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Abstract

We hypothesized that the patterns of NO
−

3
and NH

+

4 retention are different over short-

term scales while they are similar over long-term scales in alpine meadows and that

abiotic and biotic factors might be responsible for their different patterns over short-term

scales. In order to test the hypotheses, a
15

N-labeled experiment was conducted in an5

alpine meadow in the Qinghai-Tibet Plateau over four years. Our results showed that
15

NO
−

3
and

15
NH

+

4 retention was distinctly different within two months, and even one

year after tracer additions. The long-term retention of
15

N at the whole-plot level did not

differ significantly between
15

NH
+

4 and
15

NO
−

3
treatments, and averaged 50% after four

years. Higher soil temperature or soil organic carbon concentration enhanced
15

NH
+

410

retention, but significantly reduced
15

NO
−

3
retention in the soil within two months follow-

ing tracer additions. Soil moisture significantly affected
15

N recovered in soil organic

matter and microbial biomass as well as aboveground parts, but had no significant

effects on
15

N recovered in roots. These findings have important ecological implica-

tions with regard to the consequences of deposited nitrogen because of the possible15

difference in the fate of NH
+

4 vs. NO
−

3
in alpine meadow ecosystems.

1 Introduction

Nitrogen (N) is an element which is most affected by human activities on the earth.

Up to date human activities have approximately doubled the annual N input to terres-

trial ecosystems through a variety of mechanisms (Galloway et al., 1995; Vitousek et20

al., 1997; Galloway et al., 2004). A growing body of evidence shows that available N

supplies often limit plant growth in a wild range of terrestrial ecosystems such as tem-

perate forests (Flanagan and Van Cleve, 1983; Aber et al., 1995; Hedin et al., 1995;

Perakis and Hedin, 2001; Perakis et al., 2005 ), temperate grasslands (Lauenroth et

al., 1978; Harrison et al., 1994), and tundra (Shaver and Chapin, 1980; Nadelhoffer25
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et al., 1992; Chapin et al., 1995) as well as alpine ecosystems (Bowman et al., 1993;

Cao and Zhang, 1999; Makarov et al., 2001). Hence, N retention in a wild variety of

terrestrial ecosystems has been extensively investigated to improve our understanding

of the consequences resulting from anthropogenic N input (Wright and Tietema, 1995;

Magill et al., 1997; Vitousek et al., 1997; Matson et al., 2002; Aber et al., 2003; Fenn5

et al., 2003; Townsend et al., 2003; Stevens et al., 2004; Zak et al., 2004).

Biogeochemical processes have been suggested to be mediated by interactions

among physical and biological factors operating across a wide range of spatial and

temporal scales. Accordingly, abiotic and biological factors have been considered as

important mechanisms responsible for N retention in terrestrial ecosystems. For exam-10

ple, three possible mechanisms have been recognized to be responsible for abiotic N

retention: ionic substitution of NH
+

4 in soils (Young and Aldag, 1982; Stevenson, 1994),

reduction of NO
−

2
by humic substances at low pH and condensation of amino acids

or NH3 with phenolic compounds (Nömmik, 1965, 1970; Nömmik and Vahtras, 1982;

He et al., 1988; Thorn and Mikita, 1992). In contrast, microbial assimilation and plant15

uptake have been suggested as a critical pathway for biotic N retention (Vitousek and

Reiners, 1975; Zak et al., 1990; Epstein et al., 1998; Hooper and Vitousek, 1998; Zogg

et al., 2000; Epstein et al., 2001; Templer, 2001; Templer et al., 2005).

In order to obtain a clear insight into the mechanisms above, a large number of stud-

ies have recently been conducted to understand the role of abiotic and biotic factors20

in N retention in different terrestrial ecosystems. Fisk et al. (1998) have showed that

the topographic soil moisture gradient controls N retention patterns in alpine tundra.

As one of the most important abiotic factors, temperature has been shown to control

N cycling in terrestrial ecosystems (Van Cleve, 1983; Hill and Shackleton, 1989; Ti-

etema and Verstraten, 1992), but little is known about the role of soil temperature in25

N retention in terrestrial ecosystems. In contrast, soil organic matter has won more

concerns as one of the most important soil properties. It shows that SOC has a great

influence on abiotic N immobilization in grassland soils (Barrett and Burke, 2000; Bar-

rett et al., 2002) and plays an important role in stabilizing different inorganic N forms
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in both grassland (Barrett and Burke, 2000; Barrett et al., 2002; Kaye et al., 2002) and

forest soils (Johnson et al., 2000; Dail et al., 2001). Besides abiotic factors above,

plants have also been shown to have an influence on N retention in both forests (Tem-

pler, 2001; Templer et al., 2005) and steppes (Epstein et al., 1998, 2001). Moreover,

Johnson et al. (2000) compared abiotic and biotic N retention in a variety of forest soils5

and showed that abiotic N immobilization can be a significant process in these forest

soils. However, most studies in this regard have focused on
15

NH
+

4 or
15

NO
−

3
retention

in grasslands (Hart et al., 1993; Barrett et al., 2002) and forests (Hart et al., 1993;

Johnson et al., 2000; Zogg et al., 2000; Dail et al., 2001; Perakis and Hedin, 2001;

Zak et al., 2004). Only a few have been conducted to compare the patterns of
15

NO
−

3
10

and
15

NH
+

4 retention in studied ecosystems, except in a number of forest ecosystems

(Bengtsson and Bergwall, 2000; Perakis and Hedin, 2001; Fitzhugh et al., 2003). By

comparison, very few have been conducted to explore the difference between short-

term and long-term N retention patterns of
15

NO
−

3
and

15
NH

+

4 in grasslands, especially

in alpine meadows in the Tibet Plateau.15

Alpine meadows occupy more than 35% of the Tibet Plateau which extends over 2.5

million km
2
. These meadows are very fragile and sensitive to environmental changes

due to the huge altitude of the Plateau. Previous studies showed that plant growth

is limited by available N supplies with an output of 159 kg hm
−2

yr
−1

and an input of

85 kg hm
−2

yr
−1

(Cao and Zhang, 1999) while this region is experiencing N input of 7.2–20

10 kg N hm
−2

yr
−1

through rain (Zuo et al., 1986). We have investigated the patterns

of
15

NO
−

3
and

15
NH

+

4 retention over 13 months in this kind of ecosystems (Xu et al.,

2003, 2004b). Meanwhile, we measured soil temperature at 5 cm depth as well as soil

moisture on each sampling day when gas samples were processed within two months

following tracer additions. Subsequently, we sampled soil and plant materials again25

over four years after tracer additions. This permits us to test the following hypotheses:

(1)
15

NO
−

3
and

15
NH

+

4 retention patterns are different over short-term scales while they

are similar over longer term scales in alpine meadows, and (2) abiotic and biotic factors

are responsible for the difference between NO
−

3
and NH

+

4 retention patterns over short-
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term scales.

2 Materials and methods

2.1 Site description

This study was carried out in a typical Kobresia pygaea meadow around Haibei Re-

search Station of Alpine Meadow Ecosystem, the Chinese Academy of Sciences, lo-5

cated in the northeast of the Tibetan Plateau. This area is characterized by a typi-

cal alpine meadow climate. During the past 30 years annual precipitation averaged

560 mm, 85% of which was concentrated in the growing season (from May to Septem-

ber). Annual temperature averaged –1.7
◦
C. Dominant species in this kind of meadows

are Kobresia pygaea, Ptilagrostis concinna, Saussurea superba, Potentilla nivea, Po-10

tentilla bifurca, Gentiana straminea, Leonto podium nanum and Thalictrum alpinum

(Zhou and Li, 1982). The soil is classified as Mat Cryo-gelic Cambisol (Bao et al.,

1995; Chinese Soil Taxonomy Research Group, 1995) corresponding to Gelic Cam-

bisol (WRB, 1998).

Three sites were selected near Haibei Research Station of Alpine Meadow Ecosys-15

tem in July, 2000. Site I is located at Haibei Research Station of Alpine Meadow

Ecosystem of the Chinese Academy of Sciences, Qinghai Province with an altitude of

3215 m above sea level (37
◦

36
′
N, 101

◦
19

′
E), site II located 16 km northwest of the

station with an altitude of 3515 m above sea level (37
◦

52
′
N, 101

◦
02

′
E), whereas site

III located at the south slope (<30
◦
) of Oboling, 24 km northwest of the station with an20

altitude of 3715 m above sea level (38
◦

00
′
N, 100

◦
55

′
E).

2.2
15

N addition

In July, 2000, a block (15×15 m) uniform in species composition and cover was selected

in this type of meadow at each site. Three plots (3×3 m) were established with 2-

m wide buffer zones between them. On 26 July, 2000, Na
15

NO3(99.26 atom%) and25
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(
15

NH4)2SO4 (99.40 atom%) were dissolved in H2O and sprayed on two of the three

plots at rates of 4.4 and 5.6 kg N hm
−2

, respectively. Another amount of H2O was

sprayed on each plot in order to prevent more
15

N from being absorbed on the leaves.

The total amount of H2O was equivalent to 2 mm of rain. At the same time, equivalent

H2O was sprayed on the third plot as the control.
15

N tracers were added to alpine5

meadows only for one growth season.

2.3 Sampling and analyzing

Soils and plants were collected 2, 4, 6 and 8 weeks after
15

N addition at per site. Four

years after
15

N additions we collected the samples at site I and III again, but did not

collect samples at site II because the plots were destroyed. Detailed description about10

sampling and analyzing are available elsewhere (Xu et al., 2004a). Briefly, we col-

lected soils using a soil corer (2.7 cm in diameter, 15 cm in depth). Live roots carefully

removed from the soil cores were used to estimate root biomass. Aboveground parts

were estimated by harvesting a 25×25 cm square (n=3). Dried soil and plant materials

were used to measure total N,
15

N/
14

N ratio and organic C.15

Total N was measured by Kjeldahl digestion with a salicylic acid modification (Pru-

den et al., 1985), and SOC was measured following the method described by Kalem-

basa and Jenkinson (1973). Microbial biomass N (MBN) was estimated by a chloro-

form fumigation-direct extraction method (Brookes et al., 1985). NH
+

4 -N and NO
−

3
-N in

K2SO4 extracts were measured by stream distillation with MgO, using Dewarda’s alloy20

to reduce NO3 to NH4 (Bremner, 1965). All the samples for
15

N analysis followed the

methods described by Buresh et al. (1982) and Pruden et al. (1985), except NH
+

4 -N

and NO
−

3
-N samples, using a Finnigan MAT-251 mass spectrometer. Soil temperature

at 5 cm depth was measured by geothermometers when gas samples were being pro-

cessed with a-two-week intervals during two months following tracer additions (Xu et25

al., 2004a).

2646

http://www.biogeosciences-discuss.net
http://www.biogeosciences-discuss.net/4/2641/2007/bgd-4-2641-2007-print.pdf
http://www.biogeosciences-discuss.net/4/2641/2007/bgd-4-2641-2007-discussion.html
http://www.egu.eu


BGD

4, 2641–2665, 2007

Nitrogen retention

patterns and

controlling factors

X. Xu et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

◭ ◮

◭ ◮

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

EGU

2.4
15

N recovery calculations

We calculated
15

N recovery in plant and inorganic pools using the N mass, the amount

of added
15

N and the atom% excess
15

N of the corresponding pools.
15

N recovery of

MBN and SOC pools were calculated following the description by Zogg et al. (2000).
15

N recovered in the soil was calculated as the sum of
15

N recovered in MBN, SOC5

and inorganic pools. We used
15

N recovery as an estimate of net N retention in a given

pool at a given time.

2.5 Statistics

Repeated measures analysis of variance was used to test for effects of N species, time,

and N species x time interactions as well as soil moisture on
15

N recovery of different10

components within two months following tracer addition. All results were considered

significant at the P <0.05 level. Statistical calculations were run using a SPSS 11.5

statistical package for windows (SPSS Inc., Chicago, IL). Standard errors of the means

were presented in the tables and on the figures as a variability parameter.

3 Results15

3.1
15

N recovery in different ecosystem components

Results from repeated measures analysis of variance calculations within two months

following tracer addition indicated that the recovery of
15

NH4 and
15

NO3 were sig-

nificant different in SOC, roots and green as well as inorganic N pools except MBN

(Table 3). Detailed values of the recovery of
15

NH4 and
15

NO3 of different components20

at per site within two months following tracer addition were presented in Table 1. The

concentration of inorganic N was considerably low and varies between 0.5 to 1.8 g m
−2

during growing seasons in this kind of alpine meadows, resulting in a remarkable low
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15
N recovery at all three sites within two months following

15
N additions (Table 1).

15
N

was mainly recovered in the four major pools: roots, green, SOC and MBN. Plants in-

cluding roots and green exhibited a strong retention of
15

NO
−

3
and recovered more than

40% of added
15

NO
−

3
over three sites within two months following

15
N addition. Though

alpine plants retained nearly one third of added
15

NH
+

4 , more
15

NH
+

4 than
15

NO
−

3
was5

recovered in SOC on each sampling day. Time also exhibited significant effects on the

short-term recovery of
15

NH4 and
15

NO3 of each of the five components, whereas there

were no effects of interactions of N species by time within two months following tracer

additions (Table 3). Results from repeated measures analysis of variance calculations

within two months following tracer additions also indicated that there were significant10

effects of N species and time on the short-term total recovery of
15

N, and no effects of

interactions of
15

N species by time (Table 3). More
15

NO
−

3
than

15
NH

+

4 was recovered

in alpine meadows on short-term scales.

About one year after
15

N addition a significant difference was still found between the

recovery of
15

NO
−

3
and

15
NH

+

4 of the major three pools: plants, SOC and MBN at site15

I (Xu et al., 2004b). However, over four years after tracer additions the recovery of
15

NO
−

3
and

15
NH

+

4 were similar in roots, green, MBN and SOC pools at site I and site III

(Table 2). About 50% of added N was still retained in alpine meadows over four years

after tracer addition.

3.2 Effects of abiotic factors on
15

N recovery20

Soil moisture varied wildly at site I and increased from 19% in early August to 29%

in early September and decreased to 26% thereafter in late September. Those at

both site II and site III varied slightly, but higher at site II than at site III (Fig. 1). Soil

moisture had a significant effect on the
15

N recovery of different N pools except roots

at a significance level of 0.05 (Table 3).25

Soil temperature at depth of 5 cm increased with increasing altitude. It was a bit

higher at site I than at site II, with similar values at site II and site III (Fig. 2). Soil

2648

http://www.biogeosciences-discuss.net
http://www.biogeosciences-discuss.net/4/2641/2007/bgd-4-2641-2007-print.pdf
http://www.biogeosciences-discuss.net/4/2641/2007/bgd-4-2641-2007-discussion.html
http://www.egu.eu


BGD

4, 2641–2665, 2007

Nitrogen retention

patterns and

controlling factors

X. Xu et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

◭ ◮

◭ ◮

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

EGU

temperature at depth of 5 cm correlated negatively with
15

N recovered in the soil in the

NO
−

3
plots two weeks after

15
N additions (Fig. 2a; R

2
=0.64, P=0.006). In contrast, a

weak positive correlation (R
2
=0.12, P<0.5) was shown between soil temperature at

depth of 5 cm
15

N recovered in the soil in the NH
+

4 plots two weeks after
15

N additions

(data not shown).5

SOC increased with increasing altitude from 8.7% at site I to 9.6% at site III. The

concentration of SOC was negative related to NO
−

3
−

15
N recovered in the soil (Fig. 3A;

R
2
=0.55, P=0.47), but positively correlated to NH

+

4−
15

N recovered in the soil (Fig. 3b;

R
2
=0.70, P=0.37).

4 Discussion10

We measured N retention at scales of weeks to years in a unique and relatively unex-

plored alpine meadow using pulse-chase tracer methods, which permits us to clarify

short-term (within two months) and long-term (up to four years)
15

NO
−

3
and

15
NH

+

4 re-

tention patterns in these alpine meadow ecosystems. Besides, we determined abiotic

factors such as soil moisture, temperature and SOC when we investigated short-term15

N retention. This can allow us to demonstrate how abiotic factors affect short-term N

retention patterns in alpine meadows.

4.1 Difference of
15

N retention of
15

NO
−

3
and

15
NH

+

4 in alpine meadows

Perakis and Hedin (2001) have demonstrated a very similar N pattern of
15

NO
−

3
and

15
NH

+

4 in an unpolluted temperate forest over short-term (days to weeks) and long-term20

(up to two years) time scales. In our study a significant different
15

NO
−

3
and

15
NH

+

4

retention pattern was shown within two months following tracer addition (Table 3), even

one year after
15

N addition at site I (Xu et al., 2004b). However,
15

NO
−

3
and

15
NH

+

4

exhibited a very similar N retention pattern four years after tracer additions.
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Perakis and Hedin (2001) ascribe the similarity in the retention of
15

NO
−

3
and

15
NH

+

4

to a lack of preferential retention of either form of inorganic N, and further suggest

that it is the result of similar mechanisms of uptake and redistribution in the plant-

microorganism-soil system. In our study the difference in retention of
15

NO
−

3
and

15
NH

+

4

over short-term scales can be explained by the properties of the two ions. In the soil5

solution NO
−

3
ions are more mobile than NH

+

4 ions (Owen and Jones, 2001) whereas

NH
+

4 ions are easily bonded by soil colloids. Additionally, higher SOC concentration

(more than 8.0%) occurs in this kind of soils. Therefore, it is easier for plants to acquire

NO
−

3
than NH

+

4 from soils, which is confirmed by the correlations between SOC and
15

N

recovered in the soil from
15

NO
−

3
and

15
NH

+

4 treatments over short time scales (Fig. 3).10

Over two months following tracer additions, alpine plants always took up more
15

N from

NO
−

3
than from NH

+

4 (Table 1). Because NO
−

3
and NH

+

4 can be quickly transformed into

each other in soil solutions (Zak et al., 1990; Zogg et al., 2000), our data didn’t confirm

whether alpine plants preferentially take up NO
−

3
in a two-week interval. However, the

results from our another experiment show that alpine plants take up more
15

N from NO
−

3
15

than from NH
+

4 over a-two-day scale (Song et al., 2007). This indicates that preferential

uptake of
15

NO
−

3
by alpine plants might be a second explanation for the difference in

retention of
15

NO
−

3
and

15
NH

+

4 in alpine meadows over short-term scales. Stronger

stimulation of NO
−

3
on root biomass than NH

+

4 (Xu et al., 2004a) also seems to confirm

our speculation above.20
15

N recovered in MBN varied significantly with time in spite of similar recovery of
15

NO
−

3
and

15
NH

+

4 from two weeks to two months after tracer addition (Tables 1 and

3). This clearly implies that MBN is a temporary N pool and rapid N replacement might

occur in the MBN pool through internal cycling and that the difference in microbial as-

similation of
15

NO
−

3
and

15
NH

+

4 in the soil might occur over days’ scales. No statistical25

difference was observed between microbial
15

N sink from NH
+

4 and NO
−

3
(Table 3), indi-

cating that soil microorganisms didn’t show a preferential uptake for either of inorganic

N although rapid replacement occurred. The similarity in the retention of
15

NO
−

3
and
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15
NH

+

4 over 4 years implies that added N has been stabilized in the two major pools

(SOC and vegetation) and that the two N forms have the same destiny in the long run

in alpine meadows.

Regarding the capacity to retain N, alpine meadows is compared to shortgrass

prairie for
15

NO
−

3
(Clark, 1977) and annual grasslands for

15
NH

+

4 (Hart et al., 1993)5

within one month following tracer additions. However, four years after tracer addition

the capacity to retain
15

NO
−

3
is much weaker in alpine meadows than in a shortgrass

prairie (Clark, 1977).

4.2 Effects of abiotic factors on N retention in alpine meadows

Over short-term scales
15

NH
+

4 retention in the soil increased with SOC content in alpine10

meadows (Fig. 3), as observed by Barret and Burke (2000) that potential N immobi-

lization increases with increasing SOC content in grassland soils. By comparison, only

a limited number of studies have involved NO
−

3
retention in SOC. Dail et al. (2001)

suggest that rapid abiotic transformation plays an important role in NO
−

3
assimilation

in an acid forest soil. Perakis and Hedin (2001) show that SOC possesses a slightly15

higher affinity for added
15

NO
−

3
than

15
NH

+

4 over one day scale. Our study shows that
15

NO
−

3
retention decreased with increasing SOC concentration in alpine meadow soils

over short-term scales under field conditions (Fig. 3). This implies that abiotic pro-

cesses might play less important role in NO
−

3
assimilation in alpine meadow soils than

in forest soils (Dail et al., 2001). In other words, biotic immobilization such as microbial20

assimilation and plant uptake might be important pathway for NO
−

3
retention in alpine

meadows.

Although soil temperature at 5 cm depth was similar at site II and site III, temperature

at site I was significant higher than those at the other two sites. These data at least

show that higher soil temperature reduced
15

NO
−

3
retention in the alpine meadow soils25

(Fig. 2a). Possible explanation is that higher soil temperature simulates
15

NO
−

3
uptake

by plants and thus reduces
15

NO
−

3
recovered in the soil, e.g. numerous studies show
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that higher temperature enhances NO
−

3
uptake by plants using solution culture (Clark-

son and Warner, 1979; Macduff and Jackson, 1991; Cruz et al., 1993). A strong posi-

tive correlation between soil temperature and
15

NO
−

3
uptake by alpine plants (Fig. 2b)

further confirms this. In contrast, higher soil temperature slightly reduced
15

NH
+

4 reten-

tion in the soil with a weaker correlation (data not shown). Several studies show that5

uptake of NH
+

4 increases with root temperature in solution culture and often exceeds

uptake of NO
−

3
(Clarkson and Warner, 1979; Macduff and Jackson, 1991). However,

in this study only a weak negative correlation was presented between soil temperature

and
15

NH
+

4 uptake by plants (data not shown). This implies that different mechanisms

are responsible for uptake of
15

NO
−

3
and

15
NH

+

4 and their redistribution in alpine mead-10

ows. The behavior of NH
+

4 ions in solution culture is different from that in soil solution

because of the complicated nature of soil organic matter. Higher soil temperature might

strengthen the condensation of NH3 with phenolic compounds as well as the combina-

tion of NH
+

4 with soil colloids, but few data are available in this respect. Hence, a real

mechanism behind them needs to be investigated in future.15

Fisk et al. (1998) have shown that the topographic soil moisture gradient controls

fundamentally the patterns of N turnover among communities. In this study soil mois-

ture significantly affected
15

N recovered in both SOC and MBN (P<0.05). The reason

is that microbial processes are strongly related to soil moisture (Fisk et al., 1998),

which results in the variation of
15

N recovered in both MBN and SOC.
15

N recovered20

by green was also significantly influenced by soil moisture (P<0.005) while
15

N recov-

ered by roots was not affected by soil moisture (P<0.5). Potential explanation is that N

transport from roots to shoots might be controlled by soil water conditions.

5 Conclusions

These results confirmed the hypothesis that the patterns of
15

NO
−

3
and

15
NH

+

4 reten-25

tion are significantly different over short-term scales in alpine meadows, lasting over
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one year after tracer additions, whereas they are very similar four years after tracer

additions. Abiotic and biotic factors account for a part of the difference between NO
−

3

and NH
+

4 retention in alpine meadows over short-term scales. SOC controls
15

NH
+

4

retention whereas plants play more important role in
15

NO
−

3
retention over a short-term

scale. This finding provides a clear implication that N forms should be taken into ac-5

count when the consequences of deposited N are assessed in alpine ecosystems over

at least about one year scale. It is because there is no reason to believe that NO
−

3
has

less impact on species composition than NH
+

4 when NO
−

3
enhances root biomass more

than NH
+

4 in alpine meadows (Xu et al., 2004a).

Moreover, most of N is often bonded with organic C in terrestrial ecosystems. In this10

study half of added N is still retained in alpine meadows four years after N additions

(Table 2). We here assume that an average C to N ratio is 15 for the organic substances

responsible for N retention. The minimal C sequestration derived from this part N is

estimated to be about 75 kg hm
−2

per year because this estimation is only based the

fate of added N and without considering the effects of added N on plant biomass. Plant15

growth is limited available N supplied, which is mainly caused by low temperature in

this kind of meadows. At the same time, it is experiencing N deposition through rain.

More than 50% of added N can be retained in the plant-microorganism-soil system for

about four years. This indicates that N deposition can make a great contribution to C

sequestration in alpine meadows in the Qinghai-Tibet Plateau.20
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Nömmik, H.: Non-exchangeable binding of ammonium and amino nitrogen by Norway spruce

raw humus, Plant. Soil, 33, 581–595, 1970.

Owen, A. G. and Jones, D. L.: Competition for amino acids between wheat roots and rhi-

zosphere microorganisms and the role of amino acids in plants N acquisition, Soil Biol.5

Biochem., 33, 651–657, 2001.

Perakis, S. S. and Hedin, L. O.: Fluxes and fates of nitrogen in soil of an unpolluted old-growth

temperate forest, southern Chile, Ecology, 82, 2245–2260, 2001.

Perakis, S. S., Compton, J. E., and Hedin, L. O.: Nitrogen retention across a gradient of
15

N

addition to an unpolluted temperate forest soil in Chile, Ecology, 86, 96–105, 2005.10

Pruden, G., Powlson, D. S., and Jenkinwson, D. S.: The measurement of
15

N in soil and plant

material, Fert Res, 6, 205–218, 1985.

Shaver, G. R. and Chapin III, F. S.: Responses to fertilization by various plant growth forms in

Alaskan tundra: nutrient accumulation and growth, Ecology, 61, 662–675, 1980.

Song, M. H., Xu, X. L., Hu, Q. W., Tian, Y. Q., Ouyang, H., and Zhou, C. P.: Interactions15

between plant species mediated their competition for nitrogen with soil microbes in an alpine

meadow on the Tibetan Plateau, Plant. Soil, doi:10.1007/s11104-007-9326-1, 2007.

Stevens, C. J., Dise, N. B., Mountford, J. O., and Cowing, D. J.: Impact of nitrogen deposition

on the species richness of grasslands, Science, 303, 1876–1879, 2004.

Stevenson, F. J.: Humus chemistry: Genesis, composition, reactions. 2nd ed. Johnson Wiley20

ans Sona, New York, 1994.

Tietema, A. and Verstraten, J. M.: Nitrate cycling in an acid forest ecosystem in the Netherlands

under increased atmospheric nitrogen input, Biogeochemistry, 15, 21–46, 1992.

Templer, P. H.: Direct and indirect effects of tree species on forest nitrogen retention in Catskill

Mountains, NY. Ph D Dissertation, Cornell University, 2001.25

Templer, P. H., Lovett, G. M., Weathers, K. C., Findlay, S. E., and Dawson, E.: Influence of tree

species on forest nitrogen retention in the Catskill Mountains, New York, USA, Ecosystems,

8, 1–16, 2005.

Thorn, K. A. and Mikita, M. A.: Ammonia fixation by humic substances: A N-15 and C-13 NMR

study, Sci Total Environ, 113, 67–87, 1992.30

Townsend, A. R., Howarth, R. W., Bazzaz, F. A., Booth, M. S., Cleveland, C. C., Colling, S.

K., Dobson, A. P., Epstein, P. R., Holland, E.A ., Keeney, D. R., Mallin, M. A., Rogers, C. A.,

Wayne, P., and Wolfe, A. H.: Front Ecol Environ, 1, 240–246, 2003.

2657

http://www.biogeosciences-discuss.net
http://www.biogeosciences-discuss.net/4/2641/2007/bgd-4-2641-2007-print.pdf
http://www.biogeosciences-discuss.net/4/2641/2007/bgd-4-2641-2007-discussion.html
http://www.egu.eu


BGD

4, 2641–2665, 2007

Nitrogen retention

patterns and

controlling factors

X. Xu et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

◭ ◮

◭ ◮

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

EGU

Van Cleve, K., Dyrness, C. T., Viereck, L. A., Fox, J., Chapin III, F. S., and Oechel, W. C.: Taiga

ecosystems in interior Alaska, Bioscience, 33, 39–44, 1983.

Vitousek, P. M. and Reiners, W. A.: Ecosystem succession and nutrient retention: a hypothesis,

Bioscience, 25, 376–81, 1975.

Vitousek, P. M., Aber, J. D., Howarth, R. W., Likens, G. E., Matson, P. A., Schindler, D. W.,5

Schlesinger, W. H., Tilman, D. G.: Human alterations of global N cycle-source and conse-

quences, Ecol. Appl., 7, 737–750, 1997.

WRB, World Reference Base for Soil Resources. FAO/ISRIC/ISSS, Rome, 1998.

Wright, R. F. and Tietema, A.: Ecosystem response to 9 years of nitrogen addition at Sogndal,

Norway, For. Ecol. Manage., 71, 133–142, 1995.10

Xu, X. L., Ouyang, H., Pei, Z. Y., and Zhou, C. P.: The fate of short-term
15

N labeled nitrate

and ammonium added to an alpine meadow in the Qinghai-Xizang Plateau, China, Acta Bot.

Sin., 45, 276–281, 2003.

Xu, X. L., Ouyang, H., Cao, G. M., Pei, Z. Y., and Zhou, C. P.: Nitrogen deposition and carbon

sequestration in alpine meadows, Biogeochemistry, 71, 353–369, 2004a.15

Xu, X. L., Ouyang, H., Pei, Z. Y., and Zhou, C. P.: Long-term partitioning of ammonium and

nitrate among different components in an alpine meadows meadow ecosystem, Acta Bot.

Sin., 46, 279–283, 2004b.

Young, J. L. and Aldag, R. W.: Inorganic forms of nitrogen in soil, in: Nitrogen in agricul-

tural soils, edited by: Stevenson, F. J., Agronomy Monograph, 22. ASA, Madison, WI, 43–20

66,1982.

Zak, D. R., Groffman, P. M., Pregitzer, K. S., Christensen, S., and Tiedje, J. M. I.: The vernal

dam-plant microbe competition for nitrogen in northern hardwood forests, Ecology, 71, 651–

656, 1990.

Zak, D. R., Pregitzer, K. S., Holmes, W. E., Burton, A. J., and Zogg, G. P.: Anthropogenic N25

deposition and the fate of
15

NO
−

3
in a northern hardwood ecosystem, Biogeochemistry, 69,

143–157, 2004.

Zhou, X. M. and Li, J. H. Main vegetation types and their geographical distribution at Haibei

Alpine Meadow Ecosystem Research Station, Alpine Meadow Ecosys., 1, 9–18, 1982.

Zogg, G. P., Zak, D. R., Pregitzer, K. S., and Burton, A. J.: Microbial immobilization and the30

retention of anthropogenic nitrate in a northern hardwood forest, Ecology, 81, 1858–1866,

2000.

Zuo, K. C., Wang, J. X., Wang, Z. M., et al.: Preliminary research on the content of plant

2658

http://www.biogeosciences-discuss.net
http://www.biogeosciences-discuss.net/4/2641/2007/bgd-4-2641-2007-print.pdf
http://www.biogeosciences-discuss.net/4/2641/2007/bgd-4-2641-2007-discussion.html
http://www.egu.eu


BGD

4, 2641–2665, 2007

Nitrogen retention

patterns and

controlling factors

X. Xu et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

◭ ◮

◭ ◮

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

EGU

nutrients of precipitation in Haibei alpine meadow ecosystem, Qinghai. Acta Biol Plateau

Sin, (5), 35–43, 1996.

2659

http://www.biogeosciences-discuss.net
http://www.biogeosciences-discuss.net/4/2641/2007/bgd-4-2641-2007-print.pdf
http://www.biogeosciences-discuss.net/4/2641/2007/bgd-4-2641-2007-discussion.html
http://www.egu.eu


BGD

4, 2641–2665, 2007

Nitrogen retention

patterns and

controlling factors

X. Xu et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

◭ ◮

◭ ◮

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

EGU

Table 1.
15

N recovery in plant and soil components 2 wk, 4 wk, 6 wk and 8 wk after
15

N addition

in alpine meadows at the three sites. Means ±SE of three replicates at each site are shown.

Sites Components
2wk 4wk 6wk 8wk

15
NO

−

3

15
NH

+

4
15

NO
−

3

15
NH

+

4
15

NO
−

3

15
NH

+

4
15

NO
−

3

15
NH

+

4

I

Roots 43.2±4.4 18.5±2.0 22.6±2.0 13.3±1.5 30.4±1.6 10.4±1.5 36.6±1.4 22.5±1.4

Green 16.8±1.4 9.0±1.5 17.8±1.5 9.2±1.2 17.6±1.4 5.3±1.3 12.8±1.3 8.8±0.5

SOC 10.9±3.7 33.8±3.5 6.9±1.0 11.8±0.7 10.2±1.1 22.5±0.4 20.7±1.4 29.5±5.2

MBN 13.7±0.8 13.7±0.5 16.4±1.0 20.5±0.8 13.0±0.4 8.7±0.2 9.3±1.8 11.6±1.3

Inorganic 0.21±0.02 0.02±0.00 0.20±0.02 0.02±0.00 0.31±0.04 0.16±0.02 0.27±0.03 0.04±0.00

II

Roots 43.6±0.8 27.9±0.6 37.8±2.1 20.2±0.9 41.3±1.1 28.2±2.2 45.9±2.6 34.1±0.2

Green 6.6±0.5 6.8±0.3 12.1±1.4 11.2±0.8 6.9±0.7 3.9±1.0 4.7±1.0 2.4±0.4

SOC 22.2±0.7 25.4±3.2 8.0±1.2 8.0±1.9 21.8±1.7 19.0±1.7 24.5±2.2 25.5±4.2

MBN 10.9±0.5 12.7±0.1 16.5±1.6 16.7±0.3 9.9±0.6 7.5±0.3 12.4±1.5 8.4±1.7

Inorganic 0.54±0.03 0.44±0.02 0.27±0.01 0.20±0.02 0.26±0.01 0.25±0.01 0.07±0.00 0.24±0.07

III

Roots 24.7±1.4 22.7±1.5 26.0±2.6 19.4±2.3 23.4±3.0 17.0±2.1 34.7±0.8 21.3±1.3

Green 11.3±1.5 7.5±1.4 9.3±1.7 8.3±0.7 9.1±1.1 7.2±2.3 5.7±0.9 2.3±0.6

SOC 22.7±1.9 26.4±0.5 6.0±1.0 7.8±1.4 18.1±1.2 13.8±1.2 18.0±1.9 19.5±0.7

MBN 13.8±0.6 20.8±0.3 29.0±2.2 21.6±0.9 7.6±2.2 5.0±0.3 8.5±0.3 5.9±0.3

Inorganic 1.09±0.13 0.59±0.01 0.31±0.03 0.23±0.02 0.28±0.04 0.11±0.01 0.14±0.02 0.09±0.00
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Table 2.
15

N recovery in plant and soil components 4 years after tracer additions at site I and

III. Means ±SE of three replicates at per site are shown.

Sites Components
4 years after

15
N addition

15
NO

−

3

15
NH

+

4

I

Roots 20.2±3.8 17.2±1.9

Green 3.5±0.7 1.8±0.3

SOC 23.4±1.3 26.2±3.7

MBN 3.3±0.2 3.7±0.2

III

Roots 22.5±4.6 14.8±0.9

Green 2.5±0.6 2.6±0.3

SOC 22.5±2.3 27.0±4.3

MBN 3.4±0.4 3.2±0.8
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Table 3. Results of repeated-measures ANOVA for the effects of
15

N species added, time, and
15

N species x time as well as soil moisture on
15

N recovery of different components within two

months following tracer additions.

P

Nitrogen pools
15

N species Time
15

N species x time Soil moisture

SOC <0.001 <0.001 0.07 0.020

MBN 0.340 <0.001 0.17 0.020

Roots <0.001 0.001 0.95 0.130

Green <0.001 0.004 0.81 0.004

Inorganic 0.002 <0.001 0.20 0.006

Whole-plot total <0.001 <0.001 0.24 0.040
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Fig.1. Changes in soil moisture at the three sites 2 wk, 4 wk, 6 wk and 8 wk Fig. 1. Changes in soil moisture at the three sites 2 wk, 4 wk, 6 wk and 8 wk following tracer

additions to alpine meadows. Values are means (±SE) of six replicates.
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Fig.2. Relationship between soil temperature at depth of 5 cm and 15N 
Fig. 2. Relationship between soil temperature at depth of 5 cm and

15
N retention in soils (A)

and plants (B) of the
15

NO3
−

plots two weeks after tracer additions.
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Figure 3 Relationship between SOC content and 15N retention in the soil of 
Fig. 3. Relationship between SOC content and 15N retention in the soil of

15
NO3

−

plots (A) and
15

NH4
+

plots (B) two weeks after
15

N additions. Values are means (±SE) of 9–12 replicates.
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