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Abstract

A coupled carbon-ecosystem model is compared to recent data from Ocean Weather

Ship M (66
◦
N, 02

◦
E) and used to investigate nutrient and carbon processes within

the Norwegian Sea. Nitrate is consumed by phytoplankton in the surface layers over

the summer; however the data show that silicate does not become rapidly limiting for5

diatoms, in contrast to the model prediction and in contrast to data from other temperate

locations. The model estimates atmosphere-ocean CO2 flux to be 37 g C m
−2

yr
−1

. A

detailed comparison of the carbonate system at other ocean locations reveals that

although coccolithophore blooms occur at OWS M, they are not as prevalent here as

other areas. The seasonal cycles of calcite saturation state and [CO
2−
3

] are similar in10

the model and in data: values range from ∼3 and ∼120µmol kg
−1

respectively in winter,

to ∼4 and ∼170µmol kg
−1

respectively in summer. The timing of coccolithophore

blooms within the year therefore coincides with a time of high calcite saturation state,

as predicted by previous modelling work.

1 Introduction15

The Norwegian Sea (Fig. 1) is an important high latitude region for processes including

uptake and sequestration of CO2, primary production and large-scale ocean mixing.

As with many other high latitude locations the mixed layer depth undergoes large sea-

sonal fluctuations forcing seasonal dynamics of biology and chemistry in the upper

ocean (Nilsen and Falck, 2006). High concentrations of nutrients in winter (nitrate20

>12µmol L
−1

, phosphate >0.9µmol L
−1

and silicate >5.5µmol L
−1

, Dale et al., 1999)

are reduced to low levels in the surface layer by consumption during spring and sum-

mer. Interannual variations in observations give a range of nitrate summer concentra-

tions between near 0µmol L
−1

and 2µmol L
−1

(Kohly, 1998; Haupt et al., 1999, Dale

et al., 1999). The lack of full depletion of nitrate in summer compared to other tem-25

perate sites (e.g. NABE (47
◦
N, 20

◦
W); OWS I (59

◦
N, 19

◦
W)) has been the subject of
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much speculation and two main hypotheses have been put forward to explain this phe-

nomenon: 1) diatoms are present in low numbers and are limited by rapid consumption

of silicate and hence do not bloom to the same magnitude as other areas (Dale et al.,

1999); 2) large populations of grazers, both macro- and micro-zooplankton, rapidly

consume the phytoplankton (Taylor et al., 1993).5

The eastern Bering Sea is another high-latitude site that has been used to investigate

the associated dynamics of plankton and carbonate systems. A detailed understanding

of how plankton and carbonate interact with each other in the real ocean is of interest

for predicting how the ocean will respond to ongoing and future ocean acidification.

Merico et al. (2006)’s model study assessed the possible links between success of the10

coccolithophore Emiliania huxleyi in the natural environment and the ambient values

of carbonate ion concentration ([CO
2−
3

]) following an earlier investigation addressing

which environmental conditions may have contributed to the large E. huxleyi blooms in

the eastern Bering Sea from 1996 to 2000 (Merico et al., 2004). Although the model

calculated only minor interannual changes in calcite saturation state (Ωcal), which were15

not thought to have caused the interannual differences in patterns of E. huxleyi, there

did appear to be a possible link between the Ωcal and E. huxleyi success (Fig. 2). They

predicted a sharp rise in [CO
2−
3

] and Ωcal as a result of the spring blooms, leading to

higher values in summer than in winter. Although [CO
2−
3

], Ωcal, pCO2, etc. can be

calculated from total dissolved inorganic carbon (CT ) and total alkalinity (AT ), very little20

data were available from the eastern Bering Sea to validate and test these hypotheses.

The presence of a time series site in the Norwegian Sea (Ocean Weather Ship M

(OWS M) at 66
◦
N, 02

◦
E, Fig. 1) makes it ideal for further investigating the interactions

between phytoplankton and the cycling of carbon and nutrients, which we carry out

here using both data and modelling.25

Seasonal fluctuations in CT result from a combination of removal by photosynthesis

and addition from respiration, mixing and ingassing from the atmosphere (Skjelvan

et al., 2005). The process of biological precipitation of calcium carbonate (CaCO3) by

calcifying organisms such as coccolithophores additionally impacts on the CT dynamics
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(Najjar, 1992). Coccolithophores are present in the Norwegian Sea in low numbers

during winter and spring with densities increasing in early summer (June) after the

diatom bloom (Andruleit, 1997); with peaks up to 3×10
6

coccospheres L
−1

(Baumann

et al., 2000). The seasonal succession of phytoplankton could play an important role

in determining the cycling of carbon and nutrients.5

This study aims to use an adaptation of Merico et al. (2006)’s model as a tool to in-

vestigate carbon and nutrient dynamics in the Norwegian Sea. Of particular interest are

the relative influence of the physical system (including SST, SSS and MLD) compared

to the biological system (including phytoplankton succession, growth rates, and zoo-

plankton grazing rates) on the cycling of carbon and nitrate. Specifically, we consider10

the controls on nitrate and silicate consumption rates over the summer, phytoplankton

succession and the seasonal and interannual patterns of the carbonate system, and

test the hypothesis that coccolithophore success occurs at times of high calcite satu-

ration state. The model outputs are compared to data from OWS M, satellite data and

outputs of other models.15

2 Methods

2.1 Model description

Merico et al. (2006)’s two-layer, time-dependent, coupled biological-physical-carbon

model is adapted here to represent the Norwegian Sea, with specific reference to

the location of OWS M. The main adaptations made relate to the physical conditions20

(i.e. the forcing conditions) and the parameterisation of the ecosystem values. They

are described in more detail below.

The model is formulated as a bi-layer ocean system consisting of an upper, biologi-

cally active mixed layer (down to a seasonal thermocline), which contains phytoplank-

ton, zooplankton and a limited amount of nutrients and chemical constituents; and a25

lower layer, containing no biology, but a source of nutrients and chemical constituents.

3232

http://www.biogeosciences-discuss.net
http://www.biogeosciences-discuss.net/4/3229/2007/bgd-4-3229-2007-print.pdf
http://www.biogeosciences-discuss.net/4/3229/2007/bgd-4-3229-2007-discussion.html
http://www.egu.eu


BGD

4, 3229–3265, 2007

Carbon and nutrient

cycling in the

Norwegian Sea

H. S. Findlay et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

◭ ◮

◭ ◮

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

EGU

The model also incorporates an atmospheric layer, with which air-sea fluxes of carbon

dioxide can take place depending on the CO2 partial pressure differences between the

atmosphere and the surface water (Fig. 3).

The system of ordinary differential equations is solved numerically using a Fourth-

order Runge-Kutta method with a time step of one hour and was run over a period of5

four years to allow the state variables to reach repeatable seasonal cycles and thus

minimise the dependency of the results on the initial conditions. For the state variable

equations readers are referred to Appendix A in Merico et al. (2006).

2.1.1 The physical system (physical forcing data are given in Fig. 4)

The two-layer water column model used here is influenced simply by vertical advection10

and does not include any horizontal advection. This approximation, as this study will

demonstrate, is suitable for assessing average annual dynamics as the location of

OWS M encompasses the North Atlantic inflow, which is not thought to vary greatly

through the seasons (Oliver and Heywood, 2003; Orvik and Skagseth, 2003). However

it may not be appropriate for smaller scale interpretations of individual events within a15

year period because of incursions of coastal water.

The biological activity was considered to take place in the upper mixed layer, while

in the bottom layer, nutrient concentrations (nitrate (N0), silicate (Si0) and ammonium

(A0)) and carbon state variables (CT0 and AT0) were kept constant throughout the year.

Nutrients were supplied to the upper layer by entrainment or diffusive mixing across20

the interface using the same method of Fasham (1993).

The model was forced with a variable mixed layer depth, calculated from monthly

Levitus climatologies at the location of OWS M and linearly interpolated with time for

each annual cycle (2002–2005). Annual sea surface PAR was calculated using as-

tronomical formulae (taking into account latitude, daily sinusoidal variation in radiation25

and a fixed cloud cover parameter). This does not capture the short-term changes in

cloud cover and mixing events that occur in natural systems and therefore represents

approximate values for each annual cycle. The light limited growth for each phyto-
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plankton group was determined using a Steele’s function, which includes the potential

for saturation and inhibition of phytoplankton growth at high light levels. Initial inves-

tigations revealed that flagellate populations reached unrealistically high abundances

when a simple Michaelis-Menten function for light limited growth was used. The effect

of sea surface temperature (SST) on phytoplankton growth was simulated using Ep-5

pley’s formulation (Eppley, 1972) and both sea surface salinity (SSS) and SST were

used within the carbon system. Values were taken from OWS M averaged monthly

data and linearly interpolated for each annual cycle. Wind speed data were taken from

averaged daily recordings at OWS M.

2.1.2 The ecosystem10

Phytoplankton were split into four groups: diatoms, dinoflagellates, flagellates and coc-

colithophores (Emiliania huxleyi). They were originally grouped in this way because

they represented the most common species found in the Bering Sea (Merico et al.,

2006). This appears to also be the case for the Norwegian Sea.

Zooplankton were split into two groups, these are microzooplankton and mesozoo-15

plankton. This distinction is important when considering more than one phytoplankton

group because diatoms, dinoflagellates and microzooplankton are the food sources for

mesozooplankton; whereas flagellates and E. huxleyi are the food sources for micro-

zooplankton. Furthermore, although mesozooplankton, particularly copepods, have

been well studied in the Nordic Seas (Dale et al., 2001; Halvorsen et al., 2003) and it is20

widely acknowledged that they have an important role in transferring energy to higher

levels of the food web, they may be of secondary importance in terms of grazing of phy-

toplankton, and hence carbon flux, when compared to microzooplankton. There is a

lack of microzooplankton grazing studies in the Norwegian Sea, yet reports from other

areas suggest that microzooplankton impact significantly on phytoplankton populations25

(e.g. Burkhill et al., 1993; Calbet and Landry, 2004) and are the major loss term.

The Bering Sea model included a switching parameter for grazing rate on E. huxleyi

and diatoms determined by the silicate concentration. When silicate was low diatoms

3234
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are assumed to be unable to produce highly silicified tests and become more vulnerable

to grazers, therefore microzooplankton switch feeding from E. huxleyi to diatoms when

silicate is less than 3µmol L
−1

. There is little evidence from data to back up this intu-

itive assumption of switching in the Norwegian Sea; however, mesocosm experiments

have shown that diatom dominance ceases when silicate concentration fall below 2–5

3µmol L
−1

(Egge and Aksnes, 1992). There is a relatively low silicate concentration

year-round within the Norwegian Sea so it may be that there is little variation in grazer

selection. However this assumption was left in the model and tests are carried out of

the sensitivity of the E. huxleyi and diatom populations to this grazing assumption.

Silicate and nitrate are the two main nutrients modelled here. Phosphate was not10

included because preliminary data analysis of OWS M data suggested that phosphate

levels were not limiting.

The primary objectives of this study are to investigate the nutrient and carbon cy-

cling within the Norwegian Sea, rather than to accurately model the phytoplankton

and zooplankton processes. However, some biological detail is necessary in order15

to represent biological impacts on nutrient and carbon cycles, and thus the ecosys-

tem is constrained to approximately fit the data, while at the same time acknowledging

considerable uncertainty over how to correctly represent competition between different

phytoplankton functional groups (Anderson, 2005).

2.1.3 The carbonate system20

The carbonate system is forced by deep total alkalinity (AT0), deep total dissolved

inorganic carbon (CT0) and atmospheric pCO2 (pCO
(atm)

2
). pCO

(atm)

2
was calculated

as an interpolated trend taken from the annual cycle of atmospheric CO2 and then

adjusted to a mean annual value of 377 ppm (averaged from OWS M observations for

the time period 2002–2005; Tans and Conway, CDIAC) following the suggestion from25

Bellerby et al. (2005) that there is a seasonal fluctuation in pCO
(atm)

2
. Omitting this

seasonal fluctuation leads to the flux of CO2 into the ocean during the summer period

3235
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being overestimated.

CT is removed from the upper layer of the water column by the consumption of in-

organic carbon by phytoplankton but is added by respiration of organic material. CT

is also influenced by air-sea CO2 exchange with the atmosphere and by CaCO3 for-

mation and dissolution. Seawater pCO2 was calculated from model variables of AT ,5

SST, salinity and CT along with apparent dissociation constants of carbonic acid, boric

acid, the solubility of CO2 and the hydrogen ion activity by using the iterative method

presented by Peng et al. (1987). Changes in surface AT were simply computed as

the balance between calcification, dissolution and diffusive mixing; the effects of nitrate

were not included.10

2.2 Data analysis

The data were collected every month from January 2002 to December 2005 from the

Norwegian Sea at Ocean Weather Station M, located at 66
◦
N, 02

◦
E on the continental

slope (Skjelvan et al., 2007; F. Rey, personal communication, 2007). Data used here

includes nitrate concentration, silicate concentration, temperature, salinity, CT and AT15

and represents the values at depth ≤20 m.

3 Results

3.1 The standard run

3.1.1 The nutrients

The OWS M data show that nitrate (Figs. 5a–c) is removed from the surface layer20

after ∼JD 120 (April) at a rate of about 183 mmol m
−3

d
−1

and becomes limiting

(i.e. <1 mmol m
−3

) by ∼JD 180 (July). Nitrate remains at relatively low concentrations

until ∼JD 240 when there is a more gradual increase (∼0.12 mmol m
−3

d
−1

) as a re-

sult of cross-thermocline mixing and entrainment from the deep ocean as stratification

3236
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breaks down. Maximum values are not reached until January. There is some interan-

nual variability in the surface nitrate data during the summer seasons; however it does

appear to reach <1 mmol m
−3

.

Silicate (Figs. 5d–f) decreases slowly during the spring and summer (at a rate of

∼0.005 mmol m
−3

d
−1

), reaching a minimum by August but almost immediately in-5

creasing again, while in another year (2005) it can be seen to decrease more rapidly

(∼0.13 mmol m
−3

d
−1

) but then fluctuate between 1 mmol m
−3

and 2 mmol m
−3

over the

summer before increasing back to the winter maximum.

The standard run of the model (Fig. 5) demonstrates a similar pattern of nitrate con-

sumption. Concentration decreases relatively rapidly during spring, remaining at rel-10

atively low concentrations over the summer and then slowly increasing back to the

winter maximum value. The standard run is not able to reproduce the slow decline in

silicate seen in 2002 and 2003, but is able to reproduce the more typical rapid decline

in silicate as a result of diatom consumption seen in many other temperature locations

(e.g. Larsson et al., 2001, Merico et al., 2004, Takahashi et al., 1993) and seen in the15

Norwegian Sea data in 2005.

3.1.2 The carbonate system

Figure 6 shows the standard run of the atmospheric and surface water pCO2 alongside

data points from Gislefoss et al. (1998). The data points are from 1993 and 1994 and

hence are at lower pCO2 than this model is set to. Modelled output has therefore been20

shifted down to demonstrate the similarities between the pattern and magnitude of the

seasonal cycle. Figure 6 illustrates the atmospheric and surface water pCO2 when

there are no coccolithophores present in the model (blue dots) and when all biology is

turned off in the model (thin dashed line).

The model demonstrates clearly the role of biology in the seasonal cycle of the car-25

bonate system. When biology is turned off AT remains constant throughout the year

(“no bio” in Fig. 7). Without biology, the slight increase in [CO
2−
3

] over the summer pe-

riod occurs as a result of loss of CO2 to the atmosphere, and the seasonal amplitude

3237
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of calcite saturation state is small (0.4 units). pCO2 in the surface water decreases and

increases with temperature over the seasons, with a peak (>400µatm) in August (JD

225), before declining again as SST decreases into winter (Fig. 6). In the run without

biology again, the partial pressure in the surface waters is above the atmospheric par-

tial pressure for most of the summer period, giving a net flux of CO2 out of the surface5

layer into the atmosphere.

With the biology included, the dynamics are very different (Figs. 6 and 7). Phyto-

plankton bloom over the spring and summer period consuming CT from the surface

layer. This consumption of carbon dioxide during photosynthesis causes a decrease in

pCO2 in the surface water that is sufficient to keep the partial pressure below that of10

the atmosphere for the majority of the year, despite the warming of surface waters, in

agreement with recent in situ observations of pCO2 at OWS M (data not shown).

[CO
2−
3

] and [CT ] in the standard run (with biology, SR in Fig. 7) follow similar patterns

to the data: [CO
2−
3

] increases over the summer period (from ∼120 to ∼170µmol kg
−1

)

as a result of biological consumption of CT . This causes an increase in Ωcal from about15

3 to 4 following the spring bloom. AT and carbonate ion data have large interannual

variability, which is not easily replicated by the model. Modelled AT and [CO
2−
3

] are both

low in years 2004 and 2005 compared to the data, at least when coccolithophores are

included (SR in Fig. 7). This could imply that coccolithophores blooms did not occur

during these years. During the coccolithophore growth period over the late summer in20

2002 and 2003, there is a decrease in model AT by about 38µEq kg
−1

, matching the

data, as a result of CaCO3 formation by production of coccoliths.

3.2 Sensitivity analysis

There are some discrepancies between the standard run model output and the data

– most notably the silicate removal in spring. The following sensitivity analyses were25

carried out to establish if the model could produce a better fit under different scenarios

of forcing, grazing and growth rates. The sensitivity analysis also demonstrates why

3238
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the standard parameters were chosen.

3.2.1 C: N ratio

It has recently been argued that the original Redfield ratio of C:N is not correct for all cir-

cumstances (Takahashi et al., 1985; Sambrotto et al., 1993; Anderson and Sarmeinto,

1994; Brostrom, 1998; Kahler and Koeve, 2001; Kortzinger et al., 2001; Falck and An-5

derson, 2005). Model sensitivity for C:N ratio demonstrated that a ratio of 1:6.6 (C:N)

underestimated the CT consumption over the summer period (Figure 8). When the ra-

tio was increased to 1:9 the fit was much closer; and a high ratio (1:12) overestimated

the carbon system values. A ratio of 1:9 was therefore considered the most appropriate

and was used in the standard run and all further analyses.10

3.2.2 Mixed layer depth

The MLD varies interannually; the timing and rate of shoaling of the mixed layer com-

bined with levels of irradiance determines when the spring bloom occurs and its mag-

nitude. Figure 9 shows three simulations of MLD: a rapidly shoaling and deepening

mixed layer (MLD1) and a slowly shoaling and deepening mixed layer (MLD2) and15

an intermediate mixed layer (SR). MLD1 does not greatly alter the system during the

spring bloom because at this time phytoplankton are limited by light; however the more

rapid deepening in autumn stimulates an autumn phytoplankton bloom which main-

tains the nutrients and CT at lower concentrations for a longer period into winter. MLD2

slows the shoaling of the mixed layer and hence the phytoplankton remain below the20

critical depth for a longer period of time. Alternative MLD variations do not improve the

agreement with data and so are not used.

3.2.3 Growth rate of diatoms and flagellates

The OWS M data suggests that consumption of nitrate and silicate does not occur at

equal rates as would be expected for a spring bloom dominated by diatoms. In fact25
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silicate is depleted much more slowly. In order to assess why this happens the growth

rates for flagellates and diatoms were both increased and decreased by 50% of the

standard parameter (Fig. 10). When the growth rates are lower the diatoms are inhib-

ited from blooming, the flagellates then bloom later, along with a larger coccolithophore

bloom (∼JD 160 compared to ∼JD 140) causing a greater overall increase in chloro-5

phyll than during the SR (∼9.5 mg Chl m
−3

compared to ∼5.5 mg Chl m
−3

). Silicate is

not reduced until later in the summer when diatoms are finally able to bloom. Nitrate

does not reach low concentrations over the summer as a result of the limited popu-

lation growth. High growth rate allows the populations to bloom earlier in the spring

(∼JD 110, ∼7 mg Chl m
−3

), rapidly depleting both nitrate and silicate. The high growth10

rate causes the phytoplankton and zooplankton to fall into tightly coupled predator-prey

cycles.

3.2.4 Grazing

Microzooplankton and mesozooplankton occur at different times over the annual cy-

cle. Microzooplankton are set to graze more efficiently on coccolithophores when the15

silicate concentration is >3µM but then switch to grazing on diatoms when the sili-

cate concentration falls below 3µM. Silicate is low in the Norwegian Sea (∼5 mmol

m
−3

compared to ∼30µM prior to the spring blooms in the Bering Sea) therefore the

switching becomes almost irrelevant. Mesozooplankton concentration is low and is

food-limited mainly by the dinoflagellate population. With no grazers (i.e. all grazing20

rates set to zero in the model; Fig. 11) the nutrients follow a similar pattern over the an-

nual cycle, except that they are maintained at limiting concentrations over the summer

by the uncontrolled phytoplankton. There are, however, differences within the phyto-

plankton: the diatom bloom is similar in spring but have a second growth period in

late summer (between JD 220 and JD 270); flagellates grow uncontrolled and become25

nitrate limited after JD 150 although their population declines only slowly throughout

the summer maintaining nitrate at low levels. Dinoflagellates and coccolithophores are

out-competed by the flagellates with no apparent growth over the year.
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4 Discussion

4.1 The ecosystem and nutrient dynamics

Previous data suggest that in some years Norwegian Sea nitrate concentrations never

reach limiting levels, while in other years nitrate is fully depleted but not until later in

summer (Kohly, 1998; Dale et al., 1999; Haupt et al., 1999). Various hypotheses have5

been proposed to explain this phenomenon including grazer levels (Taylor et al., 1993)

and silicate-limited growth of diatoms (Dale et al., 1999). The OWS M data examined

here suggest that there is interannual variation in the magnitude and timing of nitrate

depletion which simply reflects the timing and magnitude of the spring bloom. In the

model, diatoms are limited primarily by rapidly depleting the already low silicate con-10

centration in spring, which results in them only having a relatively short bloom. After

this, flagellates bloom and continue the nitrate depletion. Nitrate depletion can be de-

layed by both the time between phytoplankton blooms and the lack of large populations

over the summer period. However the OWS M data do not necessarily agree with these

simulations: silicate is not rapidly consumed, implying that either the diatoms are not15

rapidly blooming or that there is an influx of silicate which is able to counterbalance

any rapid consumption. Neither the model nor the current data agree with previous ob-

servations that nitrate is not depleted in the summer months in some years. Minimum

nitrate for 2002, 2003 and 2005, respectively, is 0.44, 0.50, and 0.63 mmol N m
−3

in

the model and 0.26, 0.02, and 0.18 mmol N m
−3

in the data (Fig. 5).20

This behaviour at OWS M is somewhat at odds with the most commonly observed

pattern in temperate and sub-polar waters during spring: that nitrate and silicate are

rapidly depleted as a consequence of intense phytoplankton blooms. Such a situation

is seen in (1) the eastern Bering Sea (Merico et al., 2004), (2) the Irish Sea (Tyrrell

et al., 2005), (3) the Baltic Sea (Larsson et al, 2001), and (4) the North Atlantic south25

of Iceland at about 60
◦
N (Takahashi et al., 1993). On the other hand the Norwegian

Sea data are more similar to concentrations observed during the North Atlantic Bloom

Experiment (NABE) at 47
◦
N, 20

◦
W (Fasham et al., 2001; Takahashi et al., 1993). Al-
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though the data in Fig. 9 suggest that, in the Norwegian Sea, nitrate does get depleted

to limiting levels each summer, the slow exhaustion rates of nitrate and, especially, sil-

icate, are atypical compared to most other locations, and the peak springtime chloro-

phyll concentrations (≤3 mg chl-a m
−3

) are quite low compared to the other locations

e.g. 16 mg chl-a m
−3

in the eastern Bering Sea and ∼12 mg chl-a m
−3

in the Irish Sea.5

Analysis of longer term datasets for this area agree with these findings (F. Rey, per-

sonal communication, 2007). They suggest that the preferential grazing of zooplankton

on diatoms may explain the relatively slow depletion of silicate. However, the selective

grazing function in our model cannot account for the low chlorophyll levels and studies

have shown that the dominant zooplankton grazers in the Norwegian Sea, Calanus hel-10

golandicus and Calanus finmarchicus (Gaard, 2000) both have reduced reproductive

output during diatom dominated blooms and hence preferentially graze on non-diatom

species (Nejstgaard et al., 2001).

The data from OWS M clearly show that it is not a full High Nutrient Low Chlorophyll

(HNLC) area, as, although peak chlorophyll concentrations are low, nutrient concen-15

trations do fluctuate considerably across the seasonal cycle. However, the chlorophyll

levels observed in the Norwegian Sea are more representative of those seen in HNLC

areas, for example, the Subarctic Northeast Pacific (OWS P), which has constant low

chlorophyll levels (<3 mg chl-a m
−3

) throughout the annual cycle (Tyrrell et al., 2005).

Previous work suggests that phytoplankton growth in spring in the North Atlantic is20

influenced by levels of iron (Moore et al., 2006). This raises the question as to whether

spring blooms at OWS M could also be restrained by low levels of iron in some years.

OWS M lies on the continental slope and is subject to different conditions to shelf seas,

but is also not an open ocean system. One possible explanation of the low chlorophyll

levels and slow/incomplete nutrient depletion in some years could be that iron scarcity25

inhibits large phytoplankton blooms during some years but not others. The interannual

variability could thus potentially be explained by the advection of coastal waters across

OWS M only in some years (this often occurs around August time, as determined from

sea surface salinity measurements). Coastal and shelf waters typically have higher
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iron content due to iron release from sediments (e.g. Aguilar-Islas et al., 2007).

4.2 Local CO2 sink strengths

The annual cycle of carbon dioxide partial pressure in the surface waters (pCO2(SW ))

has been explored here. At the start of the year pCO2(SW ) decreases as result of the

colder water temperatures and the continued vertical exchange of carbon that carries5

on until the summer pycnocline has formed. The spring bloom rapidly consumes CO2

from the surface water and hence decreases the partial pressure, (by up to 100µatm)

(Fig. 6). The removal of pCO2(SW ) occurs throughout the summer until the breakdown

of stratification and the end of biological production.

For the first part of the year until the end of the biological production period, the10

waters act as a sink for carbon dioxide, with an average model CO2 flux of 37 g C m
−2

yr
−1

from the atmosphere to the surface water. Falck and Anderson (2005) calculated

a flux of CO2 of 32 g C m
−2

yr
−1

for OWS M data during 1991 – 1994 and Skjelvan

et al. (2005) suggest 20 g C m
−2

yr
−1

for the Norwegian Sea. Other estimates for the

Nordic Seas area include a flux of 53 g C m
−2

yr
−1

into the Greenland Sea (Anderson15

et al., 2000) and 69 g C m
−2

yr
−1

into the Iceland Sea (Skjelvan et al., 1999). The

model has demonstrated that without biological production occurring over the summer

period there would only be a flux into the surface waters during the winter months when

temperatures are low. The variability in fluxes between locations in the Nordic Seas

may result from the varying amounts of primary production, the varying hydrographic20

conditions and/or the different water masses occurring at each location.
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4.3 Comparison to other carbonate system measurements in waters with abundant

coccolithophores

4.3.1 Alkalinity

Robertson et al. (1994), in the North Atlantic, south of Iceland, gives AT values within

areas that do not have coccolithophores present of about 2330µEq kg
−1

(comparable5

to the modelled winter values in the Norwegian Sea: 2320µEq kg
−1

). Areas where

coccolithophore blooms had occurred, gave lower AT values (lowest AT<2290µEq

kg
−1

at approximately 63
◦
N, 22

◦
W). This implies that areas harbouring intense coc-

colithophore blooms should experience reductions in AT of about 50–60µEq kg
−1

.

The decrease in alkalinity by 38µEq kg
−1

obtained from the Norwegian Sea model10

implies that there are relatively small blooms of coccolithophores present in late sum-

mer. Satellite data confirm this view: SeaWiFS derived calcite concentrations for the

OWS M location range from about 0.5 mmol CaCO3-C m
−3

in winter to a maximum

of 4 mmol CaCO3-C m
−3

in summer in some years (SeaWiFS Project, 2006). These

values are in agreement with values of modelled calcite, produced as free coccoliths15

(range from 0 mmol C m
−3

to 3.5 mmol C m
−3

). Interestingly, SeaWiFS images show

that coccolithophore blooms commonly occur along the Norwegian coast but some-

times also extend out as far as the shelf break where OWS M is situated (SeaWiFS

Project, 2006).

4.3.2 Dissolved inorganic carbon20

CT concentration in the Norwegian Sea in winter was about 2140µmol kg
−1

, while in

June-July it was about 2080µmol kg
−1

, which is a similar value to non-coccolithophore

bloom areas in July 1991 in the North Atlantic (Robertson et al., 1994). The lowest

CT concentration reached in the Norwegian Sea was about 2050µmol kg
−1

, again

similar to values measured south of Iceland. Takahashi et al. (1993) show that in the25

northeastern North Atlantic CT declined by about 60µmol kg
−1

during the phytoplank-
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ton bloom period in late March through to late May (during the North Atlantic Bloom

Experiment study in 1989).

4.3.3 Partial pressure of CO2

Holligan et al. (1993) use data from the same cruise as Robertson et al. (1994) and pro-

pose that coccolith production caused a relative increase of up to 50 µatm in pCO2(SW )5

in association with AT and CT changes. The model of Merico et al. (2006), calcu-

lated an increase in pCO2 of about 40 µatm associated with coccolithophore blooms

in the eastern Bering Sea. Takahashi et al. (1993) measured a spring bloom reduc-

tion in pCO2(SW ) of about 60µatm in the northeastern North Atlantic. Murata (2006)

addressed the cause-and-effect relationships associated with coccolithophore blooms10

and changes in pCO2, demonstrating that pCO2 decreases only by 18µatm during a

coccolithophore bloom compared with nearly 150µatm during a diatom bloom. Results

in this study concur with the suggestion that where large coccolithophore blooms occur

the local area may become a reduced sink of atmospheric CO2.

4.3.4 Carbonate ion and calcite saturation state15

Merico et al. (2006) modelled the seasonal cycle of carbonate chemistry in the eastern

Bering Sea (specific location: 56.8
◦
N, 164

◦
W). The model calculated considerable

seasonal variation in both carbonate ion (winter ∼100µMol kg
−1

, summer ∼150µMol

kg
−1

) and calcite saturation state (winter ∼2.5, summer ∼3.5). Both variables were low

in winter, rose sharply at the time of the spring blooms, and then stayed high during20

the summer until declining in autumn due to mixing. There was, however, a lack of

data with which to test these model results in the eastern Bering Sea. In contrast, data

are available for model comparison in this study. Our results from the Norwegian Sea

shelf break (Ocean Weather Station M, 66
◦
N, 2

◦
E), agrees in outline with the model

predictions for the eastern Bering Sea (compare Figs. 2 and 7). The Norwegian Sea25

data also show a seasonal oscillation in carbonate ion concentration (winter ∼130µMol
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kg
−1

, summer ∼180µMol kg
−1

) and in calcite saturation state (winter ∼3, summer

∼4). Values of both variables are slightly higher in this study than found in Merico et

al. (2006).

The seasonal pattern in Ωcal is predominantly determined by the spring diatom

blooms, because the intense CT removal has the effect of driving up carbonate ion5

concentrations (Merico et al., 2006).

Annual averages of [CO
2−
3

] and Ωcal, but not seasonal patterns, can also be com-

pared to the GLODAP dataset (Key et al., 2004). This is a global dataset of carbonate

chemistry (CT and Alkalinity) measurements from open ocean cruises. Average annual

values are calculated, with possible biases due to sampling of many locations at only10

one time of year (e.g. scarcity of winter measurements at high latitudes). The dataset

does not extrapolate to the Norwegian Sea, but for the open North Atlantic at 60
◦
N,

20
◦
W, the carbonate ion concentration derived from the GLODAP dataset (together

with temperature and salinity taken from Levitus climatologies) is about 170µMol kg
−1

,

and the calcite saturation state is about 4. Two stations close to OWS M were sampled15

in July 1981 during the Transient Tracers in the Ocean, North Atlantic Study (TTO-NAS)

cruise programme, giving rise to carbonate ion concentration = ∼178µMol kg
−1

and

Ωcal=∼4.3 at ∼65
◦
N, 06

◦
W, and carbonate ion concentration = ∼172 µMol kg

−1
and

Ωcal=∼4.2 at ∼68
◦
N, 03

◦
W (Brewer et al., 1986, applying the revisions to the data

recommended by Tanhua and Wallace, 2005).20

The OCCAM (Ocean Circulation and Climate Advanced Monitoring) model output

for calcite saturation state gives, for the OWS M location, an annual range in calcite

saturation state from ∼3 in winter to between 4 and 5 in summer (A. Yool, personal

communication, 2007), in reasonable agreement with our data and model,

We also took two published datasets of CT , pCO2(aq), SST and salinity (Takahashi25

et al., 1985, Table 2), from north and south of Iceland, and used them to calculate the

seasonal cycles of carbonate ion and saturation state (Fig. 12). Both stations exhibit

seasonal oscillation in carbonate ion concentration and saturation state, again with

higher values in summer (∼190 µMol kg
−1

and 4.5–5 respectively), lower in winter
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(110-130 µMol kg
−1

, ∼3), and again in reasonable quantitative agreement with the

numbers in this study.

5 Conclusions

Our results from a coupled carbon-ecosystem model combined with observational data

from an ocean weather station in the Norwegian Sea provide additional evidence of a5

temporal association between phytoplankton and the carbonate system, with particular

recognition that coccolithophore success may be related to the calcite saturation state,

although coccolithophore blooms at OWS M are not as prevalent here as other areas,

such as south of Iceland. The Norwegian Sea data show evidence that the calcite

saturation state increases after (and as a result of) the spring bloom, with higher satu-10

ration states in summer than in winter. This has already been proposed by Merico et

al. (2006) from model results, and is here confirmed with data.

Both the model and data show that silicate is not rapidly exhausted by diatoms during

the spring bloom, in contrast to the typical dynamics elsewhere; the data also highlight

the possibility that grazing and macro-nutrient dynamics are not alone in controlling15

the observed nutrient and chlorophyll concentrations at OWS M, suggesting that there

may be partial iron limitation. This is in agreement with recent work revealing that other

ocean regions, such as the North Atlantic, are influenced by iron availability (Moore et

al., 2006).
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Table 1. Parameters of the standard model compared to other models (
a

Merico et al., 2004;
b

Evans and Parslow, 1985;
c

Fasham et al., 1990;
d

Taylor et al., 1993).

Parameter Symbol Units MBS04
a

EP85
b

F90
c

T93
d

Current

Diatoms (Pd )

Maximum growth rate at 0
◦
C µ0,d day

−1
1.2 2.9 0.9 1.3

Minimum sinking speed vd m day
−1

0.5 0.5

Mortality rate md day
−1

0.08 0.08

Light saturation constant Is,d W m
−2

15 15

Nitrate half-saturation constant Nh,d mmol m
−3

1.5 0.5 0.3 1.5

Ammonium half-saturation constant Ah,d mmol m
−3

0.05 0.005 0.1

Silicate half-saturation constant Sh mmol m
−3

3.5 0.3 3.5

Flagellates (Pf )

Maximum growth rate at 0
◦
C µ 0,f day

−1
0.65 0.6

Mortality rate mf day
−1

0.08 0.1

Light saturation constant Is,f W m
−2

15 15

Nitrate half-saturation constant Nh,f mmol m
−3

1.5 1.5

Ammonium half-saturation constant Ah,f mmol m
−3

0.05 0.1

Dinoflagellates (Pdf )

Maximum growth rate at 0
◦
C µ0,d f day

−1
0.6 0.4

Mortality rate mdf day
−1

0.08 0.12

Light saturation constant Is,d f W m
−2

15 15

Nitrate half-saturation constant Nh,df mmol m
−3

1.5 1.5

Ammonium half-saturation constant Ah,df mmol m
−3

0.05 0.1

E. huxleyi (Peh)

Maximum growth rate at 0
◦
C µ0,eh day

−1
1.15 0.5

Mortality rate meh day
−1

0.08 0.08

Light saturation constant Is,eh W m
−2

45 45

Nitrate half-saturation constant Nh,eh mmol m
−3

1.5 0.5 0.3 1.5

Ammonium half-saturation constant Ah,eh mmol m
−3

0.05 0.005 0.1

Nitrate (N)

Deep concentration N0 mmol m
−3

20 10 10 12

Nitrification rate Ω day
−1

0.05 0.05

Silicate (S)

Deep concentration S0 mmol m
−3

35 6 5

Microzooplankton (Zmi )

Assimilation efficiency (S<3 uM) Beh,mi , Bf ,mi , , Bd,mi 0.75, 0.75, 0.75 0.5 0.75 0.75, 0.75, 0.75

Assimilation efficiency (S>3 uM) Beh,mi , Bf ,mi , Bd,mi 0.75, 0.75, 0.75 0.75, 0.75, 0.75

Grazing preferences (S<3 uM) Peh,mi , Pf ,mi , Pd,mi 0.33, 0.33, 0.33 0.2, 0.6, 0.2

Grazing preferences (S>3 uM) Peh,mi , Pf ,mi , Pd,mi 0.5, 0.5, 0.0 0.3, 0.6, 0.1
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Table 1. Continued.

Parameter Symbol Units MBS04
a

EP85
b

F90
c

T93
d

Current

Max. ingestion rates (S<3 uM) geh,mi , gf ,mi , gd,mi day
−1

0.175, 0.7, 0.7 1 0.7, 0.7, 0.7

Max. ingestion rates (S>3 uM) geh,mi , gf ,mi , gd,mi day
−1

0.7, 0.7, 0.0 1 0.7, 0.7, 0.7

Grazing half-saturation constant Zh,mi mmol m
−3

1 1 1

Mortality rate mmi day
−1

(mmol m
−3

)
−1

0.05 0.05 0.05

Excretion rate emi day
−1

0.025 0.1 0.025

Fraction of mort going to Ammonia δmi day
−1

0.1 0.75 0.1

Mesozooplankton (Zme)

Assimilation efficiency Bd,me, Bmi,me, Bdf,me 0.75, 0.75, 0.75 0.75, 0.75, 0.75

Grazing preferences Pd,me,Pmi,me, Pdf,me 0.33, 0.33, 0.33 0.33, 0.33, 0.33

Max. ingestion rate gd,me, gmi,me,,gdf,me day
−1

0.7, 0.7, 0.7 0.7, 0.7, 0.7

Grazing half-saturation constant Zh,me mmol m
−3

1 1

Mortality rate mme day
−1

(mmol m
−3

)
−1

0.2 0.05

Excretion rate eme day
−1

0.1 0.1

Fraction of mort going to Ammonia δme 0.1 0.1

Detritus (D)

Sinking speed VD m day
−1

0.4 1-10 0.4

Breakdown rate mD day
−1

0.05 0.05 0.05

Cross-thermocline mixing rate k m day
−1

0.01 3 0.1 0.2 0.2

Cloud cover PAR data 0.9 0.4 0.75

Coccoliths as of Merico et al. (2004)

Carbonate system (CT , AT )

CT deep concentration CT0 µmol kg
−1

2100 2140

AT deep concentration AT0 µEq kg
−1

2250 2320

Atmospheric pCO2 pCO2(air) µatm 345 377
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Fig. 1. Map of the Nordic Seas including major surface currents and Ocean Weather Station

M (OWS M) at 66
◦
N, 02

◦
E. Major oceanic fronts and approximate ice edges are also indicated

and the continental shelf is marked by the c contour. EGC = East Greenland Current, EIC =

East Icelandic Current, NAD = North Atlantic Drift, NAC = Norwegian Atlantic Current, NCC =

Norwegian Coastal Current. Adapted from Andruleit (2000).
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Fig. 2. Biological and carbonate system variables in the eastern Bering Sea from 1995 to 2001.

(a) Modelled CT (black line) and modelled chlorophyll (red line) as compared with weekly aver-

ages of SeaWiFS-derived chlorophyll data (red dots); (b) modelled carbonate ion concentration;

(c) modelled calcite saturation state (black line) and modelled E. huxleyi abundance (red line)

as compared with observed concentrations (red dots); (d) modelled CO2 partial pressure in

seawater (black line) and observed CO2 partial pressure in the atmosphere (dashed black line)

and modelled dissolved CO2 (red line); (e) modelled alkalinity (black line) and modelled free

coccolith concentration (red line). Adapted from Merico et al. (2006).
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Fig. 3. Physical structure of the model with main biological and chemical components. Arrows

represent exchange of materials. Open arrows indicate the material flowing between the mixed

layer and bottom layer. The arrow from E.huxleyi (Peh) to attached coccoliths (La) is dashed

indicating that attached coccoliths are produced proportionately to the E.huxleyi concentration

rather than with a real flow of material between these two compartments. Note that mesozoo-

plankton (Zme) also grazes on microzooplankton (Zmi ). See text for more details. (Adapted

from Merico et al., 2006).
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Fig. 4. Physical data from OWS M which is used to force the model over each year, 2002

to 2005. (a) MLD (m) (thick line) and daily average light available for phytoplankton at the sea

surface (W m
−2

) (thin line), (b) sea surface temperature (
◦
C) (thick line) and sea surface salinity

(psu) (thin line), and (c) wind speed (m s
−1

) (thick line) and gas transfer velocity (kw ), (m h
−1

)

(thin line).

3257

http://www.biogeosciences-discuss.net
http://www.biogeosciences-discuss.net/4/3229/2007/bgd-4-3229-2007-print.pdf
http://www.biogeosciences-discuss.net/4/3229/2007/bgd-4-3229-2007-discussion.html
http://www.egu.eu


BGD

4, 3229–3265, 2007

Carbon and nutrient

cycling in the

Norwegian Sea

H. S. Findlay et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

◭ ◮

◭ ◮

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

EGU

Fig. 5. The standard run output showing modelled data (black lines) and OWS M data (≤20 m)

(crosses) for (a) 2002 nitrate, (b) 2003 nitrate, (c) 2005 nitrate, (d) 2002 silicate, (e) 2003

silicate, (f) 2005 silicate, (g) 2002 chlorophyll, (h) 2003 chlorophyll, (i) 2005 chlorophyll. Year

2004 not included here because of lack of data.
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Fig. 6. Modelled output of carbon dioxide partial pressure in air (thin red line) and seawater

with the standard run (thick black line), with no coccolithophores (thick dot blue line) and with

all biology switched off (thin dashed green line) (averaged over the four modelled years). Data

points (crosses) represent observed carbon dioxide partial pressure in seawater taken from

Gislefoss et al. (1998). The data points are from 1993 and 1994 and hence they are at lower

pCO2 than the current model is set to. Modelled output has therefore been shifted down to fit

data points demonstrating the pattern and magnitude of the seasonal cycle.
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Fig. 7. Model output for carbonate system showing standard run (thick line), with biology turned

off (thick dashed line) and with biology on but no coccolithophores (thin dashed line) compared

to data (crosses) (a) AT (black) and free coccoliths (red), (b) CT (black) and chlorophyll con-

centration (red), (c) carbonate ion concentration and (d) calcite saturation state (black) and

coccolithophore concentration (red).
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Fig. 8. Sensitivity analysis of the C:N ratio. Showing (a), CT (b) and CO3 (c) Calcite saturation

state for the standard run where the C:N = 6.6 high C:N = 12 and mid C:N ratio = 9. The dots

represent the combined OWS M data (≤20 m) from the period 2002–2005.
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Fig. 9. Sensitivity of (a) MLD, (b) nitrate concentration, (c) silicate concentration, and (d)

chlorophyll concentration in standard run (SR) compared to rapid shoaling and deepening of

the mixed layer (MLD1) and slow shoaling and deepening of the mixed layer (MLD2). The dots

represent the combined OWS M data (≤20 m) from the period 2002–2005.
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Fig. 10. Sensitivity of (a) nitrate concentration, (b) silicate concentration and (c) chlorophyll

concentration to changes diatom and flagellate growth rates (standard run, 50% higher growth

rate (high growth) and 50% lower growth rate (low growth)). The black dots represent the

combined OWS M data (≤20 m) from the period 2002–2005.
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Fig. 11. Model simulations showing standard run and when no grazers are present, (a) nitrate

concentration, (b) silicate concentration, (c) total chlorophyll concentration. The dots represent

the combined OWS M data (≤20 m) from the period 2002–2005.
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Fig. 12. Calculated seasonal cycles of (a) carbonate ion concentration and (b) calcite saturation

state for north and south of Iceland (data taken from Table 2 of Takahashi et al., 1985).
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