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Abstract

Peatlands play an important role for global carbon dynamics, acting as a sink or source

depending on climate. Such changes imply a series of additional effects because peat-

lands are also an important reservoir of atmospherically derived pollutants. Using a

multiproxy approach (non-pollen-palynomorphs, δ
15

N, C/N, Se, Br, I, Hg, Ti), we show5

a relationship between climate (wetter-drier) and peat decomposition, which affected

element concentrations in a Spanish bog during the last 5500 years. Changes in su-

perficial wetness played a critical role in the cycling of elements coupled to carbon

dynamics. Dry phases caused increased peat mineralisation, resulting in a 2–3 times

increase in concentrations of the analysed elements independent from atmospheric10

fluxes. Under the present trend of climate change large areas of northern peatlands

are expected to be severely affected; in this context our findings indicate that the in-

crease in carbon release, which leads to an enrichment of elements, may enhance the

export of stored contaminants (Hg, organohalogens) to the aquatic systems or to the

atmosphere.15

1 Introduction

Peatlands cover about 5–8% of the earth’s continental surface and contain one third of

the total soil carbon stock (IPCC, 2000), playing an important role in the carbon cycle.

Depending on climatic conditions they may act as sinks or sources of carbon and other

elements. It has been estimated that at present the sink component is dominant, but20

recent modelling studies for boreal areas suggest that 59% of all peatlands area in

Canada and a similar proportion in North Eurasia will be severely to extremely severely

affected by climate change (Gorham, 1991; Tarnocai and Stolbovoy, 2006), leading to

a higher release of carbon dioxide and methane to the atmosphere.

Although the predicted increase in temperature may enhance peat decomposition,25

the changes in hydrology coupled to changes in precipitation patterns and permafrost
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thawing are expected to have the highest impact (Tarnocai and Stolbovoy, 2006). In

peatlands organic matter turnover is highest in the upper aerated layers, where more

than 80% of the initial plant remains are mineralised and released as CO2 or dissolved

organic matter (DOM) (Worral et al., 2001; Reynolds and Fenner, 2001; Freeman et

al., 2004). In the lower sections the decay rate decreases by two or three orders of5

magnitude due to the anoxic conditions and usually low pH, as well as by the inhibitory

effect of the accumulation of some chemical substances like phenols (Kalviäinen and

Karunen, 1984; Freeman et al., 2001). Although a slight release of carbon continues,

the peat in the anoxic layers suffers only minor further degradation.

The cycle of biophyle elements (C, N, P and S) in peatlands has been the target of10

many studies (Ohlson, 1987; Ohlson and Okland, 2002), but not much is known about

the cycle of other elements, particularly those of environmental concern such as toxic

heavy metals like mercury. Elements are incorporated to peat by wet and dry atmo-

spheric deposition (the dominant pathway in ombrotrophic mires, by definition), as well

as by groundwater and surface runoff (in minerogenic mires). Once incorporated as so-15

lutes or particles, elements can be retained through plant uptake, physical entrainment,

complexation by humified organic matter, or through enzymatic microbial mediated for-

mation of organic species. Some elements can also be re-released to the atmosphere

through evasion or to the hydrosphere in solution or coupled to DOM release. But

the impact of present climate change on the accumulation/release of elements from20

peatlands to the atmosphere and aquatic ecosystems is still largely uncertain.

Heavy metals, particularly Pb and Hg, have been extensively investigated in peat

cores to reconstruct long-term variations of their fluxes to the mires and thus to trace

atmospheric pollution (Lee and Tallis, 1973; Shotyk, 1998; Mart́ınez Cortizas et al.,

2002). These investigations have rarely considered the role played by climate in the25

control of the deposition fluxes or the modification of element concentrations induced

by changes in peat degradation.

In this study we compare climate variations since the middle Holocene (∼5500 yrs)

observed in a Spanish peatland with records of organically bound (e.g., Se, Br, I, Hg)
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and lithogenic (Ti) elements. We aim to show that the geochemistry of peat is strongly

related to climatically controlled carbon dynamics and that the geochemical record in

peat is sensitive to Holocene climate changes. Our findings for past climatic changes,

contextualized with present scenarios of climate change, may enable a better under-

standing of the role peatlands play in the global biogeochemical cycles of elements5

(nutrients and pollutants).

2 Material and methods

We investigated a peat core from Pena da Cadela (PDC), an oceanic ombrotrophic

mire located on a mountain summit at 970 m of altitude in the Xistral Mountains (NW

Spain), for historical records of trace elements (mercury, bromine, iodine, selenium,10

and titanium) and peat decomposition (C and N concentrations, C/N ratios and δ
15

N).

The core is 185 cm deep and has accumulated during the last 5500 cal. years BP.

Sampling of the core, sample preparation, the ombrotrophic nature of this mire, as

well as the records of some elements, such as Pb, are discussed elsewhere (Mart́ınez

Cortizas et al., 2002). Bromine, selenium and titanium, were measured using an en-15

ergy dispersive miniprobe multielement XRF analyzer – its application to peat mea-

surements is discussed in (Cheburkin and Shotyk, 1998). Mercury was determined

in freeze dried samples by means of solid-phase thermal combustion atomic absorp-

tion spectrometry (LECO-Altec AMA-254); while iodine was determined following the

procedure described by Biester et al. (2004). Carbon and nitrogen were analysed by20

means of a LECO-10000 CNH. δ
15

N was obtained by mass spectrometry. Distribution

of non-pollen palynomorphs (NPPs) and their relationship to climate in the same peat

samples were discussed elsewhere (Mighall et al., 2006).
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3 Results

3.1 A link to climate change

Figure 1a shows the records of the non-pollen palynomorphs (NPPs) T18 and T306,

and δ
15

N and C/N ratios in the PDC core. The NPPs records show intense changes

during the last 5,500 years, which indicate alternating wet (high T18 and low T3065

abundances) and dry (low T18 and high T306 abundances) climate periods. There

are five main wet phases in this peat record at 150–160 cm, 130–138 cm, 114–126 cm,

84–100 cm and 32–64 cm, which correspond to 3950–3590, 3090–2790, 2580–2260,

1760–1430 and 1030–530 yr cal BP respectively. The duration of each of these wet

phases was about 300-360 years except for the most recent one that may have lasted10

500 years.

In order to extract information on climatic effects on peat decomposition it is neces-

sary to remove the secondary changes imposed by the gradual, long-term diagenetic

effects that occur in the buried peat. For example, there is a general increase in the

C/N ratio from around 20 in the surface peat to 37 at the base of the PDC core that15

is caused by the preferential mineralization of N relative to C during organic matter

diagenesis, which has been documented in other studies for a number of sedimen-

tary environments (Herczeg, 1988; Updegraff et al., 1995; Khury and De Vitt, 1996).

In Fig. 1a we have detrended both the C/N ratio and δ
15

N records and expressed

them as standardized residuals (δ
15

Ndetrend and C/Ndetrend, respectively). δ
15

Ndetrend20

and C/Ndetrend have a generally inverse behaviour with higher δ
15

Ndetrend values cor-

responding to relatively lower C/Ndetrend. Low C/Ndetrend values are indicative of more

decomposed and humified peat, while higher δ
15

N values are indicative of higher N

fractionation. The decomposition of the organic matter preferentially mineralizes
14

N,

causing an enrichment in
15

N and thus in δ
15

N (Létolle, 1980; Macko et al., 1993).25

The variations in δ
15

Ndetrend and C/Ndetrend coincide with the changes in climate

(wetter–drier) as indicated by the biological climate proxies (NPPs). Wetter phases are
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characterized by positive C/Ndetrend values and low δ
15

Ndetrend values, whereas drier

phases show the opposite – the decline in C/N ratios and increase in N fractionation

are indicative of peat decomposition/mineralisation. In fact, the degree of humification

of the peat was found to be a proxy for wet/dry cycles (Blackford and Chambers, 1993;

Caseldine et al., 2000; Roos-Barraclough et al., 2004). Under saturated conditions5

oxygen availability in the peat is reduced, which inhibits the phenoloxidase enzyme ac-

tivity controlling phenol accumulation (Freeman et al., 2001). Increased phenol accu-

mulation under saturated conditions restricts the biological degradation of the organic

matter; specifically, the elevated phenol concentrations restrain the activity of hydrolitic

enzymes responsible for peat decomposition. In contrast, during dry periods when the10

water table is lower and formerly saturated peat levels are aerated, enzyme activity

increases and promotes peat degradation. In ombrotrophic mires oxygen availability

is connected to water table depth, which in turn depends on effective precipitation and

thus on changes to wetter or cooler climates (Aaby, 1976; Barber, 1981; Chambers

and Charman, 2004; Mauquoy et al., 2002).15

3.2 Variations in elements concentrations

The concentration records of the organically bound (Br, I, Se and Hg) and lithogenic

(Ti) elements are quite similar (Fig. 1b), with the only exception of Hg in the upper

peat sections. The concentrations of bromine, selenium and titanium in the PDC core

vary by 2.5–3 times (Br: 120–350µg g
−1

; Se: 0.9–2.2µg g
−1

; Ti: 100–250µg g
−1

),20

while mercury and iodine concentrations vary by 12–17 times (Hg: 19–230 ng g
−1

; I:

3–50µg g
−1

). Below 36 cm the variation in mercury concentration (3.5-fold) is compa-

rable to those of bromine and selenium, suggesting that mercury must be influenced

by anthropogenic emissions in the upper section of the peat core as found in other peat

records in the area (Mart́ınez Cortizas et al., 1999). Notwithstanding this exception, the25

records of the analyzed elements show a remarkable similarity. The ocean is the main

source of atmospheric selenium, bromine and iodine (Kabata-Pendias and Pendias,
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1992; Görres and Frenzel, 1993), which are mostly incorporated into the bog through

wet deposition. For example, concentrations of bromine in peat and pore waters have

been used to trace differences in sea spray inputs (Shotyk, 1997), thus assuming a

direct relationship with atmospheric fluxes – mainly wet deposition. Mercury deposi-

tion is also dominated by the wet component, and the oceans contribute to mercury5

emissions to the atmosphere, although there is an additional strong terrestrial source

(weathering and degassing of the Earth’s crust) (Schroeder and Munthe, 1998; Scholtz

et al., 2003). Hg
0
, the predominant form in the atmosphere, has a mean residence time

of one year and it is subject to long-range transport (Mason et al., 1994; Nriagu y Pa-

cyna, 1988; Schroeder and Munthe, 1998; Scholtz et al., 2003).10

The similarity between the records of the organically-bound elements suggests a

common source or deposition mechanism. However, titanium, a lithogenic element

whose source is atmospheric dust deposition, also shows remarkably synchronous

changes in concentration. Since the deposition of atmospheric aerosols increases in

dry periods and decreases during wet periods (Mouline et al., 1997; Prospero and15

Lamb, 2003), the simultaneous increase in the concentration of organically bound and

lithogenic elements is counterintuitive and has to be influenced by another factor than

atmospheric deposition alone.

The comparison of the concentration records of selenium, bromine, iodine, mercury

and titanium (Fig. 1b) with the climatic reconstruction reveals that, in the PDC core,20

elevated concentrations of these elements are found in sections corresponding to drier

climate periods with greater humification (more positive δ
15

Ndetrend values and lower

C/Ndetrend values), whereas lower concentrations correspond to wetter periods with less

degraded peat (low δ
15

N values and high C/N ratios). The elevated element concentra-

tions are not the result of increased wet deposition, but instead indicate a relationship25

between the degree of peat transformation, i.e., decomposition, and the variations in

the concentration of the elements. We do find a strong correlation between carbon

accumulation and the accumulation of organically bound elements. The correlations

between the net accumulation of carbon and selenium, bromine, iodine and mercury
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(excluding the top 30 cm impacted by pollution) are highly significant (r
2
=0.9; data not

shown). For the organically bound elements this is a consistent result, because sele-

nium, bromine, iodine and mercury all have a high affinity for binding to organic matter

and are therefore usually enriched in organic-rich soils (Kabata-Pendias and Pendias,

1992; Görres et al., 1993; Biester et al., 2003). Selenium and mercury can form com-5

plexes with organic matter by abiotic mechanisms (Zhang and Moore, 1996; Xia et al.,

1999), particularly when specific functional groups are availabe (e.g. S-groups for Hg).

Bromine and iodine are retained in organic matter through formation of organohalo-

gens by oxygen-dependent enzymatic processes involving haloperoxidases (Gribble,

2003; Keppler and Biester, 2003) and are enriched during the decomposition of the10

organic matter (Myneni, 2002; van Pée and Unversucht, 2003). Some authors have

suggested that halogens in peat are fixed by organic matter, and recent studies have

demonstrated that they exist mostly as halogenated organic compounds (Biester et al.,

2004).

The coincidence of increased peat decomposition and higher titanium concentrations15

(titanium is a conservative lithogenic element that exists only in the deposited mineral

dust) may also be indicative of wet/dry cycles, but for completely different reasons.

Higher peat decomposition is typical of dry periods during which enhanced soil erosion

and dust deposition on the bog surface are likely, which would result in higher titanium

concentrations. However, a residual enrichment of titanium could also result from the20

degradation of the organic matter (i.e., a loss of substrate).

We suggest that changes in climate, here expressed as variations in wetness or dry-

ness, exerted a fundamental control on the evolution of the decomposition of the peat

at the surface of the bog and consequently on the concentrations of many elements.

The lowering of the water table during dry periods increased the oxygenation of the25

superficial peat layer and triggered/enhanced microbial decomposition. This not only

resulted in an increase in mineralisation but also in humification, enhancing the poten-

tial for metal and halogen retention (Meili, 1991; Mierle and Ingram, 1991; Yin et al.,

1996). Thus, the increase in decomposition and humification and the enrichment of
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metals and halogens are concurrent processes.

Contrary to what is commonly assumed, changes in concentrations, at least for or-

ganically bound elements, seem to depend to a larger extent on internal transforma-

tions of the peat matrix and related mass loss, and not on variations of atmospheric

fluxes alone as some have suggested (Shotyk, 1997). This result is also consistent5

to that found at greater spatial scales for soil organic horizons and supports the hy-

pothesis that the enrichment of organically bound elements is biologically mediated

and climate dependent and would change with factors such as temperature and rainfall

(Reimann and de Caritat, 2005).

4 Conclusions10

Here, we have shown that there has been a clear relationship between climate (wetter-

drier) and peat decomposition and its effect on element concentrations in a Spanish

bog during the last 5500 years. Our findings have important implications for present day

wetland environments. Projected changes in climate, particularly in areas of increased

summer dryness, will increase rates of peat decomposition and thus loss of carbon15

as both CO2 and DOC. During subsequent wetter periods dissolved organic matter,

which is enriched in pollutants, is exported to surface waters. An increased export of

dissolved organic matter has in fact already been observed in some peatlands. The

surface layers of many bogs are artificially enriched in many metals, such as mercury,

because of historical pollutant deposition and increased decomposition will magnify20

these already elevated concentrations. The changes we report here are from a mid-

latitude bog, but the changes in carbon loss are expected to be much greater in the

vast peatlands found at higher latitudes, particularly in permafrost areas that are or

will be affected by severe thawing. Current climate research is focused largely on

carbon dynamics, but these changes imply a series of additional effects. For example,25

a release of contaminants presently stored in high-latitude peatlands would exacerbate

the current concern for high-latitude pollution.
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Fig. 1. (A) Records of NPPs T18 and T306, and δ
15

N and C/N ratios in the PDC core. The de-
trended C/N ratios were calculated by substracting the C/N ratio of individual peat slices to the
long-term trend modelled by a linear regression equation and are expressed as standardized
residuals. (B) Concentrations records of organically-bound (Br, I, Se and Hg) and lithogenic

(Ti) elements in the PDC core (all in µg g
−1

except for Hg in ng g
−1

). The bottom axis of the

mercury record was cut in 70 ng g
−1

so the variations in the deeper sections of the core are
observable.
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