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Abstract

The exchange fluxes of carbon dioxide between wet arctic polygonal tundra and the

atmosphere were investigated by the micrometeorological eddy covariance method.

The investigation site was situated in the centre of the Lena River Delta in Northern

Siberia (72
◦
22

′
N, 126

◦
30

′
E). The study region is characterized by a polar and dis-5

tinctly continental climate, very cold and ice-rich permafrost and its position at the in-

terface between the Eurasian continent and the Arctic Ocean. The soils at the site are

characterized by high organic matter content, low nutrient availability and pronounced

water logging. The vegetation is dominated by sedges and mosses. The microm-

eteorological campaigns were performed during the periods July–October 2003 and10

May–July 2004 which included the period of snow and soil thaw as well as the begin-

ning of soil refreeze. The main CO2 exchange processes, the gross photosynthesis

and the ecosystem respiration, were found to be of a generally low intensity. The

gross photosynthesis accumulated to –432 g m
−2

over the photosynthetically active

period (June–September). The contribution of mosses to the gross photosynthesis15

was estimated to be about 40%. The diurnal trend of the gross photosynthesis was

mainly controlled by the incoming photosynthetically active radiation. During midday

the photosynthetic apparatus of the canopy was frequently near saturation and repre-

sented the limiting factor on gross photosynthesis. The synoptic weather conditions

strongly affected the exchange fluxes of CO2 by changes in cloudiness, precipitation20

and pronounced changes of air temperature. The ecosystem respiration accumulated

to +327 g m
−2

over the photosynthetically active period, which corresponds to 76% of

the CO2 uptake by photosynthesis. However, the ecosystem respiration continued at

substantial rates during autumn when photosynthesis had ceased and the soils were

still largely unfrozen. The temporal variability of the ecosystem respiration during sum-25

mer was best explained by an exponential function with surface temperature, and not

soil temperature, as the independent variable. This was explained by the major role of

the plant respiration within the CO2 balance of the tundra ecosystem. The wet polyg-
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onal tundra of the Lena River Delta was observed to be a substantial CO2 sink with

an accumulated net ecosystem CO2 exchange of –119 g m
−2

over the summer and an

estimated annual net ecosystem CO2 exchange of –71 g m
−2

.

1 Introduction

There is growing evidence that the climate system of the earth has changed signif-5

icantly since the industrial revolution. The observed climate change is likely to be

caused at least partially by human activity, which has substantially altered the atmo-

spheric composition by the emission of radiatively active greenhouse gases such as

carbon dioxide and methane (Houghton et al., 2001). The Arctic is of major interest

within the context of global change because it is observed to warm more rapidly and10

to a greater extent than the rest of the earth surface (Maxwell, 1997; Serreze et al.,

2000; Polyakov et al., 2003), and much larger changes are projected by climate model

simulations (Kattenberg et al., 1996; Räisänen, 2001). Furthermore, its ecosystems

are highly sensitive to climate change (Chapin et al., 1992; Oechel et al., 1997b) and

play a key role in many global processes, such as the atmospheric and oceanic cir-15

culations (Stocker and Schmittner, 1997; Wood et al., 1999; Eugster et al., 2000) or

the regulation of the global budget of greenhouse gases (Gorham, 1991; Roulet et al.,

1992; Tenhunen, 1996).

Most land surfaces in the Arctic are covered by tundra, treeless ecosystems whose

vegetation consists primarily of grasses, sedges, small flowering herbs, low shrubs,20

lichens and mosses. Arctic and alpine tundra occupy 7.4×10
6

km
2

or about 7.4% of

the land area of the northern hemisphere (Matthews, 1983; Loveland et al., 2000).

Since the biota of the arctic ecosystems are closely adapted to their extreme environ-

ment, climatic changes will have a severe impact on the distribution, composition and

functionality of plant and animal communities in the tundra (Callaghan and Jonasson,25

1995; Chapin et al., 1995, 1997; Walker et al., 2001). This will cause major alterations

of the energy, water and carbon balance in the Arctic, which will feed back on the global

1955

http://www.biogeosciences-discuss.net
http://www.biogeosciences-discuss.net/4/1953/2007/bgd-4-1953-2007-print.pdf
http://www.biogeosciences-discuss.net/4/1953/2007/bgd-4-1953-2007-discussion.html
http://www.egu.eu


BGD

4, 1953–2005, 2007

CO2 exchange

between wet arctic

tundra and the

atmosphere

L. Kutzbach et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

◭ ◮

◭ ◮

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

EGU

atmospheric system (Bonan et al., 1995; Lafleur and Rouse, 1995; Pielke and Vidale,

1995; Beringer et al., 2001).

The tundra ecosystems are underlain by permafrost. Permafrost-affected soils of-

ten have a greater content of organic carbon than soils of temperate climate zones

because organic matter decomposition is inhibited by cold temperatures, a short grow-5

ing season, and water saturated soils. Correspondingly, the tundra ecosystems have

historically been major sinks for carbon and nutrients. At least 14% of the global soil

organic carbon is stored in the tundra (Post et al., 1982; Billings, 1987). However, per-

mafrost is very susceptible to long-term warming, and an increased level of permafrost

thawing might turn the tundra from a carbon sink to a source of carbon, either in the10

form of CO2 or as CH4 (Oechel et al., 1993; Christensen, 1993; Zimov et al., 1997).

Since CO2 and CH4 are the most effective greenhouse gases besides water vapour

(Rohde, 1990), an increased release of these gases by permafrost thawing would ad-

ditionally amplify global warming.

In the last decade, numerous land-atmosphere flux studies relying on the eddy15

covariance method have been initiated, for example within the projects NOWES

(Glooschenko, 1994), ABLE 3B (Harriss et al., 1994), BOREAS (Sellers et al., 1997),

NOPEX (Halldin et al., 1999) or EUROFLUX (Valentini, 2002). Most of the eddy covari-

ance flux studies were and are conducted in the temperate and boreal zones of North

America and Europe. Flux data for the Arctic regions are limited and are biased toward20

Alaska, the Canadian Arctic, and Northern Fennoscandia. However, the vast tundra

landscapes of Siberia are by far not adequately represented. This study presents the

results of two micrometeorological field campaigns which were conducted in the wet

arctic tundra of the North-Siberian Lena River Delta in 2003 and 2004. The study

shall contribute to the understanding of the physical and biogeochemical interaction25

processes between permafrost soils, tundra vegetation, and the atmosphere which is

necessary for assessing the impact of climate change on arctic tundra ecosystems and

the possible feedbacks on the climate system. The objectives of the study were to char-

acterize the exchange fluxes of CO2 on diurnal and seasonal time scales, to quantify
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gross photosynthesis, ecosystem respiration and net ecosystem CO2 exchange on the

landscape scale, to analyze the regulation of the exchange fluxes by climatic forcings,

and to estimate the annual CO2 budget of the tundra ecosystem.

2 Materials and methods

2.1 Study site5

The investigation site was located on Samoylov Island in the Lena River Delta at

72
◦
22

′
N, 126

◦
30

′
E. With an area of 32 000 km

2
, the Lena River Delta is the largest

delta in the Arctic and one of the largest in the world (Walker, 1998). In terms of its

geological genesis, the Lena River Delta can be divided in three river terraces of differ-

ent age, and various floodplain levels (Grigoriev, 1993; Schwamborn et al., 2002). The10

youngest terraces and active flood-plains which represent modern delta landscapes

(Are and Reimnitz, 2000) occupy about 65% of the total area of the delta, predomi-

nantly in the central and eastern part (Fig. 1).

The Lena River Delta is located in the zone of continuous permafrost with permafrost

depths of about 500 m (Grigoriev, 1960; Frolov, 2003; Zhang et al., 1999; NSIDC,15

2003). With about –12
◦
C, the permafrost temperature is very low. Colder permafrost is

only encountered on the Taymyr Peninsula to the North-West of the Lena River Delta

and on the Canadian Arctic Archipelago (Natural Resources Canada, 1995; Kotlyakov

and Khromova, 2002). The soils of the region thaw to a depth of only 0.3–1.0 m during

the summer.20

The climate in the Lena River Delta is characterized by very low temperatures and

low precipitation. The mean annual air temperature during 1961–1999, measured by

the meteorological station in Tiksi about 100 km east of Samoylov Island was –13.6
◦
C,

the mean annual precipitation in the same period was 319 mm (ROSHYDROMET,

2004). Data from the meteorological station on Samoylov Island from the period 1999–25

2005 showed a mean annual air temperature of –14.7
◦
C and a highly variable total
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summer precipitation (rain) between 72 and 208 mm (mean 137 mm) (Boike, 2006).

Polar day begins at 7 May and ends at 7 August, and polar night lasts from 15 Novem-

ber to 28 January. The summer growing season lasts about three months, from the

middle of June to the middle of September. The synoptic weather conditions in the

Lena River Delta are characterized by its position at the border between the Arctic5

Ocean and the Siberian mainland. During summer, the central delta region experi-

ences strongly varying weather conditions due to the change between the advection of

cold and moist air masses from the Arctic Ocean, and warm and dry air masses from

the Siberian mainland.

Samoylov Island is situated in the southern-central part of the Lena River Delta and10

is considered to be representative for the modern delta landscapes. It has a size of

7.5 km
2

and is composed of two geomorphological units. The western part (3.4 km
2
)

represents a modern floodplain which is flooded annually during the spring flood. The

investigation site was located on the eastern part of Samoylov (4.1 km
2
), which is com-

posed of the sediments of the Late-Holocene river terrace. Its elevation ranges from 1015

to 16 m above sea level, and it is not flooded annually. Its surface is characterized by

wet polygonal tundra. The macro-relief of the eastern part of Samoylov Island is level

with slope gradients less than 0.2%. Only along the shorelines of the larger lakes ele-

vation differences of up to 2.5 m occur. However, the surface of the terrace is structured

by a regular micro-relief with elevation differences of up to 0.5 m within a few meters,20

which is caused by the genesis of low-centred ice wedge polygons (Washburn, 1979;

French, 1996; Meyer, 2003). The depressed centres of the ice-wedge polygons are

surrounded by elevated rims, which are situated above the ice-wedges. The formation

of low-centred polygons has a strong impact on the water regime and the ecological

conditions of the tundra landscape. In the depressed polygon centres, drainage is25

impeded due to the underlying permafrost, and water-saturated soils or small ponds

occur. In contrast, the elevated polygon rims are characterized by a moderately moist

water regime. The typical soil types are Typic Historthels in the polygon centres and

Glacic or Typic Aquiturbels at the polygon rims, respectively (Soil Survey Staff, 1998).
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The vegetation in the polygon centres and at the edge of ponds is dominated by hy-

drophytic sedges (Carex aquatilis, Carex chordorrhiza, Carex rariflora) and mosses

(e.g. Limprichtia revolvens, Meesia longiseta, Aulacomnium turgidum). At the poly-

gon rims, various mesophytic dwarf shrubs (e.g. Dryas octopetala, Salix glauca), forbs

(e.g. Astragalus frigidus) and mosses (e.g. Hylocomium splendens, Timmia austriaca)5

dominate. More detailed characterizations of the typical soil and vegetation types of

the polygonal tundra on Samoylov Island was given by Pfeiffer et al. (2002), Kutzbach

(2000), Kutzbach et al. (2003, 2004a) and Fiedler et al. (2004). Aerial photograph

analysis showed that the elevated dry to moist polygon rims contribute about 60% and

the depressed wet sites, i.e. polygon centers and troughs, 40% to the total area of the10

polygonal tundra in the fetch area around the micrometeorological tower (G. Grosse,

personal communication, 2005).

2.2 Experimental set-up

Micrometeorological measurements were carried out during the periods 20 July–22

October 2003 (94 complete days), and 28 May–20 July 2004 (53 complete days). The15

eddy covariance measurement system was established at a central position within

the wet polygonal tundra of the eastern part of Samoylov Island. Wet polygonal

tundra extended at least 600 m in all directions from the eddy tower (Fig. 2). The

three-dimensional wind vector and the sonic temperature were measured with a sonic

anemometer (Solent R3, Gill Instruments Ltd., UK) at a height of 3.65 m above ground20

level. The concentration of H2O and CO2 were measured with a closed-path in-

frared gas analyser (LI-7000, LI-COR Inc., USA). The gas analyzer was installed in a

temperature-regulated case at the foot of the tower. The sample air intake was placed

15 cm below the sonic anemometer transducer array. From the intake, sample air was

drawn at a rate of 20 L min
−1

through a heated Polyethylene tube of 5 m length and25

6.35 mm inner diameter to the gas analyzer. Under these conditions, turbulent flow was

maintained inside the tubing system. A 1µm membrane filter (PTFE, TE37, Schleicher

and Schuell, Germany) prevented dust contamination. The analogous signals from the
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fast response sensors were digitized at a frequency of 20 Hz by the anemometer and

logged by a laptop computer running the software EdiSol (J. Massheder, University of

Edinburgh, UK). Power was supplied by a diesel generator which was placed at a dis-

tance of 100 m from the tower. Wooden boardwalks connected all parts of the system

to reduce disturbance of the swampy tundra soils and the vegetation. All equipment5

was set up in a line to the west-southwest from the tower.

In addition to the fast-response eddy covariance measurements, a set of support-

ing slow-response meteorological measurements were conducted. The meteorologi-

cal data were partly recorded at the eddy tower site and partly provided by a long-term

meteorological station (Boike, 2006), which is located 700 m away from the eddy site10

in the polygonal tundra of Samoylov Island (Fig. 2). At the eddy tower were mea-

sured: air temperature and air relative humidity at 2 m height (MP103A, ROTRONIC

AG, Switzerland), incoming and surface-reflected solar and infrared radiation (CNR1,

Kipp and Zonen B.V., The Netherlands), and air pressure (RPT410, Druck Messtechnik

GmbH, Germany). From the incoming solar radiation S ↓, the photosynthetically active15

radiation PAR was estimated using the equation

PAR=S ↓ · 0.45 · 4.598 µmol m−2s−1 . (1)

This method follows Jacovides et al. (2003) and was shown to work very accurately by

direct comparison of solar radiation and PAR sensors during a measurement campaign

in the Lena River Delta in 2005. The long-term meteorological station recorded pre-20

cipitation (tipping bucket rain gauge 52203, R.M. Young Company, USA), snow height

at a polygon centre (sonic ranging sensor SR50, Campbell Scientific Inc., USA), hor-

izontal wind speed and direction at 3 m height (propeller anemometer 05103, R.M.

Young Company, USA), air temperature and relative humidity at 0.5 m and 2 m height

(MP103A, ROTRONIC AG, Switzerland), net radiation (NR-Lite, Kipp and Zonen B.V.,25

The Netherlands), and upward infrared radiation (CG1, Kipp and Zonen B.V., The

Netherlands). From the upward infrared radiation L↑B, the radiative surface temper-
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ature Tsur was calculated using the formula

Tsur =

(

L ↑B

ε 5.67 × 10−8

)
1
/4

, (2)

where the emissivity ε was assumed to be 0.98. Profiles of soil temperature and soil

volumetric water content were measured at the elevated rim and the depressed cen-

tre of a polygon (temperature probe 107 and TDR100/CS605, respectively, Campbell5

Scientific Inc., USA). Water level depth was measured manually in intervals of 1 to 3

days in perforated plastic pipes, which were installed in the soil active layer at three soil

survey sites in the vicinity of the eddy tower. Thaw depth was measured in intervals

of 3 to 7 days at 150 points arranged in a regular grid by driving a steel rod into the

unfrozen soil until the hard frozen permafrost table was encountered (Kutzbach et al.,10

2004b).

2.3 Processing of eddy covariance data

Turbulent fluxes were calculated over 30 min averaging intervals using the software

EdiRe (R. Clement, University of Edinburgh, UK). Three coordinate rotations were ap-

plied to the wind vector components so that the mean transverse velocity, the mean15

vertical velocity, and the covariance of the transverse and vertical velocities were re-

duced to zero for each 30 min interval (McMillen, 1988; Aubinet et al., 2000). The time

series of the CO2 gas concentration was detrended using a recursive high-pass filter

with a filter constant of 300 s (McMillen, 1988). The time lag between the signals of

CO2 concentration and vertical wind velocity was determined and removed for each20

30 min interval. After the calculation of the CO2 flux, a transfer functions was applied

to account for the spectral response of the gas analyzer, the separation of the sensors,

the damping effect of the gas sampling tube and the detrending filter (Moore, 1986;

Moncrieff et al., 1997). On average, the percentage of this correction compared to the

uncorrected CO2 flux was 8.5%. Additionally, the CO2 flux was corrected for effects of25

concurrent water vapour fluxes on the density of air (Webb et al., 1980).
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The calculated flux data was screened thoroughly. Data points were rejected when

sensor outputs were out of range and when instruments were being repaired or cal-

ibrated. Turbulence was considered insufficient when the mean friction velocity was

below 0.1 m s
−1

. Data gathered during periods with wind directions in the sector 230–

270
◦

were discarded because of the possible disturbance by the generator. Altogether,5

31% and 26% of the calculated CO2 fluxes were rejected in 2003 and 2004, respec-

tively, which is comparable to other studies (Falge et al., 2001). The turbulent fluxes

calculated over 30 min intervals were averaged over 60 min for compatibility with the

meteorological data of the long-term meteorological station. The gaps in the data se-

ries produced by the screening procedure were filled by means of models based on10

empirical relationships between the turbulent fluxes and meteorological variables. The

model approach is described below.

A footprint analysis following Schuepp et al. (1990) assessed the 80% cumulative

footprint, i.e. the upwind distance from which 80% of the observed flux originated, to

be on average 457 m during the snow-free periods, and 781 m during periods when15

snow covered the surface.

2.4 Modelling of carbon dioxide fluxes

The calculated carbon dioxide flux FCO2 equals the net ecosystem CO2 exchange NEE

which is the sum of gross photosynthesis Pgross and ecosystem respiration Reco. The

ecosystem respiration is composed of the respiration from soil microbes Rsoil, roots20

Rroots, and above-ground biomass Rabove (Greco and Baldocchi, 1996):

FCO2=NEE=Pgross+Reco=Pgross+ (Rsoil+Rroots+Rabove) . (3)

The ecosystem respiration is well known to depend on the temperature of the soils and

the above-ground biomass. For the modelling of the ecosystem respiration, the time

series of air temperature, radiative surface temperature, and soil temperature at various25

depths were studied with respect to their ability to describe the CO2 fluxes observed

during dark periods (PAR <20µmolm
−2

s
−1

), when photosynthesis was assumed to be
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negligible. The CO2 flux data and temperature data was fitted using the exponential

function

Reco=p1 ep2 Tx , (4)

where Tx is air, surface or soil temperature, and p1 and p2 are the fit parameters. The

best fit (R
2
=0.79, N=611) was achieved when the radiative ground surface tempera-5

ture Tsur was used as independent variable (Fig. 6). Consequently, the relationship

Reco=0.0666 g m−2 h−1 exp
(

0.0785 ◦C−1 Tsur

)

(5)

was used for the estimation of the ecosystem respiration. The resulting model for night

time Reco was extrapolated for the estimation of Reco during daytime. It was assumed

that Rabove is of similar magnitude during day and night for the investigated tundra10

canopy. This simplification has been followed successfully by many other studies of

carbon exchange of northern wetlands (Alm et al., 1997; Lloyd, 2001; Harazono et al.,

2003). Because there were no dark nights during the campaign in 2004, the model

relies on 2003 data only. Ecosystem respiration in 2004 was modelled using the 2003

model, which showed to produce reasonable results.15

The gross photosynthesis Pgross was calculated as the difference of measured CO2

flux and modelled ecosystem respiration

Pgross=FCO2−Reco . (6)

For the modelling of Pgross, the time series was split into consecutive periods of two

days in 2003 and three days in 2004 and fitted to PAR data using the rectangular20

hyperbola function

Pgross=
Pmax a PAR

Pmax+a PAR
. (7)

The fit parameters a and Pmax are the initial canopy quantum efficiency (initial slope of

the Pgross-PAR curve at PAR=0) and the canopy photosynthetic potential (hypothetical
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maximum of Pgross as PAR approaches infinity), respectively. A relatively short period

of two to three days was chosen to reflect the rapid changes of the tundra vegetation,

temperature and cloudiness conditions which influence the light response curve.

As Pmax represents the theoretical photosynthesis rate at infinite PAR, it does not

represent Pgross in optimal radiation conditions within the actual PAR range (Laurila et5

al., 2001). For evaluating the light saturation over the season, the value PARn−sat is

defined in this study as the PAR value where the canopy quantum efficiency is reduced

to 10% of the initial canopy quantum efficiency a. PAR n−sat was calculated as:

PARn−sat ≈ 2.16
Pmax

a
. (8)

Examples of the modelling of Pgross and values of PARn−sat are given in Fig. 3.10

The NEE time series were gap-filled by combining the empirical models for Reco and

Pgross.

3 Results

3.1 Meteorological conditions

In 2003, measurements started on 19 July during the final phase of the polar day and15

lasted until 21 October, when the sun rose for only seven hours above the horizon

(Fig. 4). Generally, the year 2003 was characterized by comparatively high tempera-

tures; the average temperatures of July (11
◦
C) and September (3

◦
C) were 4 K and 2 K

higher than the long-term averages. The months July, August, and September expe-

rienced extended periods of high air temperatures which were caused by advection of20

warm air from the Siberian mainland. At 168 mm, the precipitation (rain) during the

measurement period was exceptionally high. A large part of the rainfall was recorded

during one week at the end of July (94 mm in six days). The precipitation pattern

was reflected by the water table levels: Maximum water table heights were observed
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with 8 cm above soil surface in the polygon centre and 8 cm below the soil surface at

the polygon rim on 25 July, when the strongest rainfall event occurred. Afterwards,

the water table heights decreased gradually and reached their minimum at the end of

September with 0 cm above soil surface in the centre and 13 cm below the soil surface

at the rim. The volumetric water content in the top soil (5 cm depth) in the centre and5

at the rim of the polygon was on average 97% (saturation: 98%) and 30% (satura-

tion: 47%) during the period of unfrozen soils. During the course of the measurement

campaign, the thaw depth increased from 28 cm to a maximum of 48 cm on 12 Septem-

ber. The soil temperatures followed the variations of the air temperature; however, the

fluctuations were damped and phase-lagged dependent on depth below the soil sur-10

face and the position within the micro-relief. A strong temperature gradient existed in

the unfrozen soil layer during the summer. Due to the relatively high temperatures in

September, freezing of the soils from the top began late at around 29 September. At the

end of the campaign on 21 October , the top soil layers were frozen, but underneath

the frozen layer unfrozen soil zones of several decimetres depth persisted. A snow15

cover built up starting 9 October. At the end of the campaign, the snow cover reached

a thickness of about 15–25 cm in the polygon centres and just a few centimetres at the

rims.

In 2004, the entire campaign was conducted under polar day conditions (Fig. 4). The

year 2004 was characterized by a very cold winter, comparatively low temperatures20

during spring, and a late start of the growing season. The average temperatures of

April (–20
◦
C), May (–8

◦
C) and June (1

◦
C) were 2 K, 1 K and 1 K lower compared to

the long-term means. At the beginning of the measurement campaign, the ground

around the eddy tower was completely covered with snow and the soil temperatures

were below –10
◦
C throughout the soil profile. The snow height was about 40 cm in25

the polygon centre and about 8 cm at the polygon rim. Before snow melt, sublimation

of snow occurred throughout and snow-free patches appeared at the polygon rims on

29 May. However, frequent snowfall and snow drift kept the area size of the snow

free patches small. The snow melt started on 8 June. The snow height decreased
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rapidly, and the polygon rims were largely free of snow after two days. Snow melt in

the polygon centres continued until 18 June. The soils started to thaw around 13 June.

The highest temperature in the upper soil layers was measured on 9 July, when the

thaw depth was about 20 cm. The thaw depth increased nearly linearly and reached a

value of 26 cm at the end of the campaign. The total rainfall up to 21 July was 60 mm.5

A large part of the rain fell on 8–9 July. The water table was highest during snow melt

(15 June) with 12 cm and 0 cm above the soil surface in the centre and at the rim of

the polygon, respectively. Afterwards, the water table fell quickly, but due to the strong

rainfall events of 8–9 July stayed close below or above the soil surface in the polygon

centre until the end of the campaign. After thawing of the top 10 cm of the soils, the10

volumetric liquid water content in the top soil layer was on average 97% and 31% at

the polygon centre and rim, respectively.

The average wind speed during the observation periods in 2003 and 2004 was

4.7 ms
−1

. Very light winds occurred seldom, with wind speeds <1 ms
−1

observed

less then 2% of the observation time. During the campaign 2003, there was no sin-15

gle predominant wind direction, however, wind directions east-northeast, south, and

south-west occurred more frequently than other directions (data not shown). During

the campaign 2004, there was a clear dominance of easterly winds (about 23% of the

measurement period, data not shown), followed by winds from north-westerly direc-

tions. Wind directions not acceptable for flux calculations due to disturbance by the20

generator (230–270
◦
) occurred 13.5% and 5.6% of the observation time in 2003 and

2004, respectively.

3.2 Carbon dioxide fluxes

During most of the measurement campaign 2003, NEE oscillated regularly between

net uptake of CO2 during daytime and net CO2 release during night (Fig. 5). Be-25

tween mid-July and mid-August, the amplitude of the diurnal oscillation was greatest,

and daytime CO2 uptake dominated. Afterwards, the amplitude decreased, and the

CO2 release during night time gained more importance relative to the daytime CO2
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uptake. After 29 September, uptake of CO2 ceased and NEE was continuously posi-

tive. At the end of the campaign at 21 October, CO2 release was still substantial with

about 0.013 g h
−1

m
−2

. The NEE time series was markedly affected by the synoptical

weather pattern. For instance, during the strong rainfall on 25 July 2003 daytime CO2

uptake reached only –0.17 g h
−1

m
−2

, whereas it rose to more than –0.50 g h
−1

m
−2

5

on the partly cloudy 26 July. Also, advection events of warm air from the south were

clearly visible as shifts to higher nightly CO2 release, e.g. during 4–8 August and 2–7

September 2003.

The modelled ecosystem respiration ranged between 0.01 g h
−1

m
−2

and

0.55 g h
−1

m
−2

during the campaign 2003. The largest Reco values and its largest diur-10

nal amplitude were encountered in the first week of August, when the surface tem-

perature was at its maximum during a pronounced event of advection of warm air

from the south. The mean Reco during 4–8 August was 0.23 g h
−1

m
−2

. Afterwards,

Reco decreased; it averaged to 0.11 g h
−1

m
−2

during the second half of August, to

0.09 g h
−1

m
−2

during September and to 0.03 g h
−1

m
−2

during October.15

The modelled gross photosynthesis ranged between zero and –0.70 g h
−1

m
−2

during

the campaign 2003. Following the daily trend of PAR, the amplitude of the diurnal

oscillation of Pgross was large. From the beginning of measurements until about 10

August, photosynthesis took place for 24 h per day, however, with only small absolute

values during the night hours. The largest values ofPgross were observed from mid-July20

to the first week of August. The mean Pgross during this period was –0.26 g h
−1

m
−2

.

Afterwards, the Pgross decreased; it averaged to –0.17 g h
−1

m
−2

during the second half

of August, and to –0.07 g h
−1

m
−2

during September. During October, Pgross was zero.

During the midday maxima of PAR, Pgross frequently reached Pn−sat, indicating that

photosynthesis was limited by the saturation of the photosynthetically active tissue of25

the tundra canopy. Only on very cloudy days, midday Pgross was limited by irradiation.

The pattern of the NEE time series of the campaign 2004 (Fig. 5) reflects the drastic

changes of the physical conditions and the developmental stages of organisms during
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this period. Already at the last days of May, when the first snow-free patches appeared

at some polygon rims, a weak diurnal oscillation of NEE between night time CO2 emis-

sion and daytime CO2 uptake was observed. NEE was around +0.003 g h
−1

m
−2

during

the night of 28/29 May and about –0.002 g h
−1

m
−2

during midday of 29 May. The am-

plitude of this oscillation increased slowly during the first week of June. During the5

snow melt (8–18 June), the uptake of CO2 increased strongly and clearly dominated

the NEE pattern. Afterwards, the midday peak values of CO2 uptake fluctuated sub-

stantially on the meso-scale but increased in general with NEE reaching a maximum

of about –0.25 g h
−1

m
−2

on 19 July. The night time CO2 emissions varied between

0.02 g h
−1

m
−2

and 0.15 g h
−1

m
−2

(mean 0.06 g h
−1

m
−2

) and showed no clear trend.10

Ecosystem respiration and gross photosynthesis were modelled beginning 2 June.

Before this date, the models did not appropriately reflect the small-scale dynamics of

the CO2 fluxes. During the period 2–20 June, the temperature of the top soil layers

did not exceed 0
◦
C and Reco was low with little diurnal variation. Afterwards, Reco

increased strongly but also strongly depended on the synoptical weather pattern. The15

maximum of Reco was modelled for 8 July (0.57 g h
−1

m
−2

), when air, surface and soils

temperatures were high during the advection of warm air from the South. Reco was

markedly lower during the advection of cold air from the North (e.g. 28 June–5 July).

Reco averaged to 0.05 g h
−1

m
−2

and 0.12 g h
−1

m
−2

during the first and second half of

June, respectively, and to 0.16 g h
−1

m
−2

during July.20

Before the beginning of snow melt on 8 June, gross photosynthesis was low with

midday peak values of about –0.05 g h
−1

m
−2

. During this period, only few snow-free

patches existed at some polygon rims.During the period of the snow melt (8–18 June),

when more and more vegetation was released from the snow cover, Pgross increased

strongly to midday peak values of –0.2 g h
−1

m
−2

. During the snow-free period, Pgross25

increased further and reached midday peak values around –0.4 g h
−1

m
−2

in July. More

distinctly than in 2003 the photosynthesis was limited by the canopy photosynthetic

potential. Especially in the first phase of the campaign, Pgross frequently exceeded
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Pn−sat showing a high degree of light saturation of the canopy. With the development of

the plants and increasing temperatures towards the end of June, Pn−sat increased so

that the limitation of Pgross by the canopy photosynthetic potential lost importance.

3.3 The regulation of respiration and photosynthesis

The study of the relationship between ecosystem respiration Reco and various temper-5

atures revealed a close exponential relationship between Reco and the air temperature

at 0.5 m above ground as well as the radiative ground surface temperature (Figs. 6a,

b). However, the relationships between Reco and the soil temperatures at 1 cm depth

at a polygon rim and centre site were less clear (Figs. 6c, d). The low performance of

the exponential fits of Reco and soil temperature data is caused by the different trends10

of the data series during the refreeze of soils (Figs. 4 and 5). During this time, due to

the release of large amounts of latent heat, the soil temperatures remained for a long

time at 0
◦
C (“zero curtain”), whereas Reco decreased steadily. This indicates the im-

portance of the contribution of above-surface biomass to overall ecosystem respiration

at the tundra site.15

The characteristic parameters of the tundra canopy photosynthetic activity as de-

rived by the fit of Pgross and PAR data using Eq. (7) are displayed in Fig. 7. The canopy

photosynthetic potential Pmax generally followed the seasonal progression of the air

temperature, reflecting the combined effect of the phenological development of the

vegetation and the positive forcing of photosynthesis by temperature. When the first20

snow-free patches at the polygon rims appeared at the end of May, Pmax was low but

detectable with –0.07 g h
−1

m
−2

. After 8 June, when the daily average air temperature

rose above 0
◦
C and the snow melt started, Pmax increased steadily until mid-July. The

period of maximum Pmax lasted approximately three to four weeks from mid-July to

the first week of August with Pmax values around –0.8 g h
−1

m
−2

(range –0.5 g h
−1

m
−2

–25

1.1 g h
−1

m
−2

). This period indicates the mature phase of vegetation. As senescence

started during August, Pmax decreased at a high rate, later in September the decrease
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continued at lower rates. Pmax decreased to zero at the end of September, when the

daily average air temperature fell below zero. The substantial scatter of Pmax around

the general trend especially during midsummer was at least partly related to the pre-

cipitation pattern and subsequent moisture changes in the top soils and the moss layer.

Particularly high Pmax values were observed during the periods of heavy rain at the end5

of July.

The initial canopy quantum efficiency a increased similarly as Pmax, starting at the

appearance of the first snow-free patches and leading to the mature phase of the

vegetation, but peaked delayed compared to Pmax during the second to third week of

August. During autumn, a decreased but still showed strong variations.10

3.4 Seasonal and annual CO2 balance

The daily integrated components of the CO2 budget, Reco, Pgross and NEE are shown

for the synthetic measurement period 29 May–21 October 2004/2003 in Fig. 8. At

the beginning of June, Reco and Pgross were low and of similar magnitude, and hence

resulted in very low daily NEE. From 7 June to 9 July, the daily NEE alternated be-15

tween net CO2 uptake and net CO2 release. This was related to the synoptic weather

conditions and the dynamics of the underlying biological and soil-physical processes,

i.e. the vegetation development and the thawing of the permafrost soils. From 10 July

to 31 August, daily NEE was continuously negative and averaged to –2.1 g d
−1

m
−2

.

The daily CO2 uptake reached a maximum of –4.6 g d
−1

m
−2

at the end of July. After20

the beginning of September, daily NEE was positive on most days except during the

cold period 10–15 September. From mid-September to mid-October, the daily CO2 re-

lease was on average 0.7 g d
−1

m
−2

; it decreased to the end of the campaign to about

0.3 g d
−1

m
−2

.

The sums of Pgross, Reco and NEE over the whole measurement campaign amounted25

to -432 g m
−2

, +344 g m
−2

and –90 g m
−2

, respectively. From 11 June to 31 August,

the polygonal tundra was a net CO2 sink. During this period, Pgross, Reco and NEE
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summed to –375 g m
−2

, +251 g m
−2

and –120 g m
−2

, respectively. From the beginning

of September, the polygonal tundra was a substantial CO2 source.

An estimate of the annual CO2 budget was calculated by combining the gap-filled

NEE time series of 2003 and 2004 with estimated values of Reco for the winter and

spring period 22 October 2003–28 May 2004 (220 days). The empirical models of Reco5

as a function of air, soil, and radiative ground surface temperature (Fig. 6) could not be

used for the modelling of the wintertime Reco. These models did not deliver sensible

results when compared to measured CO2 fluxes during the first days of measurements

in 2004. We assumed that air and radiative ground surface temperature did not reflect

the temperature regime in the soil, where respiration took place, and that the models10

based on soil temperature data were biased by the presence of a still unfrozen soil

layer in early winter. Hence, this study followed a more simple but conservative ap-

proach for estimating Reco during winter and spring (Fig. 9). The modelling period was

divided in two periods which were separated by the date when the soils of the polygo-

nal tundra were completely frozen (17 November 2003, derived from soil temperature15

records). During the period 17 November–28 May, Reco was set constant to the value

0.003 g h
−1

m
−2

, which is the value observed during the night 28/29 May 2004, when

the soils were still completely frozen. This value falls at the lower end of the range of

mean winter CO2 fluxes reported by other authors from similar tundra sites (Fahne-

stock et al., 1998; Oechel et al., 1997a; Panikov and Dedysh, 2000; Zimov et al., 1993;20

Table 1). The resulting estimate of NEE during this period (194 days) was +14 g m
−2

.

During the period 22 October–17 November, Reco was estimated by linear interpola-

tion between the value of Reco measured at 21 October 2003 (0.013 g h
−1

m
−2

) and the

value of Reco of the second period (0.003 g h
−1

m
−2

). The resulting estimate of NEE

during this period (26 days) was +5 g h
−1

m
−2

. Hence, the cumulative NEE for the one-25

year period 20 July 2003–19 July 2004 was –71 g m
−2

, and the polygonal tundra of

the study area was a CO2 sink during this period. Approximately 363 g CO2 m
−2

was

respired by the plants and the soil organisms, which is about 84% of the annual CO2
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assimilation by the vegetation of 432 g CO2 m
−2

.

4 Discussion

4.1 Gross photosynthesis

4.1.1 Comparison with other tundra sites

The integrated value of Pgross of the wet polygonal tundra in the Lena River Delta for the5

period June–August was –383 g m
−2

. This value was low compared to Pgross estimates

for other arctic tundra sites. Estimates of Pgross for the same seasonal period for wet

sedge tundra and moist tussock tundra on the North Slope of Alaska were –519 g m
−2

and –858 g m
−2

, respectively (Vourlites et al., 2000). The lower value observed in this

study is partly related to later snow melt but also to generally lower Pgross values during10

midsummer. The peak Pgross value at the wet sedge tundra site described by Vourlites

et al. (2000) was –13.2 g d
−1

m
−2

whereas the peak value at the Lena River Delta was

only –8.6 g d
−1

m
−2

. At mixed moist to wet tundra on the Chukotskiy Peninsula, peak

Pgross was even greater with –14.7 g d
−1

m
−2

(Zamolodchikov et al., 2003).

Harazono et al. (2003) reported total annual values of Pgross in the range of –539 –15

–788 g m
−2

for a flooded wet sedge tundra site at Barrow, Alaska. The annual Pgross

at the Lena River Delta was substantially lower with –432 g m
−2

. Zamolodchikov and

Karelin (2001) estimated the average annual Pgross for the whole Russian tundra area

to be –759 g m
−2

. The maximum seasonal canopy photosynthetic potential Pmax at

the Lena River Delta of –1.1 g h
−1

m
−2

was very near to the average tundra Pmax of –20

1.04 g h
−1

m
−2

calculated by Buchmann and Schulze (1999). However, the maximum of

Pmax at an arctic fen on Greenland was substantially higher with –1.6 g h
−1

m
−2

(Laurila

et al., 2001).
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Consequently, the wet polygonal tundra in the Lena River Delta has to be considered

as a tundra ecosystem with comparatively low gross primary productivity. This low pro-

ductivity is related to the low coverage of vascular plants in the investigated wet polyg-

onal tundra. The leaf area index of the vascular plants was estimated to be only about

0.3, both at the polygon centre and the polygon rim (Kutzbach, 2000). Mosses, which5

had an estimated leaf area index of about 0.95, have a much lower photosynthetic

capacity than vascular plants. Furthermore, the production of photosynthetically ac-

tive tissue of vascular plants is considered to be strongly constrained by a low nutrient

availability at the polygonal tundra of the Lena River Delta. Tundra plants avoid nutrient

limitation of photosynthesis by limiting the amount of photosynthetic tissue within the10

support capabilities of the amount of nutrients available (Tieszen et al., 1980). How-

ever, they were found to be always on the borderline of being nutrient-limited (Ulrich

and Gersper, 1978).

Most tundra soils are characterized by a low nutrient availability due to the cold and

often waterlogged soil conditions, which slow down microbial and soil fauna activity15

and consequently decomposition and mineralization of organic matter (Chapin et al.,

1980a; Gersper et al., 1980; Shaver et al., 1998; Johnson et al., 2000; Hobbie et al.,

2002). Furthermore, the soils of the polygonal tundra at the investigation site have to

be considered as extremely poor, even when compared to other tundra soils. Water-

logging is prominent due to the flat macro-relief and the development of low-centred20

polygons. The growing season is short, and the soils are extremely cold also during

summer due to the very cold permafrost of Northern Siberia. The parent material of

the soils consists mainly of fluvial, nutrient-poor sands of the Holocene river terrace.

Moreover, the Holocene river terrace on which the polygonal tundra has formed is

not flooded regularly anymore during the spring flood, so that no fresh nutrients are25

transported to the soils.

The soils at wet sedge tundra sites for which much higher gross photosynthesis

was reported in the literature compared to this study (see above) are considered less

nutrient-limited than the soils of the investigation site of this study as they were situated
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at the bottom of mountain valleys (Vourlites et al., 2000; Laurila et al., 2001) or on

fine-grained marine sediments at coastal tundra (Brown et al., 1980; Harazono et al.,

2003). On moist tundra sites, e.g. tussock tundra or shrub tundra, Pgross appears to

be generally larger than at wet sedge tundra sites due to more favourable conditions

for the growth of vascular plants (Vourlites and Oechel, 1999; Vourlites et al., 2000;5

McFadden et al., 2003; Zamolodchikov et al., 2003).

4.1.2 Control by irradiation

Arctic tundra ecosystems have often been described as light-limited ecological systems

(Tieszen et al., 1980). However, the results of this study showed that during the day

Pgross was often limited by saturation of the photosynthetic apparatus of the canopy.10

Although the canopy never reached full light saturation, the quantum efficiency de-

clined substantially during mid-day high PAR intensities. A similar response of Pgross

to the diurnal PAR trend was described for wet sedge and tussock tundra in Alaska

by Vourlites and Oechel (1997, 1999). The leaves of vascular tundra plant species ap-

proach light saturation at PAR values of 1300–1600µmols
−1

m
−2

(Tieszen et al., 1980),15

a value that was not reached at the investigation site during the growing season. How-

ever, arctic mosses tend to reach light saturation already at PAR values of around

450µmols
−1

m
−2

, which is exceeded on average from 7:00 to 19:00 during June and

July at the Lena River Delta. The observed limitation of Pgross by the amount of pho-

tosynthetically active tissue in the tundra canopy under the current climate support the20

notion that enhanced plant growth under a warming climate may increase Pgross and

thus CO2 uptake by arctic canopies provided that nutrient availability will increase in

parallel (Shaver et al., 1992, 1998; Oechel et al., 2000; Hobbie et al., 2002).

4.1.3 Control by phenological development

The seasonal variation of Pgross was mainly controlled by the phenological development25

of the canopy and the production of photosynthetically active leave area, which in turn
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was related to the general temperature progression over the growing season. Photo-

synthesis started directly when the first snow-free patches appeared on the polygon

rims at the end of May. Most of this early photosynthesis was probably accomplished

by mosses, whose photosynthetically active tissues can overwinter and start to assim-

ilate CO2 as soon as it is freed from the snow cover (Oechel, 1976). Also the vascular5

plants start to grow and photosynthesize within one day of snow melt (Tieszen et al.,

1980). However, their photosynthetic rate is at first very low since their photosynthet-

ically active tissues are not maintained over winter and have to be produced newly.

From the start of photosynthesis, Pgross increased until the mature stage of the vas-

cular plants was reached at mid-July. Senescence of the vascular plants started after10

the first week of August and Pmax decreased as proteins and other materials were hy-

drolyzed and mobilized. In contrast, the mosses showed no senescence and continued

to photosynthesize until the air temperature dropped below zero (Fig. 7). The shoulders

of the seasonal progression curve of Pmax (28 May–10 June and 11–29 September) are

considered to indicate periods of only moss photosynthesis. By interpolating between15

these dates, the contribution of moss photosynthesis to the total Pgross during the photo-

synthetically active period was estimated to be approximately 40%. Miller et al. (1980)

found by harvesting methods that mosses contributed about 30% to the gross primary

production of a similar wet tundra canopy.

The non-synchronous seasonal trends of Pmax and a is probably related to the differ-20

ent seasonal development of vascular plants and mosses. The coefficients of the light

response model of Pgross have a firm physiological basis: Pmax is indicative of the de-

velopment and capacity of the CO2 fixation apparatus, such as the amount and activity

of the carboxylation enzyme Rubisco, whereas a is determined by the leave chloro-

phyll content and photosynthetically active leaf area (Vourlites and Oechel, 1999). The25

moss layer can be considered to have a large photosynthetically leave area (high a)

but a markedly lower content of Rubisco than vascular plants (low Pmax) (Miller et al.,

1980). Thus, senescence of the vascular plants affected Pmax stronger and earlier than

a.
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4.1.4 Control by temperature

Temperature is generally a major control factor on Pgross. While the light reactions of

photosynthesis are insensitive to temperature, the dark reactions are highly sensitive

to temperature since the activity of Rubisco has a distinct temperature optimum. How-

ever, the temperature optima of the photosynthesis of arctic plants are broad. The5

photosynthesis optima for vascular plants and bryophytes were found to be 10–15
◦
C

and 10–19
◦
C, respectively (Oechel, 1976; Tieszen et al., 1980). Even at 0

◦
C, photo-

synthetic activity of Arctic plant species is substantial. The lower limit of photosynthesis

was shown to be about –4
◦
C (Tieszen et al., 1980).

Despite the adaptation of Arctic vegetation to the low temperatures in the Arctic,10

plant growth and consequently Pgross is severely constrained by the low temperatures

and the short growing season. The timing of the snow melt has a great influence on

the length of the growing season and the annual Pgross. Variations in growing season

length probably accounted for much of the large interannual variation in Pgross observed

by several studies in the Arctic (Vourlites and Oechel, 1997; Lloyd, 2001b; Harazono15

et al., 2003). Atmospheric warming may prolong the summer period free of frost and

snow and permit a longer growing season, increased plant growth and higher CO2

assimilation of both vascular plants and mosses (Sveinbjörnsson and Sonesson, 1997;

Oechel et al., 1998). However, it has to be kept in mind that phenological events such

as bud break in spring and senescence in autumn are controlled by a complex suite of20

environmental variables including not only temperature but also the photoperiod, which

is not expected to change in the future.

4.1.5 Control by water availability

Water availability is considered to be of minor importance for the regulation of whole

canopy gross photosynthesis at the wet polygonal tundra. As neither a depression25

of Pgross nor a decrease of evapotranspiration at midday by stomatal regulation was

observed, the vascular plants were considered to not experience appreciable water
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stress. However, the meso-scale variations around the general trend of Pmax (Fig. 7)

could in part be attributed to the response of mosses to water availability. Mosses are

very sensitive to changes in available water since they cannot control their tissue wa-

ter content (Miller et al., 1980). In the periods between precipitation or dew events,

the mosses at the moist polygon rims desiccated, particularly during warm and dry5

weather (Lloyd, 2001a, b). The desiccation of mosses led to a decrease of the moss

photosynthetic potential which consequently also reduced the whole canopy photosyn-

thetic potential Pmax. During events of rain, the tissue water content of the mosses

was replenished and moss photosynthetic potential resumed quickly (Sveinbjörnsson

and Sonesson, 1997). These processes were clearly observable from the middle of10

July to the beginning of August, when periods of high precipitation alternated with dry

and warm periods and the calculated Pmax fluctuated substantially on the scale of sev-

eral days. An alternative or complementing explanation for the increased Pmax during

rainy periods could be that during cloudy weather the diffuse radiation is higher, which

is more effective in feeding photosynthesis than direct sunlight (Roderick et al., 2001;15

Stanhill and Cohen, 2001; Gu et al., 2003; Rocha et al., 2004).

4.2 Ecosystem respiration

4.2.1 Comparison with other tundra sites

The average Reco observed at the polygonal tundra of the Lena River Delta during

summer and the autumnal period of refreezing was comparatively low. It amounted to20

60% of average Reco observed at a moist to wet tussock tundra at the Kolyma River

lowlands in North-East Siberia (Corradi et al., 2005), to 60% of Reco at moist to wet

tundra on the Chukotskiy Peninsula (Zamolodchikov et al., 2003), to 47–54% of Reco

at a high arctic fen (Soegaard and Nordstroem, 1999; Nordstroem et al., 2001), to 38–

44% of Reco at tussock tundra at an Alaskan mountain valley (Vourlites and Oechel,25

1999; Vourlites et al., 2000) and to 50% of the average Reco modelled for the whole

Russian tundra area (Zamolodchikov and Karelin, 2001). On the other hand, Reco
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http://www.biogeosciences-discuss.net
http://www.biogeosciences-discuss.net/4/1953/2007/bgd-4-1953-2007-print.pdf
http://www.biogeosciences-discuss.net/4/1953/2007/bgd-4-1953-2007-discussion.html
http://www.egu.eu


BGD

4, 1953–2005, 2007

CO2 exchange

between wet arctic

tundra and the

atmosphere

L. Kutzbach et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

◭ ◮

◭ ◮

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

EGU

observed in this study was equal to Reco at wet sedge tundra at an Alaskan mountain

valley (Vourlites et al., 2000), about two times higher than Reco reported for flooded wet

sedge tundra at the coastal plain of Alaska (Harazono et al., 2003) and about 2.3 times

higher than Reco at an high-arctic semi-desert at Svalbard (Lloyd, 2001a).

Major controls on Reco are temperature, soil moisture, water table position, soil redox5

conditions, nutrient availability, vegetation type and litter quality (Hobbie et al., 2002;

Ping et al., 1997; Christensen et al., 1998; Zamolodchikov and Karelin, 2001). Most

of these control factors are not favourable for a high Reco at the wet polygonal tundra

of the Lena River Delta: Soil temperatures are low due to the very cold permafrost in

the region. Widespread water-logged conditions cause anaerobic soil conditions, and10

nutrient availability is poor as described before. Furthermore, the vegetation is charac-

terized by a low coverage of vascular plants and a high coverage of mosses, which are

known to produce extremely recalcitrant litter and even bactericidal substances in their

tissues (Zimov et al., 1993; Hobbie et al., 2002).

The comparison of values of Reco and Pgross given by other studies for tundra ecosys-15

tems reveals that Reco is generally higher in ecosystems with higher Pgross, with the ex-

ception of permanently flooded tundra types which showed relatively low Reco and high

Pgross (Harazono et al., 2003). More CO2 is assimilated by the vegetation in tussock

tundra (Vourlites and Oechel, 1999; Vourlites et al., 2000; Corradi et al., 2005) than in

wet sedge tundra (Vourlites and Oechel, 1997; this study), but also more CO2 is re-20

leased by the respiratory processes. At arctic semi-desert sites, the rates of both Reco

and Pgross are much lower compared to all real tundra sites (Lloyd, 2001a, b). Regional

comparison studies on Greenland and arctic Alaska found that Reco increased with the

leaf area index LAI. This was explained by a combination of greater leaf maintenance

respiration increasing with LAI and increased soil respiration due to better litter quality25

and larger root biomass at higher productivity sites (Soegaard et al., 2000; McFadden

et al., 2003).
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4.2.2 Control by temperature

Most of the variation of Reco during summer and autumn could be well modelled by

an exponential function between Reco and the surface temperature (R
2
=0.79 for the

2003 campaign). The good performance of the Reco model based on surface temper-

ature is explained by the importance of the above-ground plant respiration. Although5

most of the biomass in wet sedge-dominated tundra ecosystems (80–88%) is below-

ground in roots and rhizomes of the grasses and sedges (Billings et al., 1977; Chapin

et al., 1980b), 30–46% of summer Reco in grass and sedge tundra was found to origi-

nate from above-ground sources (Peterson and Billings, 1975; Nordstroem et al., 2001;

Zamolodchikov and Karelin, 2001). This high respiration in the relatively small above-10

ground biomass reflects the intense biological activity inside the arctic plants during

the short growing season. Within only three months, the vascular tundra plants have

to develop their complete photosynthetically active tissue, to flower and to senesce.

All these processes imply intense allocation of nutrients and carbohydrates, which is

powered by autotrophic respiration. Furthermore, soil and root respiration was shown15

to be most prominent in the uppermost centimetres of tundra soils (Billings et al., 1977;

Sommerkorn, 1998).

4.2.3 Seasonal progression of Reco

At the polygonal tundra of the Lena River Delta, 70% of the estimated annual Reco

took place during the summer months June–August. This value is well within the range20

of 60–80% estimated by Coyne and Kelley (1975). However, also the autumn was

found to be important for the dynamics of Reco at the investigation site. About 20% of

the estimated annual Reco was achieved in September. During the freezing of the soils

from October to mid-November, Reco amounted to 6% of the annual ecosystem respira-

tion. The so-called “period of autumnal carbon emission” (Zamolodchikov and Karelin,25

2001) is a common feature of high-latitude ecosystems and is one of the causes of the

high atmospheric CO2 concentration during winter which was observed over northern
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Siberia (Fung et al., 1987; Zimov et al., 1993; Zamolodchikov and Karelin, 2001).

On the other hand, no pronounced period of CO2 net emission during spring snow

melt was observed as reported for a range of tundra sites (Vourlites and Oechel, 1997;

Soegaard et al., 2000; Vourlites et al., 2000; Nordstroem et al., 2001; Zamolodchikov

and Karelin, 2001; Corradi et al., 2005). During the snow melt period 2004, daily Reco5

exceeded Pgross only slightly and for only a few days. Photosynthesis started directly

when the first snow-free patches appeared and outweighed the low respiration. Similar

early season trends of CO2 exchange were reported for tussock tundra and flooded

sedge tundra in Alaska by Vourlites and Oechel (1999), and Harazono et al. (2003). It

is suggested here that the reason for this pronounced difference in the seasonal CO210

progression may be related to the interannual variability of the timing of snow melt,

which is thought to have a strong effect on the balance of early season Pgross and Reco.

The approach for the estimation of Reco during winter and spring performed in this

study resulted in a comparatively low value of winter and spring Reco of 4% of the an-

nual Reco. It is well known that microbial (bacterial and fungal) respiration takes place15

also during much of the winter (Zimov et al., 1993; Oechel et al., 1997a; Fahnestock

et al. 1998; Grogan et al. 2001). Microbial respiration continues even in soils cooled

down to –10
◦
C (Flanagan and Bunnell, 1980; Michaelson and Ping, 2003). Below

this temperature, the unfrozen water content is so low that microbial activity probably

ceases (Sturm et al., 2001). The soil temperatures at the polygonal tundra were below20

–10
◦
C during the months December–May. However, CO2 emission to the atmosphere

could continue during this time due to the release of CO2 which was produced during

autumn and trapped in the frozen ground (Zimov et al., 1993; Oechel et al., 1997a).

For instance, Corradi et al. (2005) reported substantial Reco of 0.65 g d
−1

m
−2

at wet

tussock tundra at the Kolyma River lowlands in April, when the temperature in the top25

soil was –13
◦
C under a snow pack of 60 cm. Oechel et al. (1997a) also observed

very high winter fluxes of 1.1 g d
−1

m
−2

and 0.29 g d
−1

m
−2

at Alaskan tussock and wet

sedge tundra, respectively. Harazono et al. (2003) observed occasional large pulses

of CO2 emission from a frozen and snow-covered flooded wet sedge tundra in Alaska
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during May, which they related to events of high wind speed causing snow saltation and

the release of CO2 stored in the snow pack. In contrast, Fahnestock et al. (1998) ob-

served much lower winter Reco values of 0.02 g d
−1

m
−2

at Alaskan wet sedge tundra.In

this study Reco was measured as 0.072 g d
−1

m
−2

at the end of May. This value fell in

between the Reco values reported by the previous studies and was assumed to be rep-5

resentative for Reco during the whole winter and spring period. It is thought that this

estimation method neither underrated nor overrated Reco drastically, but the consider-

able uncertainty of estimates for the winter Reco and consequently also of the annual

CO2 budget should be kept in mind.

4.3 Net ecosystem CO2 exchange10

The ecosystem of the wet polygonal tundra is characterized by a comparatively low in-

tensity of carbon cycling. Both main CO2 exchange processes between the ecosystem

and the atmosphere, the gross photosynthesis Pgross and the ecosystem respiration

Reco, were low due to the environmental conditions at the site, which include climatic

as well as pedogenetic factors. The net ecosystem exchange NEE depends on the bal-15

ance of CO2 uptake by Pgross and CO2 emission by Reco. Since the two opposed fluxes

Pgross and Reco are much larger than their balance NEE, small relative changes in Pgross

or Reco can cause large relative changes of NEE. The measurements presented in this

study showed that the wet polygonal tundra of the Lena River Delta was a substantial

net CO2 sink during the summer (–119 g m
−2

during June–August). Also on the annual20

basis, the polygonal tundra was estimated to be a CO2 sink (–71 g m
−2

) because the

CO2 efflux during autumn, winter and spring was assessed to be moderate (+48 g m
−2

during September–May).

In Table 1, the cumulative NEE observed in this study is compared with NEE values

reported from other tundra sites for different time periods. The cumulative CO2 uptake25

observed during summer at the polygonal tundra in the Lena River Delta was similar to

values reported for a high-arctic fen in Greenland (Nordstroem et al., 2001), a moist to
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wet tussock tundra at the Kolyma River lowlands in North-East Siberia (Corradi et al.,

2005) and a mixed moist and wet tundra at the Chukotskiy Peninsula (Zamolodchikov et

al., 2003). The mean summer CO2 uptake for the whole Russian tundra area modelled

by Zamolodchikov and Karelin (2001) was slightly lower than the value observed in this

study. On the other hand, summer cumulative CO2 uptake was several times higher5

at wet sedge and tussock tundra sites at an Alaskan mountain valley (Vourlites and

Oechel, 1999; Vourlites et al., 2000) and at wet sedge tundra at the Alaskan coastal

plain (Harazono et al., 2003). However, cumulative summer CO2 uptake at a moist

to wet polygonal tundra at the coastal plain of Alaska was only about half the value

measured in this study (Vourlites and Oechel, 1997). The estimated annual CO2 sink10

strength at the polygonal tundra of the Lena River Delta was equal to the sink strength

of a high-arctic fen at Greenland (Soegaard et al., 2000) and about half of the sink

strength of wet tussock tundra at the Kolyma River lowlands (Corradi et al., 2005).

On the other hand, it was about four times the average sink strength estimated for

the whole Russian tundra area (Zamolodchikov and Karelin, 2001), which is due to a15

markedly higher estimate for Reco, especially for the winter period by the latter authors.

The function of tundra ecosystems as CO2 sources or sinks was found to fluctuate

considerably on the decadal scale in response to changing climate. Oechel et al.

(1993) stated that Alaskan tussock and wet-sedge tundra ecosystems, which were

strong CO2sinks in the cool and wet 1970s (Coyne and Kelley, 1975; Chapin et al.,20

1980a), had changed to a pronounced net CO2 source during the mid-1980s and the

early 1990s due to the acceleration of soil decomposition under a warming and drying

climate. Even during the warm, photosynthetically active season (June–September),

the examined tundra ecosystems were net CO2 sources. However, the same authors

reported that between 1992 and 1996, in response to further warming and drying, net25

summer releases of CO2 to the atmosphere of both ecosystems declined, and they

eventually became CO2 sinks again (Vourlites and Oechel, 1997; Oechel et al., 2000).

The authors suggested that the return to CO2 sink activity of the tundra ecosystems

was related to changes in nutrient cycling, physiological acclimation, and population
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and community reorganization which enhanced the gross primary productivity of the

tundra vegetation (Shaver et al., 1998; Chapin et al., 1995, 2005; Sturm et al., 2001).

These findings underline the importance of long-term flux studies for the assessment

of how Arctic ecosystems will respond to a changing climate and how this response

will feed back to the climate system.5

5 Conclusions

This study demonstrated that the North-Siberian wet arctic tundra differs considerably

from tundra ecosystems in North-America and Europe. Therefore, the intensification

of biogeochemical research in the extensive tundra landscapes of Siberia is urgently

needed for a better understanding of the arctic carbon cycle. This study delivered10

a range of new results on the processes of the CO2 cycling at wet arctic tundra of

Northern Siberia which are considered to be of concern not only for the Lena River

Delta but also for the extensive area of the North Siberian lowland tundra as a whole.

On the basis of the presented results and discussions, the following main conclusions

are drawn:15

The CO2 budget of the investigated tundra is determined by (1.) the polar and dis-

tinctly continental climate, (2.) the very cold and ice-rich permafrost which underlies

the tundra of Northern Siberia, (3.) the wetland character of polygonal tundra, (4.) the

position at the interface between the Arctic Ocean and the Siberian mainland, (5.) the

long duration of the snow coverage, (6.) the generally low nutrient status of the soils at20

the site, and (7.) a vegetation cover which is dominated by sedges and mosses.

The exchange fluxes of CO2 show clear seasonal trends on which the diurnal os-

cillation and pronounced meso-scale variations are superimposed. The meso-scale

variations are related to the synoptic weather conditions and strongly affect the ex-

change fluxes through changes of cloudiness, precipitation and pronounced changes25

of air temperature. Thus, the large-scale atmospheric circulation patterns, for exam-

ple the phase of the Arctic Oscillation, have a strong influence on the function of the
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North-Siberian tundra as a sink or source of CO2.

The CO2 budget of the wet polygonal tundra is characterized by a generally low

intensity of the main CO2 exchange processes between the ecosystem and the atmo-

sphere, namely the gross photosynthesis Pgross and the ecosystem respiration Reco.

Both processes are attenuated by the unfavourable environmental conditions at the5

site, which include climatic as well as pedogenetic factors.

The cumulative Pgross amounted to –432 g m
−2

over the photosynthetically active pe-

riod (June–September). The rather low Pgross is related to the low coverage of vascular

plants, mainly sedges, and a high coverage of mosses at the polygonal tundra. The

contribution of moss photosynthesis to the annual Pgross is estimated to be about 40%.10

The gross primary productivity of the vegetation of the wet polygonal tundra is con-

strained by the low nutrient availability in the soils.

The diurnal response of Pgross is mainly controlled by the irradiation. During midday

the photosynthetic apparatus of the canopy is frequently near saturation and repre-

sents the limiting factor on Pgross. The seasonal progression of Pgross is controlled15

by the combination of the phenological development of the vegetation and the general

temperature progression over the summer. The phenological development of the plants

is largely controlled by intrinsic factors. However, temperature is also a major control

on Pgross at the investigation site since photosynthesis takes place for most of the time

below its temperature optimum. On the other hand, water availability has only minor20

importance as control on Pgross due to the wet soil conditions at polygonal tundra. Only

when the mosses at the drier microsites of the polygon rim experience water stress,

Pgross is reduced significantly.

The cumulative Reco amounted to +327 g m
−2

over the photosynthetically active pe-

riod (June–September), which corresponds to 76% of the cumulative Pgross. However,25

Reco continues at substantial rates during autumn when photosynthesis has ceased

and the soils are still largely unfrozen and to a lesser degree throughout the winter

and spring. The significant Reco during autumn, winter and spring is a major but highly

uncertain factor in the annual CO2 balance which should be addressed in future winter
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campaigns. The temporal variability of Reco during summer is best explained by the

surface temperature and not by the soil temperature. This finding demonstrates the

high and often overlooked importance of the autotrophic plant respiration within the

CO2 balance. Indeed, the composition and productivity of the vegetation have to be

considered as major controls on Reco.5

Under the current arctic climate, the wet polygonal tundra of the Lena River Delta

acts as a CO2 sink with a cumulative net ecosystem CO2 exchange NEE of –119 g m
−2

over the summer (June–August) and an estimated annual NEE of –71 g m
−2

. A more

complete carbon balance must include the release of CH4 from the ecosystem to the

atmosphere. However, since the carbon released as CH4 can be estimated to be about10

2–3% of the carbon released by Reco (Wille et al., 2007
1
), this will still result in a clear

carbon sink function of the investigated wet arctic tundra.
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Hobbie, S. E., Nadelhoffer, K. J., and Högberg, P.: A synthesis: The role of nutrients as con-

straints on carbon balances in boreal and arctic regions, Plant Soil, 242, 163–170, 2002.
Houghton, J. T., Ding, Y., Griggs, D. J., Noguer, M., van der Linden, P. J., Xiaosu, D. (Eds.):

Climate Change 2001: The Scientific Basis. Contribution of Working Group I to the Third As-5

sessment Report of the Intergovernmental Panel on Climate Change, Cambridge University
Press, Cambridge, UK, 2001.

Jacovides, C. P., Tymvios, F. S., Asimakopoulus, D. N., Theofilou, K. M., and Pashiardes, S.:
Global photosynthetically active radiation and its relationship with global solar radiation in
the Eastern Mediterranean basin, Theor. Appl. Climatol., 74, 227–233, 2003.10

Johnson, L. C., Shaver, G. R., Rastetter, E., Nadelhoffer, K. J., Giblin, A., Laundre, J., Cades,
D., and Stanley, A.: Plant carbon-nutrient interactions control CO2 exchange in Alaskan wet
sedge tundra ecosystems, Ecology, 81, 453–469, 2000.

Kattenberg, A., Giorgi, F., Grassl, H., et al.: Climate models: projections of future climate, in:
Climate Change 1995: The Science of Climate Change. Contribution of Working Group I to15

the Second Assessment Report of the Intergovernmental Panel on Climate Change, edited
by: Houghton, J. T., Meira Filho, L. G., Callender, B. A., et al., Cambridge University Press,
New York, USA, 285–357, 1996.

Kotlyakov, V. and Khromova, T.: Permafrost, Snow and Ice, in: Land Recources of Russia (CD-
ROM), edited by: Stolbovoi, V. and McCallum, I., International Institute of Applied Systems20

Analysis and the Russian Academy of Science, Laxenburg, Austria, 2002.
Kutzbach, L.: Die Bedeutung der Vegetation und bodeneigener Parameter für die Methanflüsse
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Table 1. Comparison of cumulative net ecosystem CO2 exchange Σ NEE reported by other
investigators and by this study. Note that the comparison periods differ depending on the
availability of data. Σ NEE was calculated by integrating the CO2 fluxes over the comparison
period specified.

Reference Location Tundra type Comparison period ΣNEE
(g m

−2
)

ΣNEE this study

(g m
−2

)

Nordstroem et al. (2001) Zackenberg, Green-
land
74

◦
N, 20

◦
W

wet fen and grassland June–Aug 1997 –120 –119

Lloyd (2001b) Ny-Ålesund, Svalbard
80

◦
N, 12

◦
E

subpolar desert, mosses June–Aug 1995; 1996 –4
+5

–119

Oechel et al. (1993) Prudhoe Bay, Alaska
70

◦
N, 148

◦
W

wet sedge June–Sep (125 d) 1990 16 –116

Vourlites and Oechel (1997) U-Pad, Alaska
70

◦
N, 149

◦
W

moist to wet herbaceous June–Aug 1994; 1995 –67
–48

–119

Vourlites and Oechel (1999) Happy Valley, Alaska
69

◦
N, 149

◦
W

moist tussock June–Aug 1995 –203 –119

Vourlites et al. (2000) Happey Valley, Alaska
69

◦
N, 149

◦
W

wet sedge June–Aug 1995 –281 –119

Harazono et al. (2003) Barrow, Alaska
71

◦
N; 156

◦
W

wet sedge May–Sep 1999; 2000 –593
–384

–104

Zamolodchikov and Karelin
(2001)

whole Russian tundra all types June–Sep (117 d) model –103 –121

Zamolodchikov et al. (2003) Lavrentiya, Siberia
65

◦
N, 171

◦
W

mixed: moist to wet mid-July–mid-Oct., 2000 –37.4 –47

Corradi et al. (2005) Cherskii, Siberia
69

◦
N, 162

◦
E

moist to wet tussock July–Aug 2002 –100 –112

Corradi et al. (2005) Cherskii, Siberia
69

◦
N, 162

◦
E

moist to wet tussock Sep–June 2002/2003 62 40

Zimov et al. (1993) Cherskii, Siberia
69

◦
N, 162

◦
E

moist shrub and grass Dec–Feb 1989/1990 51 7

Oechel et al. (1997a) Alaska wet sedge Oct–May 1993/1994 73 35
Fahnestock et al. (1998) Prudhoe Bay, Alaska

70
◦
N, 148

◦
W

wet sedge Feb–May 1996 1.84 9

Panikov and Dedysh (2000) Bakshar Bog, Siberia
57

◦
N, 82

◦
E

ombrotrophic bog Feb 1995 7 2

1996
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Fig. 1. Map of the Lena River Delta. The location of the investigation area Samoylov Island is
marked by a square. Geomorphological units are according to Grigoriev (1993).
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Fig. 2. CORONA satellite image of Samoylov Island, taken on 22 June 1964. The star symbols
mark the position of (1) the eddy covariance system, (2) the long-term meteorological and soil
station, and (3) the field laboratory. The black circle marks the 600 m radius around the eddy
tower, and the hatched area marks the sector of discarded data due to disturbance from the
power generator.
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Fig. 3. Example for the relationship between gross photosynthesis Pgross and photosynthetically
active radiation PAR during the period 1–2 August 2003. Data points are hourly calculated
Pgross. The white star indicates the point where the canopy quantum efficiency (the slope of the
light response curve) is reduced to 10% of its initial value, i.e. where Pn−sat is reached.
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Fig. 4. Meteorological and soil data during the measurements campaigns 2003 and 2004.
(A) air temperature at 2 m height, (B) daily sum of rainfall, (C) height of water table above soil
surface at the centre (squares) and the rim (triangles) of a polygon, depth of frozen ground
table (circles), and snow height (line without symbol), (D) soil volumetric water content at 5 cm
depth at the centre (black) and the rim (grey) of a polygon, (E) soil temperature at the polygon
centre at depths of 1 cm (black line), 10 cm (grey line), 20 cm (dotted line), and 30 cm (dashed
line).
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Fig. 5. CO2 budget components and meteorological controls in 2003 and 2004. (A) NEE mea-
sured by the eddy covariance method, (B) modelled ecosystem respiration Reco, (C) modelled
gross photosynthesis Pgross (black) and gross photosynthesis near light saturation Pn−sat (grey),
(D) photosynthetically active radiation PAR; (E) surface radiative temperature Tsur.
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Fig. 6. Relationship between ecosystem respiration and (A) air temperature at 0.5 m height
Tair−0.5m, (B) surface radiative temperature Tsur, (C) soil temperature at a polygon rim at 1 cm
depth Tsoil−rim−1 cm, and (D) soil temperature at a polygon centre at 1 cm depth Tsoil−center−1cm.

Data points are hourly means from dark periods (PAR <20µmolm
−2

s
−1

) during 20 July–21
October 2003 (N=611). The data was fitted with exponential functions of the form given by
Eq. (4).
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Fig. 7. Characteristic parameters of the tundra canopy photosynthetic activity as derived by
the fit of Pgross and PAR data using Eq. (7). (A) initial canopy quantum efficiency a, (B) canopy
photosynthetic potential Pmax. (C) average air temperature Tair. Data points were calculated
over two-day periods in 2003 and three-day periods in 2004. Black lines are polynomial fits.
The time series of data were arranged so that they follow the seasonal course.
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Fig. 8. Daily integrated CO2 budget components NEE, Reco and Pgross during the investigation
period. The data are not stacked but NEE is overlaid on Reco and Pgross. The time series of data
were arranged so that they follow the seasonal course.
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Fig. 9. Cumulative net ecosystem exchange Σ NEE from July 2003 to July 2004. The periods
of the micrometeorological measurements are highlighted by the grey background. The stars
indicate: A=start of measurements 2003, B=start of modelling period with linearly decreasing

Reco, C=start of modelling period with constant Reco of 0.003 g h
−1

m
−2

, D=start of measure-
ments 2004, E=end of measurements 2004.
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