.– 16.–

period 15.5. 31.5. 15.6. 30.6. 15.7. 31.7. 15.8. 31.8. 15.9. 30.9.

HAI 0.089 0.004 0.176 0.192 0.088 0.136 0.202 0.007 0.077 0.097

LOO 0.004 0.029 0.059 0.086 0.031 0.000 0.004 0.024 0.030 0.010

HYY 0.197 0.033 0.139 0.128 0.021 0.012 0.023 0.049 0.000 0.003

PUE 0.093 0.244 0.038 0.033 0.068 0.003 0.012 0.018 0.019 0.031

774

http://www.biogeosciences-discuss.net
http://www.biogeosciences-discuss.net/5/751/2008/bgd-5-751-2008-print.pdf
http://www.biogeosciences-discuss.net/5/751/2008/bgd-5-751-2008-discussion.html
http://creativecommons.org/licenses/by/3.0/


BGD

5, 751–785, 2008

Influences of

observation errors on

parameter estimation

G. Lasslop et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

◭ ◮

◭ ◮

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

Table 2. Mean of retrieved normalized parameters and the mean uncertainty for the ten two

week periods for the HLRC.

Loobos 2005

mean normalized parameter mean 95% confidence interval

Least squares minimization

weights α β γ α β γ rmse

constant 0.978 0.993 0.961 0.187 0.133 0.102 0.265

std 1.016 0.975 0.967 0.157 0.101 0.091 0.228

res 1.034 0.970 0.998 0.198 0.119 0.115 0.332

Absolute deviations minimization

constant 0.951 0.991 0.935 0.174 0.145 0.099 0.425

std 0.972 0.976 0.938 0.172 0.133 0.096 0.388

Hainich 2005

Least squares minimization

constant 0.983 1.001 0.969 0.173 0.087 0.096 0.231

std 1.048 0.984 0.990 0.149 0.071 0.084 0.218

res 1.046 0.981 0.988 0.176 0.080 0.089 0.239

Absolute deviations minimization

constant 1.049 0.977 0.981 0.101 0.199 0.107 0.300

std 1.062 0.972 0.986 0.096 0.192 0.103 0.341
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Table 3. Mean of retrieved normalized parameters and the mean uncertainty for the ten two

week periods for the WUE-model using last squares minimization.

Loobos 2005

mean normalized parameter mean 95% confidence interval

weights α β γ wue vpd α β γ wue vpd rmse

const 0.974 1.003 0.964 0.980 0.249 0.149 0.111 0.058 1.243

std 1.043 0.963 0.973 0.987 0.140 0.088 0.085 0.050 0.930

res 1.032 0.958 0.975 0.973 0.148 0.096 0.090 0.054 1.238

Hainich 2005

mean normalized parameter mean 95% confidence interval

weights α β γ wue vpd α β γ wue vpd rmse

const 1.027 0.987 0.986 0.960 0.300 0.135 0.166 0.051 2.926

std 1.049 0.978 0.984 0.978 0.121 0.081 0.092 0.043 1.924

res 1.061 0.964 0.986 0.952 0.143 0.090 0.098 0.045 3.330
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Table 4. Sum of the uncertainty reduction, summed absolute deviation of the parameter ratio

from 1 and mean rmse between model output and reference output.

site Loobos Hainich

const std const std

uncertainty reduction 50.93 52.31 47.19 50.08

parameter deviation 14.83 13.30 14.16 12.49

rmse 4.11 3.17 4.34 3.6
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(a) (b)σ(GFA)
σ(Res)

σ(GFA)
σ(Res)

Fig. 1. Data uncertainty derived from the gapfilling algorithm directly and standard deviation of

the gapfilling algorithm residuals for NEE (a) and LE (b).
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(a) (b)

(c)

(e)

(g)

(d)

(f)

(h)

Fig. 2. Distributions of NEE (left) and LE (right) error estimated with the gapfilling algorithm.

(a), (b): error of high flux magnitudes, (c), (d): error of high and medium flux magnitude, (e),

(f): all error estimates, (g), (h): errors estimated with gapfilling algorithm and normalized with

std, data: Hainich May–September 2005.
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(a) (b)

Fig. 3. Distribution of NEE (a) and LE (b) errors normalized with std and z transformed ((error-

mean(error))/standarddeviation(error)) using data from HAI, LOO, HYY and PUE.

780

http://www.biogeosciences-discuss.net
http://www.biogeosciences-discuss.net/5/751/2008/bgd-5-751-2008-print.pdf
http://www.biogeosciences-discuss.net/5/751/2008/bgd-5-751-2008-discussion.html
http://creativecommons.org/licenses/by/3.0/


BGD

5, 751–785, 2008

Influences of

observation errors on

parameter estimation

G. Lasslop et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

◭ ◮

◭ ◮

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

HAI LOO HYY PUE HAI LOO HYY PUE

(a) (b)NEE LE

Fig. 4. Boxplots with median, upper and lower quartile, minimum and maximum or outliers

(points) for the excess kurtosis of the 10 two week periods from May to September 2005 for

errors (orig) and normalized errors (norm) of NEE (a) and LE (b).
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(a) (b)

NEE LE

Fig. 5. Autocorrelation of the NEE (a) and LE (b) errors, data: May to September 2005.
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(a) (b)NEE LE

Fig. 6. Boxplots of the autocorrelation of lag=1 (0.5 h) for ten two week periods from May to

September for NEE (a) and LE (b).
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(a) (b)

Fig. 7. Time series of normalized parameters (estimated/true) based on data from Loobos with

a random error for the HLRC (left) and the WUE model.
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(a) (b)

Fig. 8. Time series of normalized parameters (estimated/true) based on data from Loobos with

a selective systematic nighttime error for the HLRC (a) and the WUE model (b).
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